Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:PDF, CDF and Moments of Special Distributions"

From LNTwww
Line 146: Line 146:
 
===Gaussian distributed random variables===
 
===Gaussian distributed random variables===
  
[[File:Gauss_WDF_VTF.png |right|frame|Gaussian random variable:  PDF and CDF]]
+
[[File:Gauss_WDF_VTF.png |right|frame|Gaussian random variable:  PDF and CDF '''KORREKTUR''']]
 
'''(1)'''    »'''Probability density function'''«   (axisymmetric around  mX)
 
'''(1)'''    »'''Probability density function'''«   (axisymmetric around  mX)
 
:fX(x)=12πσXe(XmX)2/(2σ2X).
 
:fX(x)=12πσXe(XmX)2/(2σ2X).

Revision as of 15:15, 23 February 2023

Open Applet in new Tab   Deutsche Version Öffnen

Applet Description


The applet presents the description forms of two continuous value random variables  X  and  Y.  For the red random variable  X  and the blue random variable  Y,  the following basic forms are available for selection:

  • Gaussian distribution, uniform distribution, triangular distribution, exponential distribution, Laplace distribution, Rayleigh distribution, Rice distribution, Weibull distribution, Wigner semicircle distribution, Wigner parabolic distribution, Cauchy distribution.


The following data refer to the random variables  X. Graphically represented are

  • the probability density function  fX(x)  (above) and
  • the cumulative distribution function  FX(x)  (bottom).


In addition, some integral parameters are output, namely

  • the linear mean value  mX=E[X],
  • the second order moment  PX=E[X2],
  • the variance  σ2X=PXm2X,
  • the standard deviation  σX,
  • the Charlier skewness  SX,
  • the kurtosis  KX.


Definition and Properties of the Presented Descriptive Variables


In this applet we consider only (value–)continuous random variables, i.e. those whose possible numerical values are not countable.

  • The range of values of these random variables is thus in general that of the real numbers  (X+).
  • However, it is possible that the range of values is limited to an interval:  xminX+xmax.



Probability density function (PDF)

For a continuous random variable  X  the probabilities that  X  takes on quite specific values  x  are zero:  Pr(X=x)0.  Therefore, to describe a continuous random variable, we must always refer to the  probability density function  – in short  PDF

Definition:  The value of the  »probability density function«  fX(x)  at location  x  is equal to the probability that the instantaneous value of the random variable  x  lies in an  (infinitesimally small)  interval of width  Δx  around  x_\mu,  divided by  Δx:

f_X(x) = \lim_{ {\rm \Delta} x \hspace{0.05cm}\to \hspace{0.05cm} 0} \frac{ {\rm Pr} \big [x - {\rm \Delta} x/2 \le X \le x +{\rm \Delta} x/2 \big ] }{ {\rm \Delta} x}.


This extremely important descriptive variable has the following properties:

  • For the probability that the random variable  X  lies in the range between  x_{\rm u}  and  x_{\rm o} > x_{\rm u}
{\rm Pr}(x_{\rm u} \le X \le x_{\rm o}) = \int_{x_{\rm u}}^{x_{\rm o}} f_{X}(x) \ {\rm d}x.
  • As an important normalization property,  this yields for the area under the PDF with the boundary transitions  x_{\rm u} → \hspace{0.1cm} – \hspace{0.05cm} ∞  and  x_{\rm o} → +∞:
\int_{-\infty}^{+\infty} f_{X}(x) \ {\rm d}x = 1.


Cumulative distribution function (CDF)

The  cumulative distribution function  – in short  \rm CDF  – provides the same information about the random variable  X  as the probability density function.

\text{Definition:}  The  »cumulative distribution function«  F_{X}(x)  corresponds to the probability that the random variable  X  is less than or equal to a real number  x

F_{X}(x) = {\rm Pr}( X \le x).


