Difference between revisions of "Aufgaben:Exercise 4.12: Root-Nyquist Systems"

From LNTwww
Line 87: Line 87:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Setzt man in die gegebene Gleichung  $r = 0$  ein, so verschwinden im Zähler und Nenner die jeweils ersten Terme und man erhält:
+
'''(1)'''  If we substitute   $r = 0$  into the given equation, the first terms in the numerator and denominator disappear and we get:
 
: $$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm si} \left (\pi \cdot {t}/{T} \right )\hspace{0.05cm}.$$
 
: $$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm si} \left (\pi \cdot {t}/{T} \right )\hspace{0.05cm}.$$
*Zum Zeitpunkt  $t = 0$  ist der  $\rm si$–Impuls gleich  $g_0$:    
+
*At time  $t = 0$ ,the   $\rm si$–impulse is equal to  $g_0$:    
 
:$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$
 
:$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$
  
  
  
'''(2)'''  Für  $r = 1$  lässt sich die angegebene Gleichung wie folgt vereinfachen:
+
'''(2)'''  When  $r = 1$ , the given equation simplies as follows:
 
:$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$
 
:$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; Richtig ist der <u>letzte Lösungsvorschlag</u>:
+
'''(3)'''&nbsp; The <u>last answer</u> is correct:
*Nulldurchgänge sind für&nbsp; $r = 1$&nbsp; nur möglich, wenn die Cosinusfunktion im Zähler Null ist, also für alle ganzzahligen Werte von&nbsp; $k$:
+
*Zero intercepts are only possible for&nbsp; $r = 1$&nbsp; if the cosine function in the numerator is zero, that is for all integer values of &nbsp; $k$:
 
:$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
 
:$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
*Richtig ist aber nur der letzte Lösungsvorschlag, da die Nullstellen bei&nbsp; $±0.25T$&nbsp; durch die Nullstelle im Nenner aufgehoben werden.  
+
*However, only the last answer is correct, since the zero values at &nbsp; $±0.25T$&nbsp; are cancelled by the zero in the denominator.
*Die Anwendung der Regel von de l'Hospital liefert&nbsp; $g_s(t = ± 0.25T) = g_0$.
+
*Applying de l'Hospital's rule yields &nbsp; $g_s(t = ± 0.25T) = g_0$.
  
  
  
  
'''(4)'''&nbsp;  Mit&nbsp; $r = 0.5$&nbsp; und der Abkürzung&nbsp; $x = t/T$&nbsp; erhält man:
+
'''(4)'''&nbsp;  With&nbsp; $r = 0.5$&nbsp; and the shortcut&nbsp; $x = t/T$&nbsp;, one gets:
 
:$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
 
:$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
  
*Für die Berechnung zum Zeitpunkt&nbsp; $t = 0$&nbsp; muss die Regel von de l'Hospital angewandt werden.  
+
*For the calculation at time &nbsp; $t = 0$&nbsp;, de l'Hospital's rule must be applied.
*Die Ableitungen von Zähler und Nenner ergeben:  
+
*The derivatives of the numerator and denominator give:
 
:$$Z'(x)  =  2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
 
:$$Z'(x)  =  2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
[[File:P_ID1723__Mod_A_4_11b.png|right|frame|Sendegrundimpuls (Wurzel–Nyquist) und Detektionsgrundimpuls (Nyquist)]]
+
[[File:P_ID1723__Mod_A_4_11b.png|right|frame|Fundamental transmission pulse (root Nyquist) and base detection pulse (Nyquist)]]
 
   
 
   
 
:$$N'(x)  =  \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
 
:$$N'(x)  =  \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
*Die beiden Grenzübergänge für&nbsp; $x → 0$&nbsp; liefern:
+
*The two boundary transitions for&nbsp; $x → 0$&nbsp; yield:
 
:$$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$
 
:$$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$
*Damit gilt für die Signalamplitude zum Zeitpunkt&nbsp; $t = 0$:
+
*Thus, for the signal amplitude at time &nbsp; $t = 0$:
 
