Difference between revisions of "Aufgaben:Exercise 4.12: Root-Nyquist Systems"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 7: Line 7:
  
 
*In this case,  the basic detection pulse  $g_d(t)$  satisfies the  [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_time_domain|first Nyquist criterion]],  since  $G_d(f)$  is point-symmetric about the so-called  "Nyquist frequency"  $f_{\rm Nyq} = 1/T$ .  
 
*In this case,  the basic detection pulse  $g_d(t)$  satisfies the  [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_time_domain|first Nyquist criterion]],  since  $G_d(f)$  is point-symmetric about the so-called  "Nyquist frequency"  $f_{\rm Nyq} = 1/T$ .  
*$G_d(f)$  is a  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Cosine.E2.80.93square_low-pass_filter|cosine rolloff spectrum]],  where the rolloff factor  $r$  can take values from $0$  to  $1$  (including these limits).
+
*$G_d(f)$  is a  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Raised-cosine_low-pass_filter|raised-cosine spectrum]],  where the rolloff factor  $r$  can take values from $0$  to  $1$  (including these limits).
  
  
Line 83: Line 83:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  If we substitute   $r = 0$  into the given equation, the first terms in the numerator and denominator disappear and we get:
+
'''(1)'''  If we substitute  $r = 0$  into the given equation,  the first terms in the numerator and denominator disappear and we get:
: $$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm si} \left (\pi \cdot {t}/{T} \right )\hspace{0.05cm}.$$
+
: $$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm sinc} \left ( {t}/{T} \right )\hspace{0.05cm}.$$
*At time  $t = 0$ , the   $\rm si$–impulse is equal to  $g_0$:    
+
*At time  $t = 0$,  ${\rm sinc} \left ( {t}/{T} \right ) =g_0$:    
 
:$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$
 
:$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$
  
  
  
'''(2)'''  When  $r = 1$ , the given equation simplies as follows:
+
'''(2)'''  When  $r = 1$,  the given equation simplies as follows:
 
:$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$
 
:$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; The <u>last answer</u> is correct:
+
'''(3)'''&nbsp; The&nbsp; <u>last answer</u>&nbsp; is correct:
*Zero intercepts are only possible for&nbsp; $r = 1$&nbsp; if the cosine function in the numerator is zero, that is, for all integer values of &nbsp; $k$:
+
*Zero intercepts are only possible for&nbsp; $r = 1$&nbsp; if the cosine function in the numerator is zero,&nbsp; that is,&nbsp; for all integer values of &nbsp; $k$:
 
:$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
 
:$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
*However, only the last answer is correct, since the zero values at &nbsp; $±0.25T$&nbsp; are cancelled by the zero in the denominator.
+
*However,&nbsp; only the last answer is correct,&nbsp; since the zero values at &nbsp; $±0.25T$&nbsp; are cancelled by the zero in the denominator.
 
*Applying de l'Hospital's rule yields &nbsp; $g_s(t = ± 0.25T) = g_0$.
 
*Applying de l'Hospital's rule yields &nbsp; $g_s(t = ± 0.25T) = g_0$.
  
Line 104: Line 104:
  
  
'''(4)'''&nbsp;  With&nbsp; $r = 0.5$&nbsp; and the shortcut&nbsp; $x = t/T$&nbsp;, one gets:
+
'''(4)'''&nbsp;  With&nbsp; $r = 0.5$&nbsp; and the shortcut&nbsp; $x = t/T$,&nbsp; one gets:
 
:$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
 
:$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
  
*For the calculation at time &nbsp; $t = 0$&nbsp;, de l'Hospital's rule must be applied.
+
*For the calculation at time&nbsp; $t = 0$,&nbsp; de l'Hospital's rule must be applied.
 
*The derivatives of the numerator and denominator give:
 
*The derivatives of the numerator and denominator give:
 
:$$Z'(x)  =  2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
 
:$$Z'(x)  =  2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
[[File:P_ID1723__Mod_A_4_11b.png|right|frame|Fundamental transmission pulse (root Nyquist) and base detection pulse (Nyquist)]]
+
[[File:P_ID1723__Mod_A_4_11b.png|right|frame|Basic transmission pulse&nbsp; (root-Nyquist)&nbsp; and basic detection pulse&nbsp; (Nyquist)]]
 
   
 
   
 
:$$N'(x)  =  \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
 
:$$N'(x)  =  \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
Line 118: Line 118:
 