The CDF has the following characteristics:

  • The CDF is computable from the probability density function  f_{X}(x)  by integration.  It holds:
F_{X}(x) = \int_{-\infty}^{x}f_X(\xi)\,{\rm d}\xi.
  • Since the PDF is never negative,  F_{X}(x)  increases at least weakly monotonically,  and always lies between the following limits:
F_{X}(x → \hspace{0.1cm} – \hspace{0.05cm} ∞) = 0, \hspace{0.5cm}F_{X}(x → +∞) = 1.
  • Inversely,  the probability density function can be determined from the CDF by differentiation:
f_{X}(x)=\frac{{\rm d} F_{X}(\xi)}{{\rm d}\xi}\Bigg |_{\hspace{0.1cm}x=\xi}.
  • For the probability that the random variable  X  is in the range between  x_{\rm u}  and  x_{\rm o} > x_{\rm u}  holds:
{\rm Pr}(x_{\rm u} \le X \le x_{\rm o}) = F_{X}(x_{\rm o}) - F_{X}(x_{\rm u}).


Expected values and moments

The probability density function provides very extensive information about the random variable under consideration.  Less,  but more compact information is provided by the so-called  "expected values"  and  "moments".

\text{Definition:}  The  »expected value«  with respect to any weighting function  g(x)  can be calculated with the PDF  f_{\rm X}(x)  in the following way:

{\rm E}\big[g (X ) \big] = \int_{-\infty}^{+\infty} g(x)\cdot f_{X}(x) \,{\rm d}x.

Substituting into this equation for  g(x) = x^k  we get the  »moment of k-th order«:

m_k = {\rm E}\big[X^k \big] = \int_{-\infty}^{+\infty} x^k\cdot f_{X} (x ) \, {\rm d}x.


From this equation follows.

  • with  k = 1  for the  first order moment  or the  (linear)  mean:
m_1 = {\rm E}\big[X \big] = \int_{-\infty}^{ \rm +\infty} x\cdot f_{X} (x ) \,{\rm d}x,
  • with  k = 2  for the  second order moment  or the  second moment:
m_2 = {\rm E}\big[X^{\rm 2} \big] = \int_{-\infty}^{ \rm +\infty} x^{ 2}\cdot f_{ X} (x) \,{\rm d}x.

In relation to signals,  the following terms are also common:

  • m_1  indicates the  DC component;    with respect to the random quantity  X  in the following we also write  m_X.
  • m_2  corresponds to the signal power  P_X   (referred to the unit resistance  1 \ Ω ) .


For example, if  X  denotes a voltage, then according to these equations  m_X  has the unit  {\rm V}  and the power  P_X  has the unit  {\rm V}^2. If the power is to be expressed in "watts"  \rm (W), then  P_X  must be divided by the resistance value  R

Central moments

Of particular importance in statistics in general are the so-called  central moments from which many characteristics are derived,

\text{Definition:}  The  »central moments«,  in contrast to the conventional moments, are each related to the mean value  m_1  in each case. For these, the following applies with  k = 1, \ 2, ...:

\mu_k = {\rm E}\big[(X-m_{\rm 1})^k\big] = \int_{-\infty}^{+\infty} (x-m_{\rm 1})^k\cdot f_x(x) \,\rm d \it x.


  • For mean-free random variables, the central moments  \mu_k  coincide with the noncentral moments  m_k
  • The first order central moment is by definition equal to  \mu_1 = 0.
  • The noncentral moments  m_k  and the central moments  \mu_k  can be converted directly into each other.  With  m_0 = 1  and  \mu_0 = 1  it is valid:
\mu_k = \sum\limits_{\kappa= 0}^{k} \left( \begin{array}{*{2}{c}} k \\ \kappa \\ \end{array} \right)\cdot m_\kappa \cdot (-m_1)^{k-\kappa},
m_k = \sum\limits_{\kappa= 0}^{k} \left( \begin{array}{*{2}{c}} k \\ \kappa \\ \end{array} \right)\cdot \mu_\kappa \cdot {m_1}^{k-\kappa}.


Some Frequently Used Central Moments

From the last definition the following additional characteristics can be derived:

\text{Definition:}  The  »variance«  of the considered random variable  X  is the second order central moment:

\mu_2 = {\rm E}\big[(X-m_{\rm 1})^2\big] = \sigma_X^2.
  • The variance  σ_X^2  corresponds physically to the  "switching power"  and  »standard deviation«  σ_X  gives the "rms value".
  • From the linear and the second moment,  the variance can be calculated according to  Steiner's theorem  in the following way:  \sigma_X^{2} = {\rm E}\big[X^2 \big] - {\rm E}^2\big[X \big].


