Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.12: Non-coherent Demodulation

From LNTwww
Revision as of 17:38, 22 February 2022 by Guenter (talk | contribs)

ASK Demodulation
(non-coherent)

Consider an amplitude modulated signal:

s(t)=q(t)cos(ωTt).

Reaching the receiver based on the channel propagation time,  the signal is

r(t)=q(t)cos(ωTt+ΔϕT).

The arrangement shown here allows perfect demodulation – that is:  v(t)=q(t) – without knowledge of the phase  Δϕ_T,  but only if the source signal  q(t)  satisfies certain conditions.

The two receiver-side carrier signals are:

z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},
z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.

\rm LP_1  and  \rm LP_2  denote two ideal  (rectangular)  low-pass filters,  each with cutoff frequency equal to the carrier frequency  f_{\rm T}.

We consider as (digital) source signals:

  1. the unipolar square wave signal  q_1(t)  with dimensionless amplitude values  0  and  3,
  2. the bipolar square wave signal  q_2(t)  with the dimensionless amplitude values  ±3.


With respect to  s(t),  these two signals result in

  1. an  ASK signal
  2. a  BPSK signal.


The nonlinear function  v = g(b)  is to be determined in this exercise.



Hints:

  • The following trigonometric transformations are given:
\cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],
\sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],
\sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.


Questions

1

What are the signals  b_1(t)  and  b_2(t)  in both branches – after multiplier and low-pass respectively?  Which statements apply?

b_1(t) = q(t) · \cos(Δϕ_{\rm T}).
b_2(t) = q(t) · \cos(Δϕ_{\rm T}).
b_1(t) = q(t) · \sin(Δϕ_{\rm T}).
b_2(t) = q(t) · \sin(Δϕ_{\rm T}).
b_1(t) = b_2(t) = q(t).

2

What values of  b_{\rm min}  and  b_{\rm max}  does the signal  b(t)  take on,  when the unipolar source signal  q_1(t)  is applied to the input?

b_{\rm min} \ = \

b_{\rm max} \ = \

3

How should the characteristic curve  v = g(b)  be chosen,  so that  v(t) = q(t)  holds?

v=g(b) = b^2.
v=g(b) = \sqrt{b}.
v=g(b) = \arctan(b).

4

What values of  b_{\rm min}  and  b_{\rm max}  does the signal  b(t)  take on,  when the bipolar source signal  q_2(t)  is applied to the input?

b_{\rm min} \ = \

b_{\rm max} \ = \


Solution

(1)  Applying the trigonometric transformations given on the exercise page and taking into account the two low-pass filters  (the components around twice the carrier frequency are removed),  we obtain:

b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},
b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.
  • Thus,  the first and fourth answers  are correct.


(2)  The sum of the squares of the two partial signals gives:

b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.

The possible amplitude values are thus:

b_{\rm min}\hspace{0.15cm}\underline{ = 0},
b_{\rm max}\hspace{0.15cm}\underline{ =9}.


(3)  The second answer is correct:

v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.


(4)  The result  b(t) = q^2(t) – see subtask (2)  – leads here to the result:

b_{\rm min}\hspace{0.15cm}\underline{ = 9},
b_{\rm max}\hspace{0.15cm}\underline{ =9}.

This shows that the demodulator considered here only functions,

  • if at all times   q(t) ≥ 0   or   q(t) ≤ 0   holds,
  • and this is known at the receiver.