Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.7Z: Partial Fraction Decomposition

From LNTwww
Revision as of 09:27, 26 October 2021 by Oezer (talk | contribs)

Pole-zero diagrams

In the graph, four two-port networks are given by their pole–zero diagrams  HL(p) .

  • They all have in common that the number  Z  of zeros is equal to the number  N  of poles.
  • The constant factor in each case is  K=1.


In the special case  Z=N  the residue theorem cannot be applied directly to compute the impulse response  h(t) .

Rather, a partial fraction decomposition corresponding to

HL(p)=1HL(p)

must be made beforehand. Then,

h(t)=δ(t)h(t) holds for the impulse response.

 h(t)  is the inverse Laplace transform of  HL(p) , where the condition  Z<N  is satisfied.

Two of the four configurations given are so-called all-pass filters.

  • This refers to two-port networks for which the Fourier spectral function satisfies the condition  |H(f)|=1   ⇒   a(f)=0 .
  • In Exercise 3.4Z it is given how the poles and zeros of such an all-pass filter must be positioned.


Furthermore, in this exercise the  p–transfer function

H(5)L(p)=p/A(p/A+A/p)2

⇒   "configuration (5)" will be examined in more detail, which can be represented by one of the four pole–zero diagrams given in the graph if the parameter  A  is chosen correctly.



Please note:



Questions

1

Which of the sketched two-port networks are all-pass filters?

Configuration  (1),
configuration  (2),
configuration  (3),
configuration  (4).

2

Which quadripole has the transfer function  H(5)L(p)?

Configuration  (1),
configuration  (2),
configuration  (3),
configuration  (4).

3

Compute the function  HL(p)  after a partial fraction decomposition for configuration  (1).
Enter the function value for  p=0 .

HL(p=0) = 

4

Compute  HL(p)  for the configuration  (2).  Which statements are true here?

HL(p)  has the same zeros as  HL(p).
HL(p)  has the same poles as  HL(p).
The constant factor of  HL(p)  is  K=8.

5

Compute  HL(p)  for the configuration  (3).  Which statements are true here?

HL(p)  has the same zeros as  HL(p).
HL(p)  has the same poles as  HL(p).
The constant factor of  HL(p)  is  K=8.

6

Compute  HL(p)  for the configuration  (4).  Which statements are true here?

HL(p)  has the same zeros as  HL(p).
HL(p)  has the same poles as  HL(p).
The constant factor of  HL(p)  is  K=8.


Solution

(1)  The suggested solutions 1 and 2 are correct:

  • According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a corresponding zero  po=+A+jB  in the right p–half-plane for each pole  px=A+jB  in the left half-plane.
  • Considering  K=1  the attenuation function is then  a(f)=0 Np   ⇒   |H(f)|=1.
  • The following can be seen from the graph on the information page:   The configurations  (1) and  (2) satisfy exactly these symmetry properties.


(2)  The suggested solution 4 is correct:

  • The transfer function  H(5)L(p)  is also described by configuration  (4)  as the following calculation shows:
H(5)L(p)=p/A(p/A+A/p)2=p/Ap/A+2+A/p=p2p2+2Ap+A2=p2(p+A)2=H(4)L(p).
  • Die doppelte Nullstelle liegt bei  po=0, der doppelte Pol bei  px=A=2.


(3)  Für die Konfiguration  (1)  gilt:

HL(p)=p2p+2=p+24p+2=14p+2=1HL(p)HL(p)=4p+2HL(p=0)=2_.


(4)  In gleicher Weise ergibt sich für die Konfiguration  (2):

HL(p)=(p2j2)(p2+j2)(p+2j2)(p+2+j2)=p24p+8p2+4p+8=p2+4p+88pp2+4p+8=18pp2+4p+8=1HL(p)
HL(p)=8p(p+2j2)(p+2+j2).

Richtig sind also die Lösungsvorschläge 2 und 3 im Gegensatz zur Aussage 1:

  • Während  HL(p)  zwei konjugiert–komplexe Nullstellen aufweist,
  • besitzt  HL(p)  nur eine einzige Nullstelle bei  po=0.



(5)  Für die Konfiguration  (3)  gilt:

HL(p)=p2p2+4p+8=p2+4p+84p8p2+4p+8=1HL(p)
HL(p)=4p+2(p+2j2)(p+2+j2).
  • Die Nullstelle von  HL(p)  liegt nun bei  po=2.
  • Die Konstante ist  K=4   ⇒   richtig ist hier nur der Lösungsvorschlag 2.


(6)  Schließlich gilt für die Konfiguration  (4):

HL(p)=p2(p+2)2=p2+4p+44p4p2+4p+4=14p+4p2+4p+4HL(p)=4p+1(p+2)2.

Richtig ist auch hier der Lösungsvorschlag 2. Allgemein lässt sich sagen:

  • Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.
  • Die Pole von HL(p) sind dagegen stets identisch mit denen von HL(p).