Difference between revisions of "Aufgaben:Exercise 2.12: Non-coherent Demodulation"

From LNTwww
Line 75: Line 75:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''   Applying the trigonometric transformations given on the exercise page and taking into account the two lowpass filters (the components around twice the carrier frequency are removed), we obtain:
+
'''(1)'''   Applying the trigonometric transformations given on the exercise page and taking into account the two low-pass filters  (the components around twice the carrier frequency are removed),  we obtain:
 
:$$b_1(t)  =  q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
 
:$$b_1(t)  =  q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
 
:$$ b_2(t)  =  q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
 
:$$ b_2(t)  =  q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
*Thus, <u>the first and fourth answers</u> are correct.
+
*Thus,&nbsp; <u>the first and fourth answers</u>&nbsp; are correct.
  
  
Line 94: Line 94:
  
  
'''(4)'''&nbsp;  The result&nbsp; $b(t) = q^2(t)$ – see subtask '''(2)'''&nbsp; – here leads to the result:   
+
'''(4)'''&nbsp;  The result&nbsp; $b(t) = q^2(t)$ – see subtask '''(2)'''&nbsp; – leads here to the result:   
 
:$$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$
 
:$$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$
 
:$$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$
 
:$$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$
This shows that the demodulator considered here only functions, if at all times &nbsp; $q(t) ≥ 0$&nbsp; or&nbsp;, $q(t) ≤ 0$&nbsp; holds, and this is known at the receiver.
+
 
 +
This shows that the demodulator considered here only functions,  
 +
*if at all times &nbsp; $q(t) ≥ 0$ &nbsp; or &nbsp; $q(t) ≤ 0$ &nbsp; holds,  
 +
*and this is known at the receiver.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 18:16, 18 February 2022

ASK Demodulation
(non-coherent)

Consider an amplitude modulated signal:

$$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$

Reaching the receiver based on the channel propagation time,  the signal is

$$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$

The arrangement shown here allows perfect demodulation – that is:  $v(t) = q(t)$ – without knowledge of the phase  $Δϕ_T$,  but only if the source signal  $q(t)$  satisfies certain conditions.

The two receiver-side carrier signals are:

$$ z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},$$
$$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$

$\rm LP_1$  and  $\rm LP_2$  denote two ideal  (rectangular)  low-pass filters,  each with cutoff frequency equal to the carrier frequency  $f_{\rm T}$.

We consider as (digital) source signals:

  1. the unipolar square wave signal  $q_1(t)$  with dimensionless amplitude values  $0$  and  $3$,
  2. the bipolar square wave signal  $q_2(t)$  with the dimensionless amplitude values  $±3$.


With respect to  $s(t)$,  these two signals result in

  1. an  ASK signal
  2. a  BPSK signal.


The nonlinear function  $v = g(b)$  is to be determined in this exercise.



Hints:

  • The following trigonometric transformations are given:
$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$


Questions

1

What are the signals  $b_1(t)$  and  $b_2(t)$  in both branches – after multiplier and low-pass respectively?  Which statements apply?

$b_1(t) = q(t) · \cos(Δϕ_{\rm T})$.
$b_2(t) = q(t) · \cos(Δϕ_{\rm T})$.
$b_1(t) = q(t) · \sin(Δϕ_{\rm T})$.
$b_2(t) = q(t) · \sin(Δϕ_{\rm T})$.
$b_1(t) = b_2(t) = q(t)$.

2

What values of  $b_{\rm min}$  and  $b_{\rm max}$  does the signal  $b(t)$  take on,  when the unipolar source signal  $q_1(t)$  is applied to the input?

$b_{\rm min} \ = \ $

$b_{\rm max} \ = \ $

3

How should the characteristic curve  $v = g(b)$  be chosen,  so that  $v(t) = q(t)$  holds?

$v=g(b) = b^2$.
$v=g(b) = \sqrt{b}$.
$v=g(b) = \arctan(b).$

4

What values of  $b_{\rm min}$  and  $b_{\rm max}$  does the signal  $b(t)$  take on,  when the bipolar source signal  $q_2(t)$  is applied to the input?

$b_{\rm min} \ = \ $

$b_{\rm max} \ = \ $


Solution

(1)  Applying the trigonometric transformations given on the exercise page and taking into account the two low-pass filters  (the components around twice the carrier frequency are removed),  we obtain:

$$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
$$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
  • Thus,  the first and fourth answers  are correct.


(2)  The sum of the squares of the two partial signals gives:

$$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$

The possible amplitude values are thus:

$$b_{\rm min}\hspace{0.15cm}\underline{ = 0},$$
$$ b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$


(3)  The second answer is correct:

$$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$


(4)  The result  $b(t) = q^2(t)$ – see subtask (2)  – leads here to the result:

$$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$
$$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$

This shows that the demodulator considered here only functions,

  • if at all times   $q(t) ≥ 0$   or   $q(t) ≤ 0$   holds,
  • and this is known at the receiver.