:$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$
 
:$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$
  
Die Grafik verdeutlicht nochmals die hier berechneten Ergebnisse:  
+
Here, the graph illustrates the results calculated again:
*Der Impuls&nbsp; $g_d(t)$&nbsp; ist ein Nyquistimpuls, das heißt, dass er zumindest bei allen Vielfachen der Symboldauer $T$ Nulldurchgänge  besitzt&nbsp; (je nach Rolloff–Faktor noch andere Nullstellen).  
+
*The impulse&nbsp; $g_d(t)$&nbsp; is a Nyquist pulse, meaning that it has zero crossings at least at all multiples of the symbol duration $T$ (and possibly others depending on the rolloff factor).
*Der Impuls&nbsp; $g_s(t)$&nbsp; erfüllt dagegen nicht die Nyquistbedingung.  
+
*On the other hand, the impulse&nbsp; $g_s(t)$&nbsp; does not satisfy the Nyquist criterion.  
*Außerdem erkennt man aus dieser Darstellung nochmals, dass für&nbsp; $r ≠ 0$&nbsp; die Impulsamplitude&nbsp; $g_s(t = 0)$&nbsp; stets größer als&nbsp; $g_0$&nbsp; ist.
+
*Moreover, from this plot one can once again see that for &nbsp; $r ≠ 0$&nbsp; the pulse amplitude $g_s(t = 0)$&nbsp; is always larger than $g_0$&nbsp;.
  
  
  
 
+
'''(5)'''&nbsp; The <u>last answer</u>&nbsp; is correct $($the first answer is ruled out from the results in questions&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp;$)$.&nbsp; The validity of the lower bound &nbsp; $g_0$&nbsp; and the upper bound &nbsp; $4g_0/π$&nbsp; can be proved as follows:
'''(5)'''&nbsp; Richtig ist der <u>letzte Lösungsvorschlag</u>&nbsp; $($der erste Lösungsvorschlag scheidet bereits nach den Ergebnissen der Teilaufgaben&nbsp; '''(2)'''&nbsp; und&nbsp; '''(4)'''&nbsp; aus$)$.&nbsp; Die Gültigkeit der unteren Schranke&nbsp; $g_0$&nbsp; und der oberen Schranke&nbsp; $4g_0/π$&nbsp; lässt sich wie folgt nachweisen:
+
* The pulse amplitude&nbsp; $g_s(t = 0)$&nbsp; is generally equal to the area under the spectral function&nbsp; $G_s(f)$.
* Die Impulsamplitude&nbsp; $g_s(t = 0)$&nbsp; ist grundsätzlich gleich der Fläche unter der Spektralfunktion&nbsp; $G_s(f)$.
+
* The smallest area is obtained for&nbsp; $r = 0$.&nbsp; Here, &nbsp; $G_s(f) = g_0 · T$&nbsp; is in the range&nbsp; $|f| < ±1/(2T)$.&nbsp; Thus, the area is equal to&nbsp; $g_0$.
* Die kleinste Fläche ergibt sich für&nbsp; $r = 0$.&nbsp; Hier ist&nbsp; $G_s(f) = g_0 · T$&nbsp; im Bereich&nbsp; $|f| < ±1/(2T)$.&nbsp; Die Fläche ist somit gleich&nbsp; $g_0$.
+
* The largest area is obtained for&nbsp; $r = 1$. Here &nbsp; $G_s(f)$&nbsp; extends to the range &nbsp; $±1/T$&nbsp; and has a cosine shape.
* Die größte Fläche ergibt sich für&nbsp; $r = 1$.&nbsp; Hier ist&nbsp; $G_s(f)$&nbsp; auf den Bereich&nbsp; $±1/T$&nbsp; ausgedehnt und hat einen cosinusförmigen Verlauf.  
+
*The result&nbsp; $g_s(t = 0) = 4g_0/π$&nbsp; was already calculated in question &nbsp; '''(3)'''&nbsp;.&nbsp; Though it still holds that:
*Das Ergebnis&nbsp; $g_s(t = 0) = 4g_0/π$&nbsp; wurde bereits in Teilaufgabe&nbsp; '''(3)'''&nbsp; berechnet.&nbsp; Es gilt aber auch:
 
 
:$$g_s(t=0)  =  2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$
 
:$$g_s(t=0)  =  2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$
  
  
  