\text{Definition:}  The  »Charlier's skewness«  S_X  of the considered random variable  X  denotes the third central moment related to σ_X^3.

  • For symmetric probability density function,  this parameter   S_X  is always zero.
  • The larger  S_X = \mu_3/σ_X^3  is,  the more asymmetric is the PDF around the mean  m_X.
  • For example,  for the exponential distribution the (positive) skewness  S_X =2, and this is independent of the distribution parameter  λ.


\text{Definition:}  The  »kurtosis«  of the considered random variable  X  is the quotient  K_X = \mu_4/σ_X^4    (\mu_4:  fourth-order central moment).

  • For a Gaussian distributed random variable this always yields the value  K_X = 3.
  • This parameter can be used, for example, to check whether a given random variable is actually Gaussian or can at least be approximated by a Gaussian distribution.


Compilation of some Continuous–Value Random Variables


The applet considers the following distributions: 

Gaussian distribution, uniform distribution, triangular distribution, exponential distribution, Laplace distribution, Rayleigh distribution,
Rice distribution, Weibull distribution, Wigner semicircle distribution, Wigner parabolic distribution, Cauchy distribution.

Some of these will be described in detail here.

Gaussian distributed random variables

Gaussian random variable:  PDF and CDF KORREKTUR

(1)    »Probability density function«   (axisymmetric around  m_X)

f_X(x) = \frac{1}{\sqrt{2\pi}\cdot\sigma_X}\cdot {\rm e}^{-(X-m_X)^2 /(2\sigma_X^2) }.

PDF parameters: 

  • m_X  (mean or DC component),
  • σ_X  (standard deviation or rms value).


(2)    »Cumulative distribution function«   (point symmetric around  m_X)

F_X(x)= \phi(\frac{\it x-m_X}{\sigma_X})\hspace{0.5cm}\rm with\hspace{0.5cm}\rm \phi (\it x\rm ) = \frac{\rm 1}{\sqrt{\rm 2\it \pi}}\int_{-\rm\infty}^{\it x} \rm e^{\it -u^{\rm 2}/\rm 2}\,\, d \it u.

ϕ(x):   Gaussian error integral (cannot be calculated analytically, must be taken from tables).


(3)    »Central moments«

\mu_{k}=(k- 1)\cdot (k- 3) \ \cdots \ 3\cdot 1\cdot\sigma_X^k\hspace{0.2cm}\rm (if\hspace{0.2cm}\it k\hspace{0.2cm}\rm even).
  • Charlier's skewness  S_X = 0,  since  \mu_3 = 0  (PDF is symmetric about  m_X).
  • Kurtosis  K_X = 3,  since  \mu_4 = 3 \cdot \sigma_X^2  ⇒   K_X = 3  results only for the Gaussian PDF.


(4)    »Further remarks«

  • The naming is due to the important mathematician, physicist and astronomer Carl Friedrich Gauss.
  • If  m_X = 0  and  σ_X = 1, it is often referred to as the  normal distribution.
  • The standard deviation can also be determined graphically from the bell-shaped PDF f_{X}(x)   (as the distance between the maximum value and the point of inflection).
  • Random quantities with Gaussian WDF are realistic models for many physical physical quantities and also of great importance for communications engineering.
  • The sum of many small and independent components always leads to the Gaussian PDF   ⇒   Central Limit Theorem of Statistics   ⇒   Basis for noise processes.
  • If one applies a Gaussian distributed signal to a linear filter for spectral shaping, the output signal is also Gaussian distributed.


Signal and PDF of a Gaussian noise signal

\text{Example 1:}  The graphic shows a section of a stochastic noise signal  x(t)  whose instantaneous value can be taken as a continuous random variable  X. From the PDF shown on the right, it can be seen that:

  • A Gaussian random variable is present.
  • Instantaneous values around the mean  m_X  occur most frequently.
  • If there are no statistical ties between the samples  x_ν  of the sequence, such a signal is also called "white noise".