:$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$
 
:$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$
  
Here, the graph illustrates the results calculated again:
+
Here,&nbsp; the graph illustrates the results calculated again:
*The impulse&nbsp; $g_d(t)$&nbsp; is a Nyquist pulse, meaning that it has zero crossings at least at all multiples of the symbol duration $T$ (and possibly others depending on the rolloff factor).
+
*$g_d(t)$&nbsp; is a Nyquist pulse,&nbsp; meaning that it has zero crossings at least at all multiples of the symbol duration&nbsp; $T$&nbsp; (and possibly others depending on the rolloff factor).
*On the other hand, the impulse&nbsp; $g_s(t)$&nbsp; does not satisfy the Nyquist criterion.  
+
*On the other hand,&nbsp; the pulse&nbsp; $g_s(t)$&nbsp; does not satisfy the Nyquist criterion.&nbsp; Moreover,&nbsp; from this plot one can once again see that for &nbsp; $r ≠ 0$&nbsp; the pulse amplitude $g_s(t = 0)$&nbsp; is always larger than $g_0$.
*Moreover, from this plot one can once again see that for &nbsp; $r ≠ 0$&nbsp; the pulse amplitude $g_s(t = 0)$&nbsp; is always larger than $g_0$&nbsp;.
 
  
  
  
'''(5)'''&nbsp; The <u>last answer</u>&nbsp; is correct $($the first answer is ruled out from the results in questions&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp;$)$.&nbsp; The validity of the lower bound &nbsp; $g_0$&nbsp; and the upper bound &nbsp; $4g_0/π$&nbsp; can be proved as follows:
+
'''(5)'''&nbsp; The&nbsp; <u>last answer</u>&nbsp; is correct&nbsp; $($the first answer is ruled out from the results in questions&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp;$)$.&nbsp; The validity of the lower bound &nbsp; $g_0$&nbsp; and the upper bound &nbsp; $4g_0/π$&nbsp; can be proved as follows:
 
* The pulse amplitude&nbsp; $g_s(t = 0)$&nbsp; is generally equal to the area under the spectral function&nbsp; $G_s(f)$.
 
* The pulse amplitude&nbsp; $g_s(t = 0)$&nbsp; is generally equal to the area under the spectral function&nbsp; $G_s(f)$.
 
* The smallest area is obtained for&nbsp; $r = 0$.&nbsp; Here, &nbsp; $G_s(f) = g_0 · T$&nbsp; is in the range&nbsp; $|f| < ±1/(2T)$.&nbsp; Thus, the area is equal to&nbsp; $g_0$.
 
* The smallest area is obtained for&nbsp; $r = 0$.&nbsp; Here, &nbsp; $G_s(f) = g_0 · T$&nbsp; is in the range&nbsp; $|f| < ±1/(2T)$.&nbsp; Thus, the area is equal to&nbsp; $g_0$.
* The largest area is obtained for&nbsp; $r = 1$. Here &nbsp; $G_s(f)$&nbsp; extends to the range &nbsp; $±1/T$&nbsp; and has a cosine shape.
+
* The largest area is obtained for&nbsp; $r = 1$. Here, &nbsp; $G_s(f)$&nbsp; extends to the range &nbsp; $±1/T$&nbsp; and has a cosine shape.
 
*The result&nbsp; $g_s(t = 0) = 4g_0/π$&nbsp; was already calculated in question &nbsp; '''(3)'''&nbsp;.&nbsp; Though it still holds that:
 
*The result&nbsp; $g_s(t = 0) = 4g_0/π$&nbsp; was already calculated in question &nbsp; '''(3)'''&nbsp;.&nbsp; Though it still holds that:
 
:$$g_s(t=0)  =  2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$
 
:$$g_s(t=0)  =  2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$
Line 134: Line 133:
  
  
'''(6)'''&nbsp; The energy of the fundamental transmission pulse &nbsp; $g_s(t)$&nbsp; can be found in the time or frequency domain according to Parseval's theorem:
+
'''(6)'''&nbsp; The energy of the basic transmission pulse &nbsp; $g_s(t)$&nbsp; can be found in the time or frequency domain according to Parseval's theorem:
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
*From the equations and the graph on the exercise page, we can see that &nbsp; $|G_s(f)|^2$&nbsp; is the same shape as &nbsp; $G_d(f)$&nbsp;, except that the height is now &nbsp; $(g_0 · T)^2$&nbsp; instead of &nbsp; $g_0 · T$&nbsp;:
+
*From the equations and graph on the exercise page,&nbsp; we can see that &nbsp; $|G_s(f)|^2$&nbsp; has the same shape as &nbsp; $G_d(f)$,&nbsp; but the height is now &nbsp; $(g_0 · T)^2$&nbsp; instead of &nbsp; $g_0 · T$:
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
 