'''(6)'''&nbsp; Die Energie des Sendegrundimpulses&nbsp; $g_s(t)$&nbsp; kann man nach dem Satz von Parseval im Zeit– oder auch im Frequenzbereich ermitteln:
+
'''(6)'''&nbsp; The energy of the fundamental transmission pulse &nbsp; $g_s(t)$&nbsp; can be found in the time or frequency domain according to Parseval's theorem:
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
*Aus den Gleichungen und der Grafik auf der Angabenseite erkennt man, dass&nbsp; $|G_s(f)|^2$&nbsp; formgleich mit&nbsp; $G_d(f)$&nbsp; ist, mit dem Unterschied, dass die Höhe nun&nbsp; $(g_0 · T)^2$&nbsp; anstelle von&nbsp; $g_0 · T$&nbsp; ist:
+
*From the equations and the graph on the exercise page, we can see that &nbsp; $|G_s(f)|^2$&nbsp; is the same shape as &nbsp; $G_d(f)$&nbsp;, except that the height is now &nbsp; $(g_0 · T)^2$&nbsp; instead of &nbsp; $g_0 · T$&nbsp;:
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
*Aufgrund der Nyquistform von&nbsp; $G_d(f)$&nbsp; gilt aber unabhängig von&nbsp; $r$:
+
*Due to the Nyquist form of&nbsp; $G_d(f)$&nbsp;, it holds independently of &nbsp; $r$ that:
 
:$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
 
:$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
*Damit ist auch die Impulsenergie unabhängig von&nbsp; $r$, also auch gültig für&nbsp; $r = 0$&nbsp; und&nbsp; $r = 1$.&nbsp; In&nbsp; <u>beiden Fällen</u>&nbsp; ist&nbsp; $E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$
+
*Thus, the impulse energy is also independent of &nbsp; $r$, so it is also valid for &nbsp; $r = 0$&nbsp; and&nbsp; $r = 1$.&nbsp;. In <u>both cases</u>$E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 19:54, 19 March 2022

Spectra of fundamental transmission pulse and base detection pulse

In quadrature amplitude modulation systems, the root-Nyquist variant is often chosen instead of a rectangular basic transmission pulse, which gets its name from the spectral range. The reason for this is the significantly smaller bandwidth.

  • In this case, base detection pulse  $g_d(t)$  satisfies the  first Nyquist criterion,  since  $G_d(f)$  is point-symmetric about the so-called Nyquist frequency  $f_{\rm Nyq} = 1/T$ .
  • The spectral function $G_d(f)$  is a  cosine rolloff spectrum, where the rolloff factor  $r$  can take values from $0$  to  $1$  (including these limits).


Furthermore, the following holds for the Nyquist frequency response:

  • When  $|f| < f_1 = f_{\rm Nyq} · (1 – r)$ ,  $G_d(f)$  is constant and equal to  $g_0 · T$.
  • At frequencies greater tha  $f_2 = f_{\rm Nyq} · (1 + r)$ , $G_d(f)$  has no components.
  • In between, the slope is cosine.


The optimization of digital communication systems requires that the receiver frequency response  $H_{\rm E}(f)$  should be of the same shape as the transmission spectrum $G_s(f)$ .

To obtain dimensionally correct spectral functions for this task and the graph, it is assumed that:

$$G_s(f) = \sqrt{g_0 \cdot T \cdot G_d(f)},\hspace{0.4cm} H_{\rm E}(f) = \frac{1}{g_0 \cdot T}\cdot G_s(f)\hspace{0.05cm}.$$

The top graph shows the transmission spectrum  $G_s(f)$  for the rolloff factors.

  • $r = 0$   (green dotted rectangle),
  • $r = 0.5$   (blue solid curve),
  • $r = 1$   (red dashed curve).


Below, the spectrum   $G_d(f)$  before the decider is shown in the same colors.

  • The associated impulse   $g_d(t)$  is a Nyquist impulse pulse for all valid rolloff factors   $(0 ≤ r ≤ 1)$  as opposed to the fundamental transmission pulse   $g_s(t)$.
  • For this, the following equation is given in the literature - for example in  [Kam04] :
$$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$






Hints:

  • This exercise belongs to the chapter  Quadrature Amplitude Modulation.
  • Particular reference is made to the page   Nyquist and root Nyquist systems  in this chapter.
  • Further useful informationen can be found in the chapter  Properties of Nyquist Systems  in the book "Digital Signal Transmission".
  • [Kam04]  refers to the textbook "Kammeyer, K.D.: Nachrichtenübertragung. Stuttgart: B.G. Teubner, 4. Auflage, 2004".
  • Energies are to be specified in $\rm V^2s$  ; they thus refer to the reference resistance  $R = 1 \ \rm \Omega$.



Questions

1

What is the fundamental transmission pulse  $g_s(t)$  for the rolloff factor  $r = 0$? ? What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

2

What is the fundamental transmission pulse  $g_s(t)$  for the rolloff factor $r = 1$?  What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

3

Let  $r = 1$.  At what times does  $g_s(t)$  cross the axis?

