Difference between revisions of "Aufgaben:Exercise 1.2: Distortions? Or no Distortion?"

From LNTwww
 
(36 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Qualitätskriterien
+
{{quiz-Header|Buchseite=Modulation_Methods/Quality_Criteria
 
}}
 
}}
  
[[File:P_ID949__Mod_A_1_2.png|right|]]
+
[[File:P_ID949__Mod_A_1_2.png|right|frame|Observed sink signals for the <br>given input signal &nbsp; $q(t)$]]
Die drei Nachrichtensysteme $S_1$, $S_2$ und $S_3$ werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal
+
The communication systems &nbsp;$S_1$, &nbsp;$S_2$&nbsp; and &nbsp;$S_3$&nbsp; are analyzed in terms of the distortions they cause. For this purpose, the cosine-shaped test signal with signal frequency $f_{\rm N} = 1\text{ kHz}$&nbsp;  is applied to the input of each system:
$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
+
:$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
angelegt. Die Signalfrequenz ist stets $f_N = 1 kHz$.
 
  
Gemessen werden die Signale am Ausgang der drei Systeme, die in der Grafik dargestellt sind:
+
The three signals at the system output are measured, as  shown in the graph:
$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm}$$
+
:$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
+
:$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)=  1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
+
:$$v_3(t)=  1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
  
Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.
+
The noise components that are always present in practice will be assumed to be negligible here.
  
  
'''Hinweis:'''Diese Aufgabe bezieht sich auf das [http://en.lntwww.de/Modulationsverfahren/Qualit%C3%A4tskriterien Kapitel 1.2] des vorliegenden Buches und das [http://en.lntwww.de/Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen Kapitel 2.2] von „Lineare zeitinvariante Systeme”. Bei nichtlinearen Verzerrungen ist das Sinken–$\text{SNR}$ $ρ_υ = 1/K^{ 2 }$, wobei der Klirrfaktor $K$ das Verhältnis der Effektivwerte aller Oberwellen und Grundfrequenz angibt.
 
  
  
===Fragebogen===
+
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Quality_Criteria|Quality criteria]].&nbsp; Particular reference is made to the page &nbsp;  [[Modulation_Methods/Quality_Criteria#Signal.E2.80.93to.E2.80.93noise_.28power.29_ratio|Signal-to-noise power ratio]]&nbsp; and to the chapter &nbsp; [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|Non-linear distortions]]&nbsp; in the book "Linear and Time-Invariant Systems".
 +
*For nonlinear distortion, the sink SNR is &nbsp;$ρ_v = 1/K^2$, where the distortion factor &nbsp;$K$&nbsp; is the ratio of the rms values of all harmonics to the rms value of the fundamental frequency.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind nach dieser Messung über das System '$S_1$ möglich?
+
{What statements can be made about the &nbsp;$S_1$&nbsp; system after this measurement?
 
|type="[]"}
 
|type="[]"}
- $S_1$ könnte ein ideales System sein.
+
+ $S_1$&nbsp; could be an ideal system.
+ $S_1$ könnte ein verzerrungsfreies System sein.
+
+ $S_1$&nbsp; could be a distortionless system.
+ $S_1$ könnte ein linear verzerrendes System sein.
+
+ $S_1$&nbsp; could be a linearly distorting system.
- $S_1$ könnte ein nichtlinear verzerrendes System sein.
+
- $S_1$&nbsp; could be a nonlinearly distorting system.
  
