Exercise 3.7Z: Partial Fraction Decomposition

From LNTwww
Revision as of 07:58, 26 October 2021 by Oezer (talk | contribs)

Pole-zero diagrams

In the graph, four two-port networks are given by their pole–zero diagrams  $H_{\rm L}(p)$ .

  • They all have in common that the number  $Z$  of zeros is equal to the number  $N$  of poles.
  • The constant factor in each case is  $K=1$.


In the special case  $Z = N$  the residue theorem cannot be applied directly to compute the impulse response  $h(t)$ .

Rather, a partial fraction decomposition corresponding to

$$H_{\rm L}(p) =1- H_{\rm L}\hspace{0.05cm}'(p) \hspace{0.05cm}$$

must be made beforehand. Then,

$$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}$$ holds for the impulse response.

 $h\hspace{0.03cm}'(t)$  is the inverse Laplace transform of  $H_{\rm L}\hspace{0.05cm}'(p)$ , where the condition  $Z' < N'$  is satisfied.

Two of the four configurations given are so-called all-pass filters.

  • This refers to two-port networks for which the Fourier spectral function satisfies the condition  $|H(f)| = 1$   ⇒   $a(f) = 0$ .
  • In Exercise 3.4Z ist angegeben, wie die Pole und Nullstelle eines solchen Allpasses liegen müssen.


Weiterhin soll in dieser Aufgabe die  $p$–Übertragungsfunktion

$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2} \hspace{0.05cm}$$

⇒   "Konfiguration $(5)$" näher untersucht werden, die bei richtiger Wahl des Parameters  $A$  durch eines der vier in der Grafik vorgegebenen Pol–Nullstellen–Diagramme dargestellt werden kann.



Hinweise:



Questions

1

Bei welchen der skizzierten Vierpole handelt es sich um Allpässe?

Konfiguration  $(1)$,
Konfiguration  $(2)$,
Konfiguration  $(3)$,
Konfiguration  $(4)$.

2

Welcher Vierpol hat die Übertragungsfunktion  $H_{\rm L}^{(5)}(p)$?

Konfiguration  $(1)$,
Konfiguration  $(2)$,
Konfiguration  $(3)$,
Konfiguration  $(4)$.

3

Berechnen Sie die Funktion  $H_{\rm L}\hspace{0.01cm}'(p)$  nach einer Partialbruchzerlegung für die Konfiguration  (1).
Geben Sie den Funktionswert für  $p = 0$  ein.

$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $

4

Berechnen Sie  $H_{\rm L}\hspace{0.01cm}'(p)$  für die Konfiguration  $(2)$.  Welche Aussagen treffen hier zu?

$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Nullstellen wie  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Polstellen wie  $H_{\rm L}(p)$.
Der konstante Faktor von  $H_{\rm L}\hspace{0.01cm}'(p)$  ist  $K' = 8$.

5

Berechnen Sie  $H_{\rm L}\hspace{0.01cm}'(p)$  für die Konfiguration  $(3)$.  Welche Aussagen treffen hier zu?

$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Nullstellen wie  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Polstellen wie  $H_{\rm L}(p)$.
Der konstante Faktor von  $H_{\rm L}\hspace{0.01cm}'(p)$  ist  $K' = 8$.

6

Berechnen Sie  $H_{\rm L}\hspace{0.01cm}'(p)$  für die Konfiguration  $(4)$.  Welche Aussagen treffen hier zu?

$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Nullstellen wie  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Polstellen wie  $H_{\rm L}(p)$.
Der konstante Faktor von  $H_{\rm L}\hspace{0.01cm}'(p)$  ist  $K' = 8$.


Solution

(1)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Nach den in der Aufgabe 3.4Z angegebenen Kriterien liegt immer dann ein Allpass vor, wenn es zu jeder Polstelle  $p_{\rm x} = - A + {\rm j} \cdot B$  in der linken $p$–Halbebene eine entsprechende Nullstelle  $p_{\rm o} = + A + {\rm j} \cdot B$  in der rechten Halbebene gibt.
  • Mit  $K = 1$  ist dann die Dämpfungsfunktion  $a(f) = 0 \ \rm Np$   ⇒   $|H(f)| = 1$.
  • Aus der Grafik auf der Angabenseite erkennt man:   Die Konfigurationen  $(1)$ und  $(2)$ erfüllen genau diese Symmetrieeigenschaften.


(2)  Richtig ist der Lösungsvorschlag 4:

  • Die Übertragungsfunktion  $H_{\rm L}^{(5)}(p)$  wird ebenso durch die Konfiguration  $(4)$  beschrieben, wie die nachfolgende Rechnung zeigt:
$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} = \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2} =\frac{p/A}{{p/A}+2+ {A/p}} = \hspace{0.2cm}\frac{p^2}{p^2 + 2A \cdot p + A^2} = \frac{p^2}{(p+A)^2 }= H_{\rm L}^{(4)}(p) \hspace{0.05cm}.$$
  • Die doppelte Nullstelle liegt bei  $p_{\rm o} = 0$, der doppelte Pol bei  $p_{\rm x} = -A = -2$.


(3)  Für die Konfiguration  $(1)$  gilt:

$$H_{\rm L}(p) =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{4}{p+2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{H_{\rm L}\hspace{-0.05cm}'(p =0) =2} \hspace{0.05cm}.$$


(4)  In gleicher Weise ergibt sich für die Konfiguration  $(2)$:

$$H_{\rm L}(p) =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}= \frac{p^2 -4\cdot p +8 }{p^2 +4\cdot p +8}= \hspace{0.2cm}\frac{p^2 +4\cdot p +8 -8\cdot p}{p^2 +4\cdot p +8} =1- \frac{8\cdot p}{p^2 +4\cdot p +8}=1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 8 \cdot \frac{p}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$

Richtig sind also die Lösungsvorschläge 2 und 3 im Gegensatz zur Aussage 1:

  • Während  $H_{\rm L}(p)$  zwei konjugiert–komplexe Nullstellen aufweist,
  • besitzt  $H_{\rm L}\hspace{0.01cm}'(p)$  nur eine einzige Nullstelle bei  $p_{\rm o}\hspace{0.01cm}' = 0$.



(5)  Für die Konfiguration  $(3)$  gilt:

$$H_{\rm L}(p) = \frac{p^2 }{p^2 +4\cdot p +8}=\frac{p^2 +4\cdot p +8 -4\cdot p -8 }{p^2 +4\cdot p +8} = 1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = 4 \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$
  • Die Nullstelle von  $H_{\rm L}\hspace{0.01cm}'(p)$  liegt nun bei  $p_{\rm o}\hspace{0.01cm}' = -2$.
  • Die Konstante ist  $K\hspace{0.01cm}' = 4$   ⇒   richtig ist hier nur der Lösungsvorschlag 2.


(6)  Schließlich gilt für die Konfiguration  $(4)$:

$$H_{\rm L}(p) = \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p +4 -4\cdot p -4 }{p^2 +4\cdot p +4} = 1- \frac{4\cdot p +4 }{p^2 +4\cdot p +4} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 4 \cdot \frac{p+1}{(p+2)^2} \hspace{0.05cm}.$$

Richtig ist auch hier der Lösungsvorschlag 2. Allgemein lässt sich sagen:

  • Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.
  • Die Pole von $H_{\rm L}\hspace{0.01cm}'(p)$ sind dagegen stets identisch mit denen von $H_{\rm L}(p)$.