Difference between revisions of "Aufgaben:Exercise 1.4Z: Representation of Oscillations"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/ Allgemeines Modell der Modulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choi…“)
 
 
(41 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/ Allgemeines Modell der Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/General_Model_of_Modulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID969__Mod_Z_1_4.png|right|frame|Two representations of a harmonic oscillation]]
 +
Here,&nbsp; we consider a harmonic oscillation &nbsp;$z(t)$,&nbsp; which is shown in the graph together with the corresponding analytical signal  &nbsp;$z_+(t)$.&nbsp; These signals can be described mathematically as follows:
 +
:$$z(t)  =  A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})=  A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$
 +
:$$ z_+(t)  =  A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t+ϕ_{\rm T}}.$$
 +
The two amplitude parameters &nbsp;$A_{\rm T} $&nbsp; and &nbsp;$A_0$&nbsp; are each dimensionless,&nbsp; the phase value &nbsp;$ϕ_{\rm T} $&nbsp; is supposed to lie between &nbsp;$\text{±π}$,&nbsp; and the duration &nbsp;$τ$ &nbsp; is non-negative.
  
 +
Subtask&nbsp; '''(4)'''&nbsp; refers to the equivalent low-pass signal &nbsp;$z_{\rm TP}(t)$,&nbsp; which is related to &nbsp;$z_+(t)$&nbsp; as follows:
 +
:$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$
  
===Fragebogen===
+
Further note that &nbsp;$ϕ_{\rm T}$&nbsp; appears in the above equation with a positive sign.&nbsp; See "Notes on Nomenclature" below for reasons for the differential usage of &nbsp;$φ_{\rm T}$&nbsp; and &nbsp;$ϕ_{\rm T} = – φ_{\rm T}$.
 +
 
 +
 
 +
Notes on Nomenclature:
 +
*In this tutorial,&nbsp; as is common in other literature,&nbsp; the phase enters the equations with a negative sign when describing harmonic oscillations,&nbsp; Fourier series,&nbsp; and Fourier integrals.&nbsp; In the context of modulation methods,&nbsp; the phase is always given a plus sign.
 +
*To distinguish these two variants,&nbsp; we use &nbsp;$\phi_{\rm T}$&nbsp; and&nbsp; $\varphi_{\rm T} = - \phi_{\rm T}$.&nbsp; Both symbols denote the lowercase Greek&nbsp; "phi",&nbsp; with the notation &nbsp;$\phi$&nbsp; used predominantly in Anglo-American contexts,&nbsp; and&nbsp; $\varphi$&nbsp; in German.
 +
*The phase values &nbsp;$\varphi_{\rm T} = 90^\circ$&nbsp; and&nbsp; $\phi_{\rm T} = -90^\circ$&nbsp; are thus equivalent and both represent the sine function:
 +
:$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T})  = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$
 +
 
 +
 
 +
Further hints:
 +
*This exercise belongs to the chapter &nbsp; [[Modulation_Methods/Allgemeines_Modell_der_Modulation|General Model of Modulation]].
 +
*Particular reference is made to the page&nbsp;  [[Modulation_Methods/General_Model_of_Modulation#Describing_the_physical_signal_using_the_equivalent_low-pass_signal|Describing the physical signal using the equivalent low-pass signal]].
 +
*You will find further information on these topics in these chapters of the book „Signal Representation”:
 +
::(1) &nbsp; [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]],
 +
::(2)&nbsp; [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]],&nbsp;
 +
::(3)&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function| Equivalent Low-Pass Signal and its Spectral Function]].
 +
 +
*In our tutorial $\rm LNTwww$, the plot of the analytical signal&nbsp;$s_+(t)$&nbsp; n the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal &nbsp;$s_{\rm TP}(t)$&nbsp;. We refer you to the corresponding interactive Applets
 +
::(1) &nbsp;[[Applets:Physical_Signal_%26_Analytic_Signal|Physical and analytic signal]],
 +
::(2) &nbsp;[[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical signal and equivalent low-pass signal]].
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{Calculate the signal parameters &nbsp;$A_{\rm T}$, &nbsp;$f_{\rm T}$&nbsp; and &nbsp;$ω_{\rm T}$.
 +
|type="{}"}
 +
$A_{\rm T} \ = \ $  { 2 3% }
 +
$f_{\rm T} \ = \ $ { 500 3% } $\ \text{Hz}$
 +
$\omega_{\rm T} \ = \ $ { 3141.5 3% } $\ \text{1/s}$
 +
 +
{Determine the phase&nbsp; $\phi_{\rm T}$&nbsp; $($between&nbsp; $±180^\circ)$&nbsp; and the duration &nbsp;$τ$.
 +
|type="{}"}
 +
$\phi_{\rm T}  \ = \ $ { -139--131 } $\ \text{deg}$
 +
$τ \ = \ $ { 0.75 3% } $\ \text{ms}$
  
