Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.2Z: Power Consideration

From LNTwww
Revision as of 17:30, 24 March 2022 by Reed (talk | contribs)

Analytical signal - Line spectrum

Let us consider two harmonic oscillations

s1(t)=A1cos(ω1t),
s2(t)=A2cos(ω2t+ϕ),

where  f2f1  should hold for the frequencies.

  • The graphic on the right shows the spectrum of the analytical signal  s+(t), which is additively composed of the two components  s1+(t)  and  s2+(t) .
  • Here,  the transmission power  PS  should be understood as the second order moment of the signal  s(t),  averaged over the largest measurement period possible:
PS=lim
  • According to this definition:  If  s(t) describes a voltage waveform,  P_{\rm S}  has unit   \rm V^2  and refers to resistance  R = 1 \ \rm Ω
  • Dividing by R  gives the physical power in   \rm W.



Hints:

  • This exercise belongs to the chapter  Double-Sideband Amplitude Modulation.
  • Reference is also made to the chapter  Quality Criteria.
  • Use the numerical values  A_1 = 2\ \rm V,  A_2 = 1 \ \rm V,  and  R = 50 \ \rm Ω.



Questions

1

Calculate the power of the cosine signal  s_1(t).

P_1 \ = \

\ \rm V^{ 2 }

2

Let  R = 50 \ \rm Ω.  What is the physical power of the signal  s_1(t)?

P_1 \ = \

\ \text{mW}

3

What is the power of the phase-shifted oscillation  s_2(t)?

P_2 \ = \

\ \rm V^{ 2 }

4

What is the power of the sum signal  s(t)  when  f_2 ≠ f_1?

P_{\rm S} \ = \

\ \rm V^{ 2 }

5

What power is obtained for f_2 = f_1  with  ϕ = 0,  ϕ = 90^\circ  and  ϕ = 180^\circ?

ϕ = 0\text{:}\hspace{0.3cm} P_{\rm S} \ = \

\ \rm V^{ 2 }
ϕ = 90^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \

\ \rm V^{ 2 }
ϕ = 180^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \

\ \rm V^{ 2 }


Solution

(1)  According to the equations specified on the front page:

P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.
  • For more general calculation,  we consider the phase  ϕ_1,  which is actually zero here.  Using the equation  \cos^{2}(α) = 0.5 · (1 + \cos(2α)),  we get:
P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.
  • Regardless of the phase  ϕ_1,  the second term does not contribute to the division by  T_{\rm M}  and subsequent boundary transition due to integration over the cosine function.  Thus,  we get:
P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.


(2)  With  R = 50\ \rm Ω,  we get the  "unnormalized"  power:

P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.


(3)  It has already been shown in the solution to subtask  (1)  that the phase has no influence on the power.  It follows that:

P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.


(4) To calculate this power,  we have to average over s^{2}(t),  where:

s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).
  • Due to the division by the measurement duration  T_{\rm M}  and the required boundary transition,  the last term does not contribute regardless of the phase   ϕ .  Thus:
P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.


(5)  When  f_2 = f_1,  the spectrum of the analytical signal is:

S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.
  • This results in the signal:
s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},
whose phase  ϕ_3  does not matter for the power calculation. The amplitude of this signal is
A_3 = \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.
  • For  ϕ = 0,  the sum of the amplitudes is scalar:
A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.
  • On the other hand,  the amplitudes for  ϕ = 90^\circ  are added as vectors  ⇒   same result as in subtask  (4):
A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.
  • For  ϕ = 180^\circ,  the cosine oscillations overlap destructively:
A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.