  
{Schreiben Sie das zweite Signal in der Form $υ_2(t) = α · q(t τ)$ und bestimmen Sie die Kenngrößen.
+
{Write the second signal in the form &nbsp;$v_2(t) = α · q(t - τ)$&nbsp; and determine its paramaters.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.707 3% }
+
$\alpha \ = \ $ { 0.707 3% }
$τ$= { 125 3% } $μs$
+
\ = \ $ { 125 3% } $\ \rm &micro; s$
  
{Welche Aussagen sind nach dieser Messung über das System '$S_2$ möglich?
+
{What statements can be made about the &nbsp;$S_2$&nbsp; system after this measurement?
 
|type="[]"}
 
|type="[]"}
- $S_2$ könnte ein ideales System sein.
+
- $S_2$&nbsp; could be an ideal system.
+ $S_2$ könnte ein verzerrungsfreies System sein.
+
+ $S_2$&nbsp; could be a distortionless system.
+ $S_2$ könnte ein linear verzerrendes System sein.
+
+ $S_2$&nbsp; could be a linearly distorting system.
- $S_2$ könnte ein nichtlinear verzerrendes System sein.
+
- $S_2$&nbsp; could be a nonlinearly distorting system.
  
{Von welcher Art sind die Verzerrungen beim System $S_3$?
+
{What kind of distortions are present in System &nbsp;$S_3$?
|type="[]"}
+
|type="()"}
- Es handelt sich um lineare Verzerrungen.
+
- They are linear distortions.
+ Es handelt sich um nichtlineare Verzerrungen.
+
+ They are nonlinear distortions.
  
{Berechnen Sie das Sinken–$\text{SNR}$ von System $S_3$.
+
{Calculate the sink SNR &nbsp;$ρ_{v3}$&nbsp; of System &nbsp;$S_3$.
 
|type="{}"}
 
|type="{}"}
$ρ_{υ3}$= { 25 3% }
+
$ρ_{v3} \ = \ $ { 25 3% }
 +
 
 +
 
 +
</quiz>
  
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)''' <u>Answers 1, 2 and 3</u> are correct:
 +
*System&nbsp; $S_1$&nbsp; could well be an ideal system, namely if for all frequencies $f_{\rm N}$&nbsp; the condition &nbsp; $v(t) = q(t)$&nbsp; were satisfied.
 +
*The second alternative is also possible, since the ideal system is a special case of distortion-free systems.
 +
*However, if at a different message frequency  $f_{\rm N} \ne 1$&nbsp; kHz  the condition &nbsp; $v(t) = q(t)$&nbsp; were not satisfied, then a linearly distorting system would exist whose frequency response would happen to be equal to $1$&nbsp; at frequency $f_{\rm N}$&nbsp;.
 +
*In contrast, a nonlinearly distorting system (Answer 4) can be excluded due to the lack of harmonics.
  
  
  
 +
'''(2)'''&nbsp; Following the explanations in the chapter "Harmonic Oscillation" in the book "Signal Representation" the following equations apply:
 +
:$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$
 +
*Applied to the present example, one obtains
 +
:$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$
 +
*The damping ratio of the system thus takes the value &nbsp; $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, and the following applies to the phase:
 +
:$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} =  {\pi}/{4}\hspace{0.05cm}.$$
 +
*The transformation &nbsp; $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$&nbsp; enables claims about the running time:
 +
:$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
</quiz>
 
  
===Musterlösung===
+
'''(3)'''&nbsp; <u>Answers 2 and 3</u> are correct:
{{ML-Kopf}}
+
*Applying the logic from subtask '''(1)''', the system &nbsp; $S_2$&nbsp; is neither ideal nor nonlinearly distorting.
'''1.''' $S_1$ könnte durchaus ein ideales System sein, nämlich dann, wenn für alle Frequenzen $f_N$ die Bedingung $υ(t) = q(t)$ erfüllt wäre. Auch die zweite Alternative ist möglich, da das ideale System ein Sonderfall der verzerrungsfreien Systeme darstellt. Würde bei einer anderen Frequenz $f = f_N$ die Bedingung $υ(t) = q(t)$ allerdings nicht erfüllt, so würde ein linear verzerrendes System vorliegen, dessen Frequenzgang bei der Frequenz $f_N$ zufällig gleich 1 wäre. Dagegen kann ein nichtlinear verzerrendes System aufgrund fehlender Oberwellen ausgeschlossen werden. Richtig sind somit die Lösungsvorschläge 1, 2 und 3.
+
*In contrast, options 2 and 3 are possible, depending on whether the calculated values of $α$&nbsp; and $τ$ &nbsp; are preserved for all frequencies or not.
 +
*However, with just a single measurement at only one frequency, this cannot be clarified.
 +
 
