Exercise 2.2Z: Power Consideration
From LNTwww
Let us consider two harmonic oscillations
- s1(t)=A1⋅cos(ω1⋅t),
- s2(t)=A2⋅cos(ω2⋅t+ϕ),
where f2≥f1 should hold for the frequencies.
- The graphic on the right shows the spectrum of the analytical signal s+(t), which is additively composed of the two components s1+(t) and s2+(t) .
- Here, the transmission power PS should be understood as the second order moment of the signal s(t), averaged over the largest measurement period possible:
- PS=lim
- According to this definition: If s(t) describes a voltage waveform, P_{\rm S} has unit \rm V^2 and refers to resistance R = 1 \ \rm Ω.
- Dividing by R gives the physical power in \rm W.
Hints:
- This exercise belongs to the chapter Double-Sideband Amplitude Modulation.
- Reference is also made to the chapter Quality Criteria.
- Use the numerical values A_1 = 2\ \rm V, A_2 = 1 \ \rm V, and R = 50 \ \rm Ω.
Questions
Solution
(1) According to the equations specified on the front page:
- P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.
- For more general calculation, we consider the phase ϕ_1, which is actually zero here. Using the equation \cos^{2}(α) = 0.5 · (1 + \cos(2α)), we get:
- P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.
- Regardless of the phase ϕ_1, the second term does not contribute to the division by T_{\rm M} and subsequent boundary transition due to integration over the cosine function. Thus, we get:
- P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.
(2) With R = 50\ \rm Ω, we get the "unnormalized" power:
- P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.
(3) It has already been shown in the solution to subtask (1) that the phase has no influence on the power. It follows that:
- P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.
(4) To calculate this power, we have to average over s^{2}(t), where:
- s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).
- Due to the division by the measurement duration T_{\rm M} and the required boundary transition, the last term does not contribute regardless of the phase ϕ . Thus:
- P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.
(5) When f_2 = f_1, the spectrum of the analytical signal is:
- S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.
- This results in the signal:
- s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},
- whose phase ϕ_3 does not matter for the power calculation. The amplitude of this signal is
- A_3 = \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.
- For ϕ = 0, the sum of the amplitudes is scalar:
- A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.
- On the other hand, the amplitudes for ϕ = 90^\circ are added as vectors ⇒ same result as in subtask (4):
- A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.
- For ϕ = 180^\circ, the cosine oscillations overlap destructively:
- A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.