{Input-Box Frage
+
{At what time &nbsp;$t_1 > 0$&nbsp; does the analytical signal &nbsp;$z_+(t)$&nbsp; first become imaginary?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$t_1 \ = \ $ { 0.25 3% } $\ \text{ms}$
  
 +
{What is the equivalent low-pass signal &nbsp;$z_{\rm TP}(t)$?&nbsp; Enter the value at &nbsp;$t = 1 \text{ ms}$&nbsp; to check.
 +
|type="{}"}
 +
${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }
 +
${\rm Im}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }
  
 +
{Which of these statements are valid for all harmonic oscillations?
 +
|type="[]"}
 +
+ The spectrum &nbsp;$Z(f)$&nbsp; consists of two Dirac delta functions at &nbsp;$±f_{\rm T}$.
 +
- The spectrum &nbsp;$Z_+(f)$&nbsp; has one delta Dirac function at &nbsp;$–f_{\rm T}$.
 +
+ The spectrum &nbsp;$Z_{\rm TP}(f)$&nbsp; contains a Dirac delta function at &nbsp;$f = 0$.
 +
+ The analytical signal &nbsp;$z_+(t)$&nbsp; is always complex.
 +
- The equivalent low-pass signal &nbsp;$z_{\rm TP}(t)$&nbsp; is always complex.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; In the graphical representation of the time function&nbsp; $z(t)$,&nbsp; one can identify
'''2.'''
+
*the (normalized) amplitude&nbsp; $A_{\rm T}\hspace{0.15cm}\underline{ = 2}$&nbsp; and the period&nbsp; $T_0=2$&nbsp; milliseconds.
'''3.'''
+
*Therefore,&nbsp; the signal frequency is &nbsp; $f_{\rm T} = 1/T_0\hspace{0.15cm}\underline{ = 500}$&nbsp; Hz and the angular frequency is&nbsp; $ω_{\rm T}= 2πf_{\rm T} \hspace{0.15cm}\underline{ = 3141.5}$&nbsp; 1/s.
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp; The analytical signal is generally:
'''7.'''
+
:$$z_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}(\omega_{\rm T}\cdot \hspace{0.05cm}t + \phi_{\rm T})} = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t }\hspace{0.05cm}.$$
 +
*At the same time the relationship:
 +
:$$A_0 = z_+(t = 0) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \hspace{0.05cm}.$$
 +
*The complex amplitude&nbsp; $A_0$&nbsp; can be read from the upper plot.
 +
:$$A_0 = - \sqrt{2} - {\rm j} \cdot \sqrt{2} = A_{\rm 0} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 0.75 \pi} \hspace{0.05cm}.$$
 +
*A comparison of both equations leads to the result:
 +
:$$ \phi_{\rm T} = - 0.75 \pi \hspace{0.15cm}\underline {= - 135^{\circ}} \hspace{0.05cm}.$$
 +
*Thereby,&nbsp; the following relationship exists with the duration&nbsp; $τ$:
 +
:$$\phi_{\rm T} = - 2 \pi \cdot f_{\rm T} \cdot \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau = \frac{-\phi_{\rm T}}{2 \pi \cdot f_{\rm T}} = \frac{0.75 \pi}{2 \pi \cdot 0.5\,{\rm kHz}} \hspace{0.15cm}\underline {= 0.75 \,{\rm ms}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The analytical signal covers exactly one revolution in the time&nbsp; $T_0$&nbsp;.
 +
*Thus,&nbsp; starting from&nbsp; $A_0$&nbsp; after &nbsp; $t_1 = T_0/8\hspace{0.15cm}\underline{ = 0.25}$&nbsp; ms,&nbsp; we reach the first moment that the analytical signal is imaginary:
 +
:$$z_+(t_1) = - 2 {\rm j}.$$
 +
*Because of the relation&nbsp; $z(t) = {\rm Re}[z_+(t)]$,&nbsp; the first zero crossing of the signal&nbsp; $z(t)$&nbsp; also occurs at time&nbsp; $t_1$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Using the result from subtask &nbsp; '''(2)''',&nbsp; we obtain:
 +
:$$ z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_0 = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{\rm T}} = {\rm const.}$$
 +
*Thus,&nbsp; for all times&nbsp; $t$&nbsp; and hence also&nbsp; $t = 1$ ms:
 +
:$${\rm Re}[z_{\rm TP}(t)]  =  - \sqrt{2} \hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm},$$
 +
:$$ {\rm Im}[z_{\rm TP}(t)]  =  - \sqrt{2}\hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>Statements 1, 3 and 4</u>&nbsp; are correct:
 +
*The only Dirac delta function of&nbsp; $Z_+(f)$&nbsp; is at&nbsp; $f = f_{\rm T}$&nbsp; and not at&nbsp; $–f_{\rm T}$.
 +
*The analytical signal of a harmonic oscillation is always complex.
 +
* The equivalent low-pass signal of a harmonic oscillation is usually complex.&nbsp; The exception: 
 +
:$$z(t) = ±A_{\rm T} · \cos(ω_{\rm T} · t) \ \Rightarrow \  z_{\rm TP}(t) = ±A_{\rm T}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Modulationsverfahren|^1.3 Allgemeines Modell der Modulation ^]]
+
[[Category:Modulation Methods: Exercises|^1.3 General Model of Modulation ^]]