  
  
'''2.'''Entsprechend den Ausführungen im Kapitel 2.3 von „Signaldarstellung” gelten folgende Gleichungen:
+
'''(4)'''&nbsp; The signal&nbsp; $v_3(t)$&nbsp; contains a third order harmonic. Therefore, the distortion is nonlinear &rArr; &nbsp;<u>Answer 2</u>.
$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)$$
 
$$\Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm}\frac {A}{B}\hspace{0.05cm}$$
 
Angewandt auf das vorliegende Beispiel erhält man
 
$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}$$
 
Der Dämpfungsfaktor des Systems hat somit den Wert $α = 1.414/2 = 0.707$. Für die Phase gilt:
 
$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = \frac {\pi}{4}\hspace{0.05cm}.$$
 
Die Umformung $cos(ω_N · t – φ) = cos(ω_N · (t – τ))$ erlaubt Aussagen über die Laufzeit:
 
$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm \mu s}}\hspace{0.05cm}.$$
 
  
  
'''3.'''Das System S2 ist nach den Ausführungen zur Teilaufgabe a) weder ideal noch nichtlinear verzerrend. Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von $α$ und $τ$ für alle Frequenzen erhalten bleiben oder nicht. Mit einer einzigen Messung bei nur einer Frequenz kann diese Frage nicht geklärt werden.
 
  
 +
'''(5)'''&nbsp; The amplitudes &nbsp; $A_1 = 1.5 \ \rm V$&nbsp; and&nbsp; $A_3 = -0.3\ \rm  V$&nbsp; give the distortion factor:
 +
:$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
 +
*Therefore, according to the given equation, the sink SNR is &nbsp; $ρ_{v3} = 1/K_3^{ 2 } = 25$.
  
'''4.'''Das Signal $υ_3(t)$ beinhaltet eine Oberwelle dritter Ordnung. Deshalb ist die Verzerrung nichtlinear.
 
  
 +
The same result is obtained from the more general calculation.
  
'''5.'''Mit den Amplituden $A_1 = 1.5 V$ und $A_3 = –0.3 V$ erhält man für den Klirrfaktor:
+
*From the amplitudes of the source signal and the fundamental wave of the sink signal, we get a frequency-independent damping factor of:
$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
+
:$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
Deshalb beträgt das Sinken–$\text{SNR}$ entsprechend der angegebenen Gleichung $ρ_{υ3} = 1/K_3^{ 2 } = 25$. Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung. Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor:
+
*Therefore, the error signal coming from the nonlinear distortions is: &nbsp;
$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
+
:$$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$  
Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb:
+
*This gives a distortion power of:
$$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
+
:$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
Damit ergibt sich die Verzerrungsleistung:
+
*Together with the power of the source signal,
$$P_{\varepsilon 3}= \frac{1}{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
+
:$$P_{q}= {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
Mit der Leistung des Quellensignals,
+
:and taking into account the damping factor $ \alpha = 0.75 $ just calculated, we obtain:&nbsp;
$$P_{q}= \frac{1}{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
+
:$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$
erhält man unter Berücksichtigung des Dämpfungsfaktors:
 
$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$
 
  
  
Line 98: Line 114:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^1.2 Qualitätskriterien^]]
+
[[Category:Modulation Methods: Exercises|^1.2 Quality Criteria^]]

Latest revision as of 18:16, 10 April 2022

Observed sink signals for the
given input signal   $q(t)$

The communication systems  $S_1$,  $S_2$  and  $S_3$  are analyzed in terms of the distortions they cause. For this purpose, the cosine-shaped test signal with signal frequency $f_{\rm N} = 1\text{ kHz}$  is applied to the input of each system:

$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$

The three signals at the system output are measured, as shown in the graph:

$$v_1(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) = 1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t + 1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)= 1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$

The noise components that are always present in practice will be assumed to be negligible here.