At all multiples of the symbol duration  $T$.
At  $t = ±0.25 T, \ ±0.75 T, \ ±1.25 T, \ ±1.75 T$, ...
At  $t = ±0.75 T, \ ±1.25 T,\ ±1.75 T$, ...

4

What is the fundamental transmission pulse  $g_s(t)$  for the rolloff factor  $r = 0.5$?  Welcher Signalwert ergibt sich zum Zeitpunkt  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

5

Which statements are valid for the signal amplitude, independent of  $r$ ?  Solve using the frequency domain.

The transmit pulse amplitude can take any value in the range   $0 ≤ g_s(t = 0) ≤ g_0$  .
The transmit pulse amplitude can take any value in the range   $g_0 ≤ g_s(t = 0) ≤ 2 g_0$  .
The transmit pulse amplitude can take any value in the range   $g_0 ≤ g_s(t = 0) ≤ 4 g_0/π$  .

6

What is the energy $E_{g_s}$  of the fundamental transmission pulse  $g_s(t)$  when  $r = 0$  and  $r = 1$?

$r = 0\text{:} \ \ \ \ E_{g_s} \ = \ $

$\ \cdot g_0^2 \cdot T$
$r = 1\text{:} \ \ \ \ E_{g_s} \ = \ $

$\ \cdot g_0^2 \cdot T$


Solution

(1)  If we substitute   $r = 0$  into the given equation, the first terms in the numerator and denominator disappear and we get:

$$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm si} \left (\pi \cdot {t}/{T} \right )\hspace{0.05cm}.$$
  • At time  $t = 0$ ,the   $\rm si$–impulse is equal to  $g_0$:  
$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$


(2)  When  $r = 1$ , the given equation simplies as follows:

$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$


(3)  The last answer is correct:

  • Zero intercepts are only possible for  $r = 1$  if the cosine function in the numerator is zero, that is for all integer values of   $k$:
$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
  • However, only the last answer is correct, since the zero values at   $±0.25T$  are cancelled by the zero in the denominator.
  • Applying de l'Hospital's rule yields   $g_s(t = ± 0.25T) = g_0$.



(4)  With  $r = 0.5$  and the shortcut  $x = t/T$ , one gets:

$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
  • For the calculation at time   $t = 0$ , de l'Hospital's rule must be applied.
  • The derivatives of the numerator and denominator give:
$$Z'(x) = 2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
Fundamental transmission pulse (root Nyquist) and base detection pulse (Nyquist)
$$N'(x) = \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
  • The two boundary transitions for  $x → 0$  yield:
$$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$
  • Thus, for the signal amplitude at time   $t = 0$:
$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$

Here, the graph illustrates the results calculated again:

  • The impulse  $g_d(t)$  is a Nyquist pulse, meaning that it has zero crossings at least at all multiples of the symbol duration $T$ (and possibly others depending on the rolloff factor).
  • On the other hand, the impulse  $g_s(t)$  does not satisfy the Nyquist criterion.
  • Moreover, from this plot one can once again see that for   $r ≠ 0$  the pulse amplitude $g_s(t = 0)$  is always larger than $g_0$ .


(5)  The last answer  is correct $($the first answer is ruled out from the results in questions  (2)  and  (4) $)$.  The validity of the lower bound   $g_0$  and the upper bound   $4g_0/π$  can be proved as follows:

  • The pulse amplitude  $g_s(t = 0)$  is generally equal to the area under the spectral function  $G_s(f)$.
  • The smallest area is obtained for  $r = 0$.  Here,   $G_s(f) = g_0 · T$  is in the range  $|f| < ±1/(2T)$.  Thus, the area is equal to  $g_0$.
  • The largest area is obtained for  $r = 1$. Here   $G_s(f)$  extends to the range   $±1/T$  and has a cosine shape.
  • The result  $g_s(t = 0) = 4g_0/π$  was already calculated in question   (3) .  Though it still holds that:
$$g_s(t=0) = 2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$


(6)  The energy of the fundamental transmission pulse   $g_s(t)$  can be found in the time or frequency domain according to Parseval's theorem:

$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
  • From the equations and the graph on the exercise page, we can see that   $|G_s(f)|^2$  is the same shape as   $G_d(f)$ , except that the height is now   $(g_0 · T)^2$  instead of   $g_0 · T$ :
$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
  • Due to the Nyquist form of  $G_d(f)$ , it holds independently of   $r$ that:
$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
  • Thus, the impulse energy is also independent of   $r$, so it is also valid for   $r = 0$  and  $r = 1$. . In both cases, $E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$