Latest revision as of 19:07, 16 November 2021

Two representations of a harmonic oscillation

Here,  we consider a harmonic oscillation  $z(t)$,  which is shown in the graph together with the corresponding analytical signal  $z_+(t)$.  These signals can be described mathematically as follows:

$$z(t) = A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})= A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$
$$ z_+(t) = A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t+ϕ_{\rm T}}.$$

The two amplitude parameters  $A_{\rm T} $  and  $A_0$  are each dimensionless,  the phase value  $ϕ_{\rm T} $  is supposed to lie between  $\text{±π}$,  and the duration  $τ$   is non-negative.

Subtask  (4)  refers to the equivalent low-pass signal  $z_{\rm TP}(t)$,  which is related to  $z_+(t)$  as follows:

$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$

Further note that  $ϕ_{\rm T}$  appears in the above equation with a positive sign.  See "Notes on Nomenclature" below for reasons for the differential usage of  $φ_{\rm T}$  and  $ϕ_{\rm T} = – φ_{\rm T}$.


Notes on Nomenclature:

  • In this tutorial,  as is common in other literature,  the phase enters the equations with a negative sign when describing harmonic oscillations,  Fourier series,  and Fourier integrals.  In the context of modulation methods,  the phase is always given a plus sign.
  • To distinguish these two variants,  we use  $\phi_{\rm T}$  and  $\varphi_{\rm T} = - \phi_{\rm T}$.  Both symbols denote the lowercase Greek  "phi",  with the notation  $\phi$  used predominantly in Anglo-American contexts,  and  $\varphi$  in German.
  • The phase values  $\varphi_{\rm T} = 90^\circ$  and  $\phi_{\rm T} = -90^\circ$  are thus equivalent and both represent the sine function:
$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T}) = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$


Further hints:

(1)   Harmonic Oscillation,
(2)  Analytical Signal and its Spectral Function
(3)  Equivalent Low-Pass Signal and its Spectral Function.
  • In our tutorial $\rm LNTwww$, the plot of the analytical signal $s_+(t)$  n the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
(1)  Physical and analytic signal,
(2)  Physical signal and equivalent low-pass signal.



Questions

1

Calculate the signal parameters  $A_{\rm T}$,  $f_{\rm T}$  and  $ω_{\rm T}$.

$A_{\rm T} \ = \ $

$f_{\rm T} \ = \ $

$\ \text{Hz}$
$\omega_{\rm T} \ = \ $

$\ \text{1/s}$

2

Determine the phase  $\phi_{\rm T}$  $($between  $±180^\circ)$  and the duration  $τ$.

