Exercise 2.12: Non-coherent Demodulation
Consider an amplitude modulated signal:
- s(t)=q(t)⋅cos(ωT⋅t).
Reaching the receiver based on the channel propagation time, the signal is
- r(t)=q(t)⋅cos(ωT⋅t+ΔϕT).
The arrangement shown here allows perfect demodulation – that is: v(t)=q(t) – without knowledge of the phase Δϕ_T, but only if the source signal q(t) satisfies certain conditions.
The two receiver-side carrier signals are:
- z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},
- z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.
\rm LP_1 and \rm LP_2 denote two ideal (rectangular) low-pass filters, each with cutoff frequency equal to the carrier frequency f_{\rm T}.
We consider as (digital) source signals:
- the unipolar square wave signal q_1(t) with dimensionless amplitude values 0 and 3,
- the bipolar square wave signal q_2(t) with the dimensionless amplitude values ±3.
With respect to s(t), these two signals result in
- an ASK signal,
- a BPSK signal.
The nonlinear function v = g(b) is to be determined in this exercise.
Hints:
- This exercise belongs to the chapter Further AM Variants.
- Particular reference is made to the page Incoherent (non-coherent) Demodulation.
- The following trigonometric transformations are given:
- \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],
- \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],
- \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.
Questions
Solution
- b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},
- b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.
- Thus, the first and fourth answers are correct.
(2) The sum of the squares of the two partial signals gives:
- b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.
The possible amplitude values are thus:
- b_{\rm min}\hspace{0.15cm}\underline{ = 0},
- b_{\rm max}\hspace{0.15cm}\underline{ =9}.
(3) The second answer is correct:
- v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.
(4) The result b(t) = q^2(t) – see subtask (2) – leads here to the result:
- b_{\rm min}\hspace{0.15cm}\underline{ = 9},
- b_{\rm max}\hspace{0.15cm}\underline{ =9}.
This shows that the demodulator considered here only functions,
- if at all times q(t) ≥ 0 or q(t) ≤ 0 holds,
- and this is known at the receiver.