Uniformly distributed random variables

Uniform distribution:  PDF and CDF

(1)    »Probability density function«

  • The probability density function (PDF)  f_{X}(x)  is in the range from  x_{\rm min}  to  x_{\rm max}  constant equal to  1/(x_{\rm max} - x_{\rm min})  and outside zero.
  • At the range limits for  f_{X}(x)  only half the value  (mean value between left and right limit value)  is to be set.


(2)    »Cumulative distribution function«

  • The cumulative distribution function (CDF) increases in the range from  x_{\rm min}  to  x_{\rm max}  linearly from zero to  1


'(3)    »'«

  • Mean and standard deviation have the following values for the uniform distribution:
m_X = \frac{\it x_ {\rm max} \rm + \it x_{\rm min}}{2},\hspace{0.5cm} \sigma_X^2 = \frac{(\it x_{\rm max} - \it x_{\rm min}\rm )^2}{12}.
  • For symmetric PDF   ⇒   x_{\rm min} = -x_{\rm max}  the mean value  m_X = 0  and the variance  σ_X^2 = x_{\rm max}^2/3.
  • Because of the symmetry around the mean  m_X  the Charlier skewness  S_X = 0.
  • The kurtosis is with   K_X = 1.8  significantly smaller than for the Gaussian distribution because of the absence of PDF outliers.


(4)    »Further remarks«

  • For modeling transmission systems, uniformly distributed random variables are the exception. An example of an actual (nearly) uniformly distributed random variable is the phase in circularly symmetric interference, such as occurs in  quadrature amplitude modulation  (QAM) schemes.
  • The importance of uniformly distributed random variables for information and communication technology lies rather in the fact that, from the point of view of information theory, this PDF form represents an optimum with respect to differential entropy under the constraint of "peak limitation".
  • In image processing & encoding, the uniform distribution is often used instead of the actual distribution of the original image, which is usually much more complicated, because the difference in information content between a natural image and the model based on the uniform distribution is relatively small.
  • In the simulation of intelligence systems, one often uses "pseudo-random generators" based on the uniform distribution (which are relatively easy to realize), from which other distributions  (Gaussian distribution, exponential distribution, etc.)  can be easily derived.


Exponentially distributed random variables

(1)    »Probability distribution function«

Exponential distribution:  PDF and CDF

An exponentially distributed random variable  X  can only take on non–negative values. For  x>0  the PDF has the following shape:

f_X(x)=\it \lambda_X\cdot\rm e^{\it -\lambda_X \hspace{0.05cm}\cdot \hspace{0.03cm} x}.
  • The larger the distribution parameter  λ_X,  the steeper the drop.
  • By definition,  f_{X}(0) = λ_X/2, which is the average of the left-hand limit  (0)  and the right-hand limit  (\lambda_X).


(2)    »Cumulative distribution function«

Distribution function PDF, we obtain for  x > 0:

F_{X}(x)=1-\rm e^{\it -\lambda_X\hspace{0.05cm}\cdot \hspace{0.03cm} x}.

(3)    »Moments and central moments«

  • The  moments  of the (one-sided) exponential distribution are generally equal to:
m_k = \int_{-\infty}^{+\infty} x^k \cdot f_{X}(x) \,\,{\rm d} x = \frac{k!}{\lambda_X^k}.
  • From this and from Steiner's theorem we get for mean and standard deviation:
m_X = m_1=\frac{1}{\lambda_X},\hspace{0.6cm}\sigma_X^2={m_2-m_1^2}={\frac{2}{\lambda_X^2}-\frac{1}{\lambda_X^2}}=\frac{1}{\lambda_X^2}.
  • The PDF is clearly asymmetric here. For the Charlier skewness  S_X = 2.
  • The kurtosis with   K_X = 9  is clearly larger than for the Gaussian distribution, because the PDF foothills extend much further.


(4)    »Further remarks«

  • The exponential distribution has great importance for reliability studies; in this context, the term "lifetime distribution" is also commonly used.
  • In these applications, the random variable is often the time  t, that elapses before a component fails.
  • Furthermore, it should be noted that the exponential distribution is closely related to the Laplace distribution.