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
*Due to the Nyquist form of&nbsp; $G_d(f)$&nbsp;, it holds independently of &nbsp; $r$ that:
+
*Due to the Nyquist form of&nbsp; $G_d(f)$,&nbsp; it holds independently of &nbsp; $r$:
 
:$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
 
:$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
*Thus, the impulse energy is also independent of &nbsp; $r$, so it is also valid for &nbsp; $r = 0$&nbsp; and&nbsp; $r = 1$.&nbsp;. In <u>both cases</u>,  $E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$
+
*Thus,&nbsp; the pulse energy is also independent of&nbsp; $r$,&nbsp; so it is also valid for &nbsp; $r = 0$&nbsp; and&nbsp; $r = 1$.&nbsp; In&nbsp; <u>both cases</u>,&nbsp; $E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 14:07, 19 April 2022

Spectra of transmission pulse (above) and detection pulse (below)

In  "quadrature amplitude modulation"  $\rm (QAM)$  systems,  the  "root-Nyquist variant"  is often chosen  (which gets its name from the spectral range)  instead of a rectangular basic transmission pulse.  The reason for this is the significantly smaller bandwidth.

  • In this case,  the basic detection pulse  $g_d(t)$  satisfies the  first Nyquist criterion,  since  $G_d(f)$  is point-symmetric about the so-called  "Nyquist frequency"  $f_{\rm Nyq} = 1/T$ .
  • $G_d(f)$  is a  raised-cosine spectrum,  where the rolloff factor  $r$  can take values from $0$  to  $1$  (including these limits).


Furthermore,  the following holds for the Nyquist frequency response:

  • When  $|f| < f_1 = f_{\rm Nyq} · (1 – r)$   ⇒   $G_d(f)$  is constant and equal to  $g_0 · T$.
  • At frequencies greater than  $f_2 = f_{\rm Nyq} · (1 + r)$   ⇒   $G_d(f)$  has no components.
  • In between,  the slope is cosine.


The optimization of digital communication systems requires that the receiver frequency response  $H_{\rm E}(f)$  should be of the same shape as the transmission spectrum $G_s(f)$ .

To obtain dimensionally correct spectral functions for this task and the graph,  it is assumed that

$$G_s(f) = \sqrt{g_0 \cdot T \cdot G_d(f)},$$
$$ H_{\rm E}(f) = \frac{1}{g_0 \cdot T}\cdot G_s(f)\hspace{0.05cm}.$$

The top graph shows the transmission spectrum  $G_s(f)$  for the rolloff factors

  • $r = 0$   (green dotted rectangle),
  • $r = 0.5$   (blue solid curve),
  • $r = 1$   (red dashed curve).


Below,  the spectrum  $G_d(f)$  of the basic detection pulse before the decider is shown in the same colors.

  • The associated pulse   $g_d(t)$  is a Nyquist pulse  for all valid rolloff factors   $(0 ≤ r ≤ 1)$  as opposed to the basic transmission pulse   $g_s(t)$.
  • For this,  the following equation is given in the literature - for example in  [Kam04] :
$$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$



Hints:

  • This exercise belongs to the chapter  "Quadrature Amplitude Modulation".
  • Particular reference is made to the page   "Nyquist and Root-Nyquist systems"  in this chapter.
  • Further useful informations can be found in the chapter  Properties of Nyquist Systems  in the book  "Digital Signal Transmission".
  • [Kam04]  refers to the textbook  "Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4. Auflage, 2004".
  • Energies are to be specified in  $\rm V^2s$;  they thus refer to the reference resistance  $R = 1 \ \rm \Omega$.



Questions

1

What is the basic transmission pulse  $g_s(t)$  for the rolloff factor  $r = 0$?  What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

2

What is the basic transmission pulse  $g_s(t)$  for the rolloff factor $r = 1$?  What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

3

Let  $r = 1$.  At what times does  $g_s(t)$  cross the axis?