Hints:

  • This exercise belongs to the chapter  Quality criteria.  Particular reference is made to the page   Signal-to-noise power ratio  and to the chapter   Non-linear distortions  in the book "Linear and Time-Invariant Systems".
  • For nonlinear distortion, the sink SNR is  $ρ_v = 1/K^2$, where the distortion factor  $K$  is the ratio of the rms values of all harmonics to the rms value of the fundamental frequency.


Questions

1

What statements can be made about the  $S_1$  system after this measurement?

$S_1$  could be an ideal system.
$S_1$  could be a distortionless system.
$S_1$  could be a linearly distorting system.
$S_1$  could be a nonlinearly distorting system.

2

Write the second signal in the form  $v_2(t) = α · q(t - τ)$  and determine its paramaters.

$\alpha \ = \ $

$τ \ = \ $

$\ \rm µ s$

3

What statements can be made about the  $S_2$  system after this measurement?

$S_2$  could be an ideal system.
$S_2$  could be a distortionless system.
$S_2$  could be a linearly distorting system.
$S_2$  could be a nonlinearly distorting system.

4

What kind of distortions are present in System  $S_3$?

They are linear distortions.
They are nonlinear distortions.

5

Calculate the sink SNR  $ρ_{v3}$  of System  $S_3$.

$ρ_{v3} \ = \ $


Solution

(1) Answers 1, 2 and 3 are correct:

  • System  $S_1$  could well be an ideal system, namely if for all frequencies $f_{\rm N}$  the condition   $v(t) = q(t)$  were satisfied.
  • The second alternative is also possible, since the ideal system is a special case of distortion-free systems.
  • However, if at a different message frequency $f_{\rm N} \ne 1$  kHz the condition   $v(t) = q(t)$  were not satisfied, then a linearly distorting system would exist whose frequency response would happen to be equal to $1$  at frequency $f_{\rm N}$ .
  • In contrast, a nonlinearly distorting system (Answer 4) can be excluded due to the lack of harmonics.


(2)  Following the explanations in the chapter "Harmonic Oscillation" in the book "Signal Representation" the following equations apply:

$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$
  • Applied to the present example, one obtains
$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$
  • The damping ratio of the system thus takes the value   $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, and the following applies to the phase:
$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = {\pi}/{4}\hspace{0.05cm}.$$
  • The transformation   $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$  enables claims about the running time:
$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm µ s}}\hspace{0.05cm}.$$


(3)  Answers 2 and 3 are correct:

  • Applying the logic from subtask (1), the system   $S_2$  is neither ideal nor nonlinearly distorting.
  • In contrast, options 2 and 3 are possible, depending on whether the calculated values of $α$  and $τ$   are preserved for all frequencies or not.
  • However, with just a single measurement at only one frequency, this cannot be clarified.


(4)  The signal  $v_3(t)$  contains a third order harmonic. Therefore, the distortion is nonlinear ⇒  Answer 2.


(5)  The amplitudes   $A_1 = 1.5 \ \rm V$  and  $A_3 = -0.3\ \rm V$  give the distortion factor:

$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
  • Therefore, according to the given equation, the sink SNR is   $ρ_{v3} = 1/K_3^{ 2 } = 25$.


The same result is obtained from the more general calculation.

  • From the amplitudes of the source signal and the fundamental wave of the sink signal, we get a frequency-independent damping factor of:
$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
  • Therefore, the error signal coming from the nonlinear distortions is:  
$$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
  • This gives a distortion power of:
$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
  • Together with the power of the source signal,
$$P_{q}= {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
and taking into account the damping factor $ \alpha = 0.75 $ just calculated, we obtain: 
$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$