Laplace distributed random variables

Laplace distribution:  PDF and CDF

(1)    »Probability density function«

As can be seen from the graph, the Laplace distribution is a "two-sided exponential distribution":

f_{X}(x)=\frac{\lambda_X} {2}\cdot{\rm e}^ { - \lambda_X \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} x \hspace{0.05cm} \vert}.
  • The maximum value here is  \lambda_X/2.
  • The tangent at  x=0  intersects the abscissa at  1/\lambda_X, as in the exponential distribution.


(2)    »Cumulative distribution function«

F_{X}(x) = {\rm Pr}\big [X \le x \big ] = \int_{-\infty}^{x} f_{X}(\xi) \,\,{\rm d}\xi
\Rightarrow \hspace{0.5cm} F_{X}(x) = 0.5 + 0.5 \cdot {\rm sign}(x) \cdot \big [ 1 - {\rm e}^ { - \lambda_X \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} x \hspace{0.05cm} \vert}\big ]
\Rightarrow \hspace{0.5cm} F_{X}(-\infty) = 0, \hspace{0.5cm}F_{X}(0) = 0.5, \hspace{0.5cm} F_{X}(+\infty) = 1.

(3)    »Moments and central moments«

  • For odd  k,  the Laplace distribution always gives  m_k= 0 due to symmetry. Among others:  Linear mean  m_X =m_1 = 0.
  • For even  k  the moments of Laplace distribution and exponential distribution agree:  m_k = {k!}/{\lambda^k}.
  • For the variance  (= second order central moment = second order moment)  holds:  \sigma_X^2 = {2}/{\lambda_X^2}   ⇒   twice as large as for the exponential distribution.
  • For the Charlier skewness,  S_X = 0 is obtained here due to the symmetric PDF.
  • The kurtosis is  K_X = 6,  significantly larger than for the Gaussian distribution, but smaller than for the exponential distribution.


(4)    »Further remarks«



Brief description of other distributions


\text{(A) Rayleigh distribution}     \text{More detailed description}

  • Probability density function:
f_X(x) = \left\{ \begin{array}{c} x/\lambda_X^2 \cdot {\rm e}^{- x^2/(2 \hspace{0.05cm}\cdot\hspace{0.05cm} \lambda_X^2)} \\ 0 \end{array} \right.\hspace{0.15cm} \begin{array}{*{1}c} {\rm for}\hspace{0.1cm} x\hspace{-0.05cm} \ge \hspace{-0.05cm}0, \\ {\rm for}\hspace{0.1cm} x \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array}.
  • Application:     Modeling of the cellular channel (non-frequency selective fading, attenuation, diffraction, and refraction effects only, no line-of-sight).


\text{(B) Rice distribution}     \text{More detailed description}

  • Probability density function  (\rm I_0  denotes the modified zero-order Bessel function):
f_X(x) = \frac{x}{\lambda_X^2} \cdot {\rm exp} \big [ -\frac{x^2 + C_X^2}{2\cdot \lambda_X^2}\big ] \cdot {\rm I}_0 \left [ \frac{x \cdot C_X}{\lambda_X^2} \right ]\hspace{0.5cm}\text{with}\hspace{0.5cm}{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) = \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.
  • Application:     Cellular channel modeling (non-frequency selective fading, attenuation, diffraction, and refraction effects only, with line-of-sight).


\text{(C) Weibull distribution}     \text{More detailed description}

  • Probability density function:
f_X(x) = \lambda_X \cdot k_X \cdot (\lambda_X \cdot x)^{k_X-1} \cdot {\rm e}^{(\lambda_X \cdot x)^{k_X}} \hspace{0.05cm}.
  • Application:     PDF with adjustable skewness S_X; exponential distribution  (k_X = 1)  and Rayleigh distribution  (k_X = 2)  included as special cases.


\text{(D) Wigner semicircle distribution}     \text{More detailed description} KORREKTUR: link

  • Probability density function:
f_X(x) = \left\{ \begin{array}{c} 2/(\pi \cdot {R_X}^2) \cdot \sqrt{{R_X}^2 - (x- m_X)^2} \\ 0 \end{array} \right.\hspace{0.15cm} \begin{array}{*{1}c} {\rm for}\hspace{0.1cm} |x- m_X|\hspace{-0.05cm} \le \hspace{-0.05cm}R_X, \\ {\rm for}\hspace{0.1cm} |x- m_X| \hspace{-0.05cm} > \hspace{-0.05cm} R_X \\ \end{array}.
  • Application:     PDF of Chebyshev nodes   ⇒   zeros of Chebyshev polynomials from numerics.


