Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.4Z: GSM Full-Rate Voice Codec

From LNTwww


LPC, LTP and RPE parameters in the GSM Full Rate Vocoder

This codec called "GSM Full Rate Vocoder"  (which was standardized for the GSM system in 1991)  stands for a joint realization of coder and decoder and combines three methods for the compression of speech signals:

  • Linear Predictive Coding  (LPC),
  • Long Term Prediction  (LTP), and
  • Regular Pulse Excitation  (RPE).


The numbers shown in the graphic indicate the number of bits generated by the three units of this Full Rate speech codec per frame of  20  millisecond duration each.

It should be noted that LTP and RPE, unlike LPC, do not work frame by frame, but with sub-blocks of  5  milliseconds.  However, this has no influence on solving the task.

The input signal in the above graphic is the digitalized speech signal  sR(n).

This results from the analog speech signal  s(t)  by

  • a suitable limitation to the bandwidth B,
  • sampling at the sampling rate fA=8 kHz,
  • quantization with 13 bit,
  • following segmentation into blocks of each 20 ms.


The further tasks of preprocessing will not be discussed in detail here.



Notes:



Questionnaire

1

To which bandwidth B  must the speech signal be limited?

B = 

 kHz

2

Of how many samples  (NR)  is there a speech frame?  How large is the input data rate RIn?

NR= 

 samples
RIn= 

 kbit/s

3

What is the output data rate ROut of the GSM–full rate codec?

ROut = 

 kbit/s

4

Which statements apply to the block "LPC"?

LPC makes a short-term prediction over one millisecond.
The  36  LPC bits specify coefficients that the receiver uses to undo the LPC filtering.
The filter for short-term prediction is recursive.
The LPC output signal is identical to the input signal  sR(t).

5

Which statements regarding the block "LTP" are true?

LTP removes periodic structures of the speech signal.
The long-term prediction is performed once per frame.
The memory of the LTP predictor is up to  15 ms.

6

Which statements apply to the block "RPE"?

RPE delivers fewer bits than LPC and LTP.
RPE removes unimportant parts for the subjective impression.
RPE subdivides each sub-block into four sub-sequences.
RPE selects the sub-sequence with the minimum energy.


Solution

(1)  To satisfy the sampling theorem, the bandwidth B  must not exceed  fA/2=4  kHz_.


(2)  The given sampling rate  fA=8 kHz  results in a distance between individual samples of  TA=0.125 ms.

  • Thus a speech frame of  20ms  consists of  NR=20/0.125=160 samples_, each quantized with  13 bit.
  • The data rate is thus
RIn=1601320ms=104kbit/s_.


(3)  The graph shows that per speech frame  36 (LPC)+36 (LTP)+188 (RPE)=260  bit  are output.

  • From this the output data rate is calculated as
ROut=26020ms=13kbit/s_.
  • The compression factor achieved by the full rate speech codec is thus  104/13=8.


(4)  The first two statements are true:

  • The 36 LPC bits describe a total of eight filter coefficients of a non-recursive filter, whereby eight  ACF values are determined from the short-term analysis and where these are converted into reflection factors  rk  after the so-called "Schur recursion".
  • From these the eight LAR coefficients are calculated according to the function  ln[(1rk)/(1+rk)], quantized with a different number of bits and sent to the receiver.
  • The LPC output signal has a significantly lower amplitude than its input  sR(n), and it has a significantly reduced dynamic range and a flatter spectrum.


(5)  Correct are the statements 1 and 3, but not the second:

  • The LTP analysis and filtering is done blockwise every  5 ms  ⇒   (40  samples), i.e. four times per speech frame.
  • The cross correlation function  (CCF)  between the current sub-block and the three previous sub-blocks is formed.
  • For each sub-block, an LTP delay and an LTP gain are determined which best match the sub-block.
  • A correction signal of the following component "RPE" is also taken into account.
  • For the long-term prediction, as with the LPC, the output is reduced in redundancy compared to the input.


(6)  The statements 2 and 3 are correct:

  • The fact that statement 1 is wrong can be seen from the graphic on the data page, because  188  of the  260  output bits come from the RPE.  Voice would be understandable with RPE alone (without LPC and LTP).
  • Regarding the last statement:  The RPE is of course looking for the subsequence with the maximum energy.  The RPE pulses are a subsequence  (13  of  40  samples)  of three bits per subframe of  5 ms  and accordingly  12  bits per  20 ms  frame.
  • The "RPE pulse" thus occupies  1312=156  of the  260  output bits.


More details about the RPE block can be found on the page  RPE coding  of the book  "Examples of Communication Systems".