$\phi_{\rm T} \ = \ $

$\ \text{deg}$
$τ \ = \ $

$\ \text{ms}$

3

At what time  $t_1 > 0$  does the analytical signal  $z_+(t)$  first become imaginary?

$t_1 \ = \ $

$\ \text{ms}$

4

What is the equivalent low-pass signal  $z_{\rm TP}(t)$?  Enter the value at  $t = 1 \text{ ms}$  to check.

${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

${\rm Im}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

5

Which of these statements are valid for all harmonic oscillations?

The spectrum  $Z(f)$  consists of two Dirac delta functions at  $±f_{\rm T}$.
The spectrum  $Z_+(f)$  has one delta Dirac function at  $–f_{\rm T}$.
The spectrum  $Z_{\rm TP}(f)$  contains a Dirac delta function at  $f = 0$.
The analytical signal  $z_+(t)$  is always complex.
The equivalent low-pass signal  $z_{\rm TP}(t)$  is always complex.


Solution

(1)  In the graphical representation of the time function  $z(t)$,  one can identify

  • the (normalized) amplitude  $A_{\rm T}\hspace{0.15cm}\underline{ = 2}$  and the period  $T_0=2$  milliseconds.
  • Therefore,  the signal frequency is   $f_{\rm T} = 1/T_0\hspace{0.15cm}\underline{ = 500}$  Hz and the angular frequency is  $ω_{\rm T}= 2πf_{\rm T} \hspace{0.15cm}\underline{ = 3141.5}$  1/s.


(2)  The analytical signal is generally:

$$z_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}(\omega_{\rm T}\cdot \hspace{0.05cm}t + \phi_{\rm T})} = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t }\hspace{0.05cm}.$$
  • At the same time the relationship:
$$A_0 = z_+(t = 0) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \hspace{0.05cm}.$$
  • The complex amplitude  $A_0$  can be read from the upper plot.
$$A_0 = - \sqrt{2} - {\rm j} \cdot \sqrt{2} = A_{\rm 0} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 0.75 \pi} \hspace{0.05cm}.$$
  • A comparison of both equations leads to the result:
$$ \phi_{\rm T} = - 0.75 \pi \hspace{0.15cm}\underline {= - 135^{\circ}} \hspace{0.05cm}.$$
  • Thereby,  the following relationship exists with the duration  $τ$:
$$\phi_{\rm T} = - 2 \pi \cdot f_{\rm T} \cdot \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau = \frac{-\phi_{\rm T}}{2 \pi \cdot f_{\rm T}} = \frac{0.75 \pi}{2 \pi \cdot 0.5\,{\rm kHz}} \hspace{0.15cm}\underline {= 0.75 \,{\rm ms}} \hspace{0.05cm}.$$


(3)  The analytical signal covers exactly one revolution in the time  $T_0$ .

  • Thus,  starting from  $A_0$  after   $t_1 = T_0/8\hspace{0.15cm}\underline{ = 0.25}$  ms,  we reach the first moment that the analytical signal is imaginary:
$$z_+(t_1) = - 2 {\rm j}.$$
  • Because of the relation  $z(t) = {\rm Re}[z_+(t)]$,  the first zero crossing of the signal  $z(t)$  also occurs at time  $t_1$.


(4)  Using the result from subtask   (2),  we obtain:

$$ z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_0 = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{\rm T}} = {\rm const.}$$
  • Thus,  for all times  $t$  and hence also  $t = 1$ ms:
$${\rm Re}[z_{\rm TP}(t)] = - \sqrt{2} \hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm},$$
$$ {\rm Im}[z_{\rm TP}(t)] = - \sqrt{2}\hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm}.$$


(5)  Statements 1, 3 and 4  are correct:

  • The only Dirac delta function of  $Z_+(f)$  is at  $f = f_{\rm T}$  and not at  $–f_{\rm T}$.
  • The analytical signal of a harmonic oscillation is always complex.
  • The equivalent low-pass signal of a harmonic oscillation is usually complex.  The exception:
$$z(t) = ±A_{\rm T} · \cos(ω_{\rm T} · t) \ \Rightarrow \ z_{\rm TP}(t) = ±A_{\rm T}.$$