\text{(E) Wigner parabolic distribution}

  • Probability density function:
f_X(x) = \left\{ \begin{array}{c} 3/(4 \cdot {R_X}^3) \cdot \big ({R_X}^2 - (x- m_X)^2\big ) \\ 0 \end{array} \right.\hspace{0.15cm} \begin{array}{*{1}c} {\rm for}\hspace{0.1cm} |x|\hspace{-0.05cm} \le \hspace{-0.05cm}R_X, \\ {\rm for}\hspace{0.1cm} |x| \hspace{-0.05cm} > \hspace{-0.05cm} R_X \\ \end{array}.
  • Application:     PDF of eigenvalues of symmetric random matrices whose dimension approaches infinity.


\text{(F) Cauchy distribution}     \text{More detailed description}

  • Probability density function and distribution function:
f_{X}(x)=\frac{1}{\pi}\cdot\frac{\lambda_X}{\lambda_X^2+x^2}, \hspace{2cm} F_{X}(x)={\rm 1}/{2}+{\rm arctan}({x}/{\lambda_X}).
  • In the Cauchy distribution, all moments  m_k  for even  k  have an infinitely large value, independent of the parameter  λ_X.
  • Thus, this distribution also has an infinitely large variance:  \sigma_X^2 \to \infty.
  • Due to symmetry, for odd  k  all moments  m_k = 0, if one assumes the "Cauchy Principal Value" as in the program:  m_X = 0, \ S_X = 0.
  • Example:     The quotient of two Gaussian mean-free random variables is Cauchy distributed. For practical applications the Cauchy distribution has less meaning.


Exercises


  • First, select the number  (1,\ 2, \text{...} \ )  of the task to be processed.  The number  "0"  corresponds to a  "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values are adjusted.  Solution after pressing  "Show Solution".
  • In the following  \text{Red}  stands for the random variable  X  and  \text{Blue}  for  Y.


(1)  Select  \text{red: Gaussian PDF}\ (m_X = 1, \ \sigma_X = 0.4)  and  \text{blue: Rectangular PDF}\ (y_{\rm min} = -2, \ y_{\rm max} = +3).  Interpret the  \rm PDF  graph.

  •  \text{Gaussian PDF}:  The  \rm PDF maximum is equal to  f_{X}(x = m_X) = \sqrt{1/(2\pi \cdot \sigma_X^2)} = 0.9974 \approx 1.
  •  \text{Rectangular PDF}:  All  \rm PDF values are equal  0.2  in the range  -2 < y < +3.  At the edges  f_Y(-2) = f_Y(+3)= 0.1  (half value) holds.


(2)  Same setting as for  (1).  What are the probabilities  {\rm Pr}(X = 0),   {\rm Pr}(0.5 \le X \le 1.5),   {\rm Pr}(Y = 0)   and  {\rm Pr}(0.5 \le Y \le 1.5) .

  •  {\rm Pr}(X = 0)={\rm Pr}(Y = 0) \equiv 0   ⇒   Probability of a discrete random variable to take exactly a certain value.
  •  The other two probabilities can be obtained by integration over the PDF in the range  +0.5\ \text{...} \ +\hspace{-0.1cm}1.5.
  •  Or:  {\rm Pr}(0.5 \le X \le 1.5)= F_X(1.5) - F_X(0.5) = 0.8944-0.1056 = 0.7888. Correspondingly:  {\rm Pr}(0.5 \le Y \le 1.5)= 0.7-0.5=0.2.


(3)  Same settings as before.  How must the standard deviation  \sigma_X  be changed so that with the same mean  m_X  it holds for the second order moment:  P_X=2 ?

  •  According to Steiner's theorem:  P_X=m_X^2 + \sigma_X^2   ⇒   \sigma_X^2 = P_X-m_X^2 = 2 - 1^2 = 1   ⇒   \sigma_X = 1.