At all multiples of the symbol duration  $T$.
At  $t = ±0.25 T, \ ±0.75 T, \ ±1.25 T, \ ±1.75 T$, ...
At  $t = ±0.75 T, \ ±1.25 T,\ ±1.75 T$, ...

4

What is the basic transmission pulse  $g_s(t)$  for the rolloff factor  $r = 0.5$?  What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

5

Which statements are valid for the pulse amplitude, independent of  $r$ ?  Solve using the frequency domain.

The pulse amplitude can take any value in the range   $0 ≤ g_s(t = 0) ≤ g_0$  .
The pulse amplitude can take any value in the range   $g_0 ≤ g_s(t = 0) ≤ 2 g_0$  .
The pulse amplitude can take any value in the range   $g_0 ≤ g_s(t = 0) ≤ 4 g_0/π$  .

6

What is the energy  $E_{g_s}$  of the basic transmission pulse  $g_s(t)$  when  $r = 0$  and  $r = 1$?

$r = 0\text{:} \ \ \ \ E_{g_s} \ = \ $

$\ \cdot g_0^2 \cdot T$
$r = 1\text{:} \ \ \ \ E_{g_s} \ = \ $

$\ \cdot g_0^2 \cdot T$


Solution

(1)  If we substitute  $r = 0$  into the given equation,  the first terms in the numerator and denominator disappear and we get:

$$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm sinc} \left ( {t}/{T} \right )\hspace{0.05cm}.$$
  • At time  $t = 0$,  ${\rm sinc} \left ( {t}/{T} \right ) =g_0$:  
$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$


(2)  When  $r = 1$,  the given equation simplies as follows:

$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$


(3)  The  last answer  is correct:

  • Zero intercepts are only possible for  $r = 1$  if the cosine function in the numerator is zero,  that is,  for all integer values of   $k$:
$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
  • However,  only the last answer is correct,  since the zero values at   $±0.25T$  are cancelled by the zero in the denominator.
  • Applying de l'Hospital's rule yields   $g_s(t = ± 0.25T) = g_0$.



(4)  With  $r = 0.5$  and the shortcut  $x = t/T$,  one gets:

$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
  • For the calculation at time  $t = 0$,  de l'Hospital's rule must be applied.
  • The derivatives of the numerator and denominator give:
$$Z'(x) = 2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
Basic transmission pulse  (root-Nyquist)  and basic detection pulse  (Nyquist)
$$N'(x) = \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
  • The two boundary transitions for  $x → 0$  yield:
$$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$
  • Thus, for the signal amplitude at time   $t = 0$:
$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$

Here,  the graph illustrates the results calculated again:

  • $g_d(t)$  is a Nyquist pulse,  meaning that it has zero crossings at least at all multiples of the symbol duration  $T$  (and possibly others depending on the rolloff factor).
  • On the other hand,  the pulse  $g_s(t)$  does not satisfy the Nyquist criterion.  Moreover,  from this plot one can once again see that for   $r ≠ 0$  the pulse amplitude $g_s(t = 0)$  is always larger than $g_0$.


(5)  The  last answer  is correct  $($the first answer is ruled out from the results in questions  (2)  and  (4) $)$.  The validity of the lower bound   $g_0$  and the upper bound   $4g_0/π$  can be proved as follows:

  • The pulse amplitude  $g_s(t = 0)$  is generally equal to the area under the spectral function  $G_s(f)$.
  • The smallest area is obtained for  $r = 0$.  Here,   $G_s(f) = g_0 · T$  is in the range  $|f| < ±1/(2T)$.  Thus, the area is equal to  $g_0$.
  • The largest area is obtained for  $r = 1$. Here,   $G_s(f)$  extends to the range   $±1/T$  and has a cosine shape.
  • The result  $g_s(t = 0) = 4g_0/π$  was already calculated in question   (3) .  Though it still holds that:
$$g_s(t=0) = 2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$


(6)  The energy of the basic transmission pulse   $g_s(t)$  can be found in the time or frequency domain according to Parseval's theorem:

$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
  • From the equations and graph on the exercise page,  we can see that   $|G_s(f)|^2$  has the same shape as   $G_d(f)$,  but the height is now   $(g_0 · T)^2$  instead of   $g_0 · T$:
$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
  • Due to the Nyquist form of  $G_d(f)$,  it holds independently of   $r$:
$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
  • Thus,  the pulse energy is also independent of  $r$,  so it is also valid for   $r = 0$  and  $r = 1$.  In  both cases,  $E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$