(4)  Same settings as before:  How must the parameters  y_{\rm min}  and  y_{\rm max}  of the rectangular PDF be changed to yield  m_Y = 0  and  \sigma_Y^2 = 0.75?

  •  Starting from the previous setting  (y_{\rm min} = -2, \ y_{\rm max} = +3)  we change  y_{\rm max} until  \sigma_Y^2 = 0.75  occurs   ⇒   y_{\rm max} = 1.
  •  The width of the rectangle is now  3.  The desired mean   m_Y = 0  is obtained by shifting:  y_{\rm min} = -1.5, \ y_{\rm max} = +1.5.
  •  You could also consider that for a mean-free random variable  (y_{\rm min} = -y_{\rm max})  the following equation holds:   \sigma_Y^2 = y_{\rm max}^2/3.


(5)  For which of the adjustable distributions is the Charlier skewness  S \ne 0 ?

  •  The Charlier's skewness denotes the third central moment related to  σ_X^3   ⇒  S_X = \mu_3/σ_X^3  (valid for the random variable  X).
  •  If the PDF  f_X(x)  is symmetric around the mean  m_X  then the parameter  S_X  is always zero.
  •  Exponential distribution:  S_X =2;  Rayleigh distribution:  S_X =0.631   (both independent of  λ_X);   Rice distribution:  S_X >0  (dependent of  C_X, \ λ_X).
  •  With the Weibull distribution, the Charlier skewness  S_X  can be zero, positive or negative,  depending on the PDF parameter  k_X.
  •   Weibull distribution,  \lambda_X=0.4:  With  k_X = 1.5  ⇒   PDF is curved to the left  (S_X > 0);   k_X = 7  ⇒   PDF is curved to the right  (S_X < 0).


(6)  Select  \text{Red: Gaussian PDF}\ (m_X = 1, \ \sigma_X = 0.4)  and  \text{Blue: Gaussian PDF}\ (m_X = 0, \ \sigma_X = 1).  What is the kurtosis in each case?

  •  For each Gaussian distribution the kurtosis has the same value:   K_X = K_Y =3.  Therefore,  K-3  is called "excess".
  • This parameter can be used to check whether a given random variable can be approximated by a Gaussian distribution.


(7)  For which distributions does a significantly smaller kurtosis value result than  K=3?  And for which distributions does a significantly larger one?

  •  K<3  always results when the PDF values are more concentrated around the mean than in the Gaussian distribution.
  •  This is true, for example, for the uniform distribution  (K=1.8)  and for the triangular distribution  (K=2.4).
  •  K>3,  if the PDF offshoots are more pronounced than for the Gaussian distribution.  Example:  Exponential PDF  (K=9).


(8)  Select  \text{Red: Exponential PDF}\ (\lambda_X = 1)  and  \text{Blue: Laplace PDF}\ (\lambda_Y = 1).  Interpret the differences.

  •  The Laplace distribution is symmetric around its mean  (S_Y=0, \ m_Y=0)  unlike the exponential distribution  (S_X=2, \ m_X=1).
  •  The even moments  m_2, \ m_4, \ \text{...}  are equal,  for example:  P_X=P_Y=2.  But not the variances:  \sigma_X^2 =1, \ \sigma_Y^2 =2.
  •  The probabilities  {\rm Pr}(|X| < 2) = F_X(2) = 0.864  and  {\rm Pr}(|Y| < 2) = F_Y(2) - F_Y(-2)= 0.932 - 0.068 = 0.864  are equal.
  •  In the Laplace PDF, the values are more tightly concentrated around the mean than in the exponential PDF:  K_Y =6 < K_X = 9.


(9)  Select  \text{Red: Rice PDF}\ (\lambda_X = 1, \ C_X = 1)  and  \text{Blue: Rayleigh PDF}\ (\lambda_Y = 1).  Interpret the differences.

  •   With  C_X = 0  the Rice PDF transitions to the Rayleigh PDF.  A larger  C_X  improves the performance, e.g., in mobile communications.
  •   Both, in  "Rayleigh"  and  "Rice"  the abscissa is the magnitude  A  of the received signal.  Favorably, if  {\rm Pr}(A \le A_0)  is small  (A_0  given).
  •   For  C_X \ne 0  and equal  \lambda  the Rice CDF is below the Rayleigh CDF   ⇒   smaller  {\rm Pr}(A \le A_0)  for all  A_0.


(10)  Select  \text{Red: Rice PDF}\ (\lambda_X = 0.6, \ C_X = 2).  By which distribution  F_Y(y)  can this Rice distribution be well approximated?

  •   The kurtosis   K_X = 2.9539 \approx 3  indicates the Gaussian distribution.   Favorable parameters:  m_Y = 2.1 > C_X, \ \ \sigma_Y = \lambda_X = 0.6.
  •   The larger tht quotient  C_X/\lambda_X  is, the better the Rice PDF is approximated by a Gaussian PDF.
  •   For large   C_X/\lambda_X  the Rice PDF has no more similarity with the Rayleigh PDF.


(11)  Select  \text{Red: Weibull PDF}\ (\lambda_X = 1, \ k_X = 1)  and  \text{Blue: Weibull PDF}\ (\lambda_Y = 1, \ k_Y = 2). Interpret the results.

  •   The Weibull PDF  f_X(x)  is identical to the exponential PDF and  f_Y(y)  to the Rayleigh PDF.
  •   However, after best fit, the parameters  \lambda_{\rm Weibull} = 1  and  \lambda_{\rm Rayleigh} = 0.7 differ.
  •   Moreover, it holds  f_X(x = 0) \to \infty  for  k_X < 1.  However, this does not have the affect of infinite moments.


(12)  Select  \text{Red: Weibull PDF}\ (\lambda_X = 1, \ k_X = 1.6)  and   \text{Blue: Weibull PDF}\ (\lambda_Y = 1, \ k_Y = 5.6).  Interpret the Charlier skewness.

  •   One observes:   For the PDF parameter  k < k_*  the Charlier skewness is positive and for  k > k_*  negative.  It is approximately  k_* = 3.6.


(13)  Select  \text{Red: Semicircle PDF}\ (m_X = 0, \ R_X = 1)  and  \text{Blue: Parabolic PDF}\ (m_Y = 0, \ R_Y = 1).  Vary the parameter  R  in each case.

  •   The PDF in each case is mean-free and symmetric  (S_X = S_Y =0)  with  \sigma_X^2 = 0.25, \ K_X = 2  respectively,  \sigma_Y^2 = 0.2, \ K_Y \approx 2.2.



Applet Manual


Screenshot of the German version

    (A)     Selection of the distribution  f_X(x)  (red curves and output values)

    (B)     Parameter input for the "red distribution" via slider

    (C)     Selection of the distribution  f_Y(y)  (blue curves and output values)

    (D)     Parameter input for the "red distribution" via slider

    (E)     Graphic area for the probability density function (PDF)

    (F)     Graphic area for the distribution function (CDF)

    (G)     Numerical output for the "red distribution"

    (H)     Numerical output for the "blue distribution"

    ( I )     Input of  x_*  and  y_*  abscissa values for the numerics outputs

    (J)     Experiment execution area:   task selection

    (K)     Experiment execution area:   task description

    ( L)     Experiment execution area:   sample solution


Selection options for for  \rm A  and  \rm C:  

Gaussian distribution,   uniform distribution,   triangular distribution,   exponential distribution,   Laplace distribution,   Rayleigh distribution,  Rice distribution,   Weibull distribution,   Wigner semicircle distribution,   Wigner parabolic distribution,   Cauchy distribution.


The following »integral parameters« are output  (with respect to X):  

Linear mean value  m_X = {\rm E}\big[X \big],   second order moment  P_X ={\rm E}\big[X^2 \big] ,   variance  \sigma_X^2 = P_X - m_X^2,   standard deviation  \sigma_X,  Charlier's skewness  S_X,   kurtosis  K_X.


In all applets top right:    Changeable graphical interface design   ⇒   Theme:

  • Dark:   black background  (recommended by the authors).
  • Bright:   white background  (recommended for beamers and printouts)
  • Deuteranopia:   for users with pronounced green–visual impairment
  • Protanopia:   for users with pronounced red–visual impairment


About the Authors


This interactive calculation tool was designed and implemented at the  \text{Institute for Communications Engineering}  at the  \text{Technical University of Munich}.


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen