Difference between revisions of "Aufgaben:Exercise 4.7: Several Parallel Gaussian Channels"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertkontinuierlichem Eingang }} right| Die Kanal…“)
 
 
(33 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertkontinuierlichem Eingang
+
{{quiz-Header|Buchseite=Information_Theory/AWGN_Channel_Capacity_for_Continuous_Input
 
}}
 
}}
  
[[File:P_ID2905__Inf_A_4_7_neu.png|right|]]
+
[[File:P_ID2905__Inf_A_4_7_neu.png|right|frame|Signal space points in digital modulation]]  
Die Kanalkapazität des AWGN&ndash;Kanals &nbsp;&#8658;&nbsp; <i>Y</i> = <i>X</i> + <i>N</i> wurde im [http://en.lntwww.de/Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Kanalkapazit.C3.A4t_des_AWGN.E2.80.93Kanals '''Theorieteil'''] wie folgt angegeben (mit Zusatz&ndash;Einheit &bdquo;bit&rdquo;)
+
The channel capacity of the AWGN channel with the indicator&nbsp; $Y = X + N$&nbsp; was given in the&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Channel_capacity_of_the_AWGN_channels|theory section]]&nbsp; as follows <br>(with the additional unit&nbsp; "bit"):
:
+
:$$C_{\rm AWGN}(P_X,\ P_N) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + {P_X}/{P_N} \right )\hspace{0.05cm}.$$
$$C_{\rm AWGN}(P_X) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right )\hspace{0.05cm}.$$
+
The quantities used have the following meaning:
Die verwendeten Größen haben folgende Bedeutung:
+
* $P_X$&nbsp; is the transmission power &nbsp; &#8658; &nbsp; variance of the random variable&nbsp; $X$,
:* <i>P<sub>X</sb></i> ist die Sendeleistung &nbsp;&#8658;&nbsp; Varianz der Zufallsgröße <i>X</i>,
+
* $P_N$&nbsp; is the noise power &nbsp; &#8658; &nbsp; variance of the random variable&nbsp; $N$.
:*<i>P<sub>N</sb></i> ist die Störleistung &nbsp;&#8658;&nbsp; Varianz der Zufallsgröße <i>N</i>.
 
  
Werden <i>K</i> identische Gaußkanäle parallel genutzt, so gilt für die Gesamtkapazität:
 
$$C_K(P_X)  = K \cdot C_{\rm AWGN}(P_X/K) \hspace{0.05cm}.$$
 
Hierbei ist berücksichtigt, dass
 
:* in jedem Kanal die gleiche Störleistung <i>P<sub>N</sub></i> vorliegt,
 
:* somit jeder Kanal die gleiche Sendeleistung erhält,
 
:* die Gesamtleistung genau wie im Fall <i>K</i> = 1 gleich <i>P<sub>X</sub></i> ist.
 
  
In nebenstehender Grafik sind die Signalraumpunkte für einige digitale Modulationsverfahren angegeben:
+
If&nbsp; $K$&nbsp; identical Gaussian channels are used in parallel, the total capacity is:
:* [http://en.lntwww.de/Modulationsverfahren/Lineare_digitale_Modulationsverfahren#ASK_.E2.80.93_Amplitude_Shift_Keying '''Amplitude Shift Keying'''] (ASK)
+
:$$C_K(P_X,\ P_N) = K \cdot C_{\rm AWGN}(P_X/K, \ P_N) \hspace{0.05cm}.$$
:*[http://en.lntwww.de/Modulationsverfahren/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying '''Binary Phase Shift Keying'''] (BPSK)
+
Here it is considered that
:*[http://en.lntwww.de/Modulationsverfahren/Weitere_AM–Varianten#Quadratur.E2.80.93Amplitudenmodulation '''Quadratur-Amplitudenmodulation'''] (hier: 4-QAM)
+
* in each channel the same interference power&nbsp; $P_N$&nbsp; is present,
:*[http://en.lntwww.de/Modulationsverfahren/Lineare_digitale_Modulationsverfahren#ASK_.E2.80.93_Amplitude_Shift_Keying '''Phase Shift Keying'''] (hier: 8&ndash;PSK &nbsp;&#8658;&nbsp; DVB&ndash;2)
+
* thus each channel receives the same transmit power&nbsp; $(P_X/K)$&nbsp;,
:* [http://en.lntwww.de/Modulationsverfahren/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen '''Kombinierte ASK/PSK-Modulation'''] (hier: 16-ASK/PSK)
+
* the total power is equal to&nbsp; $P_X$ exactly as in the case&nbsp; $K = 1$&nbsp;.
  
Zu Beginn dieser Aufgabe ist zu prüfen, welcher <i>K</i>&ndash;Parameter für die einzelnen Verfahren gültig ist.
 
  
<b>Hinweis:</b> Die Aufgabe gehört zu [http://en.lntwww.de/Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang '''Kapitel 4.2.''']
+
In the adjacent graph, the signal space points for some digital modulation schemes are given:
===Fragebogen===
+
* [[Modulation_Methods/Linear_Digital_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|Amplitude Shift Keying]]&nbsp; (ASK),
 +
* [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|Binary Phase Shift Keying]]&nbsp; (BPSK),
 +
* [[Modulation_Methods/Further_AM_Variants#Quadrature_Amplitude_Modulation_.28QAM.29|Quadrature Amplitude Modulation]]&nbsp; (here: &nbsp; 4-QAM),
 +
*[[Examples_of_Communication_Systems/Further_Developments_of_the_GSM#Enhanced_Data_Rates_for_GSM_Evolution|Phase Shift Keying]]&nbsp; (here: &nbsp; 8&ndash;PSK for GSM Evolution),
 +
* [[Modulation_Methods/Quadrature_Amplitude_Modulation#Other_signal_space_constellations|Combined ASK/PSK Modulation]]&nbsp; (here: &nbsp; 16-ASK/PSK).
 +
 
 +
 
 +
At the beginning of this exercise, check which&nbsp; $K$&ndash;parameter is valid for each method.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN channel capacity with continuous value input]].
 +
*Reference is made in particular to the page&nbsp; [[Information_Theory/AWGN_Channel_Capacity_for_Continuous_Input#Parallel_Gaussian_channels|Parallel Gaussian Channels]].
 +
*Since the results are to be given in "bit", wird  "log<sub>2</sub>" is used.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
|type="[]"}
+
{Which parameters &nbsp; $K$&nbsp; are valid for the following modulation methods?
- Falsch
+
|type="{}"}
+ Richtig
+
$K \ = \ $ { 1 3% } $\text{ (ASK)}$
 +
$K \ = \ $ { 1 3% } $\text{ (BPSK)}$
 +
$K \ = \ $ { 2 3% } $\text{ (4-QAM)}$
 +
$K \ = \ $ { 2 3% } $\text{ (8-PSK)}$
 +
$K \ = \ $ { 2 3% } $\text{ (16-ASK/PSK)}$
 +
 
 +
 
 +
 
 +
{What is the channel capacity &nbsp;$C_K$&nbsp; for&nbsp; $K$&nbsp; equal channels,&nbsp; each with the noise power  &nbsp;$P_N$&nbsp; and the transmission power &nbsp;$P_X(K)$?
 +
|type="()"}
 +
- &nbsp; $C_K = K/2 \cdot  \log_2 \ \big[1 + P_X/P_N \big]$.
 +
+  &nbsp; $C_K = K/2 \cdot \log_2 \ \big[1 + P_X/(K \cdot P_N) \big]$.
 +
-  &nbsp; $C_K = 1/2 \cdot \log_2 \ \big[1 + P_X/P_N \big]$.
 +
 
 +
 
  
  
{Input-Box Frage
+
{What are the capacities for &nbsp;$P_X/P_N = 15$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$K = 1\text{:} \ \  C_K \ = \ $ { 2 3% } $\ \rm bit$
 +
$K = 2\text{:} \ \  C_K \ = \ $ { 3.087 3% } $\ \rm bit$
 +
$K = 4\text{:} \ \  C_K \ = \ $ { 4.496 3% } $\ \rm bit$
 +
 
 +
 
 +
 
 +
{Is there a&nbsp; (theoretical)&nbsp; optimum with respect to the number&nbsp; $K$&nbsp; of channels?
 +
|type="[]"}
 +
- Yes: &nbsp; The largest channel capacity results for &nbsp;$K = 2$.
 +
- Yes: &nbsp; The largest channel capacity results for &nbsp;$K = 4$.
 +
+ No: &nbsp;  The larger&nbsp; $K$, the larger the channel capacity.
 +
+ The limit value for&nbsp; $K \to \infty$&nbsp; (in bit)&nbsp; is &nbsp;$C_K = P_X/P_N/2/\ln (2)$&nbsp; in&nbsp; "bit".
 +
 
  
  
Line 45: Line 88:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The parameter&nbsp; $K$&nbsp; is equal to the dimension of the signal space representation:
'''2.'''
+
* For&nbsp; <u>ASK and BPSK</u>,&nbsp; $\underline{K=1}$.
'''3.'''
+
* For&nbsp; <u> constellations 3 to 5</u>,&nbsp; however,&nbsp; $\underline{K=2}$&nbsp; (orthogonal modulation with cosine and sine).
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
'''(2)'''&nbsp; Correct is the <u>proposed solution 2</u>:
 +
*For each of the channels&nbsp; $(1 &#8804; k &#8804; K)$,&nbsp; the channel capacitance is &nbsp; $C = 1/2 \cdot \log_2 \ \big[1 + (P_X/K) /P_N) \big]$.&nbsp;
 +
*The total capacitance is then larger by a factor of&nbsp; $K$&nbsp;:
 +
:$$C_K(P_X)  = \sum_{k= 1}^K \hspace{0.1cm}C_k = \frac{K}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{K \cdot P_N} \right )\hspace{0.05cm}.$$
 +
*The proposed solution 1 is too positive.&nbsp; This would apply when limiting the total power to&nbsp; $K &middot; P_X$&nbsp;.
 +
*Proposition 3 would imply that no capacity increase is achieved by using multiple independent channels,&nbsp; which is obviously not true.
 +
 
 +
 
 +
[[File:P_ID2902__Inf_A_4_7c.png|right|frame|Channel capacity&nbsp; $C_K$&nbsp; of&nbsp; $K$&nbsp; parallel Gaussian channels for different&nbsp; $\xi = P_X/P_N$]]
 +
'''(3)'''&nbsp; The table shows the results for&nbsp; $K = 1$,&nbsp; $K = 2$&nbsp; and&nbsp; $K = 4$,&nbsp; and various signa&ndash;to&ndash;noise power ratios&nbsp; $\xi = P_X/P_N$. <br>For&nbsp; $\xi = P_X/P_N = 15$&nbsp; (highlighted column),&nbsp; the result is:
 +
 +
*  $K=1$:&nbsp;&nbsp; $C_K = 1/2 &middot; \log_2 \ (16)\hspace{0.05cm}\underline{ = 2.000}$ bit,
 +
* $K=2$:&nbsp;&nbsp; $C_K = 1/2 &middot; \log_2 \ (8.5)\hspace{0.05cm}\underline{ = 3.087}$ bit,
 +
* $K=4$:&nbsp;&nbsp; $C_K = 1/2 &middot; \log_2 \ (4.75)\hspace{0.05cm}\underline{ = 4.496}$ bit.
 +
<br clear=all>
 +
'''(4)'''&nbsp; <u>Propositions 3 and 4</u> are correct, as the following calculations show:
 +
*It is already obvious from the above table that the first proposed solution must be wrong.
 +
*We now write the channel capacity using the natural logarithm and the abbreviation&nbsp; $\xi = P_X/P_N$:
 +
:$$C_{\rm nat}(\xi, K)  ={K}/{2} \cdot  {\rm ln}\hspace{0.05cm}\left ( 1 + {\xi}/{K} \right )\hspace{0.05cm}.$$
 +
*Then,&nbsp; for large values of&nbsp; $K$&nbsp; i.e., for small values of the quotient&nbsp; $\varepsilon =\xi/K$&nbsp; holds:
 +
:$${\rm ln}\hspace{0.05cm}\left ( 1 + \varepsilon \right )=
 +
\varepsilon - \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3} - ...
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
C_{\rm nat}(\xi, K)  = \frac{K}{2} \cdot \left [ \frac{\xi}{K} - \frac{\xi^2}{2K^2} +
 +
\frac{\xi^3}{3K^3}  - \text{...} \right ]$$
 +
:$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
C_{\rm bit}(\xi, K)  = \frac{\xi}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} \cdot \left [ 1 - \frac{\xi}{2K} +
 +
\frac{\xi^2}{3K^2} -\frac{\xi^3}{4K^3} +
 +
\frac{\xi^4}{5K^4}  - \text{...}  \right ] \hspace{0.05cm}.$$
 +
* For&nbsp; $K &#8594; &#8734;$&nbsp;, the proposed value is:
 +
:$$C_{\rm bit}(\xi, K \rightarrow\infty)  = \frac{\xi}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} =
 +
\frac{P_X/P_N}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} \hspace{0.05cm}.$$
 +
*For smaller values of&nbsp; $K$,&nbsp; the result is always a smaller&nbsp; $C$&ndash;value, since
 +
:$$\frac{\xi}{2K} > \frac{\xi^2}{3K^2}\hspace{0.05cm}, \hspace{0.5cm} 
 +
\frac{\xi^3}{4K^3} > \frac{\xi^4}{5K^4}  \hspace{0.05cm}, \hspace{0.5cm}  {\rm usw.}$$
 +
 
 +
The last row of the table shows: &nbsp; With&nbsp;  $K = 4$&nbsp; one is still far away from the theoretical maximum&nbsp; $($for $K &#8594; &#8734;)$&nbsp; for large &nbsp; $\xi$&ndash;values.
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^4.2 AWGN–Kanalkapazität bei wertkontinuierlichem Eingang^]]
+
[[Category:Information Theory: Exercises|^4.2 AWGN and Value-Continuous Input^]]

Latest revision as of 14:33, 4 October 2021

Signal space points in digital modulation

The channel capacity of the AWGN channel with the indicator  $Y = X + N$  was given in the  theory section  as follows
(with the additional unit  "bit"):

$$C_{\rm AWGN}(P_X,\ P_N) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + {P_X}/{P_N} \right )\hspace{0.05cm}.$$

The quantities used have the following meaning:

  • $P_X$  is the transmission power   ⇒   variance of the random variable  $X$,
  • $P_N$  is the noise power   ⇒   variance of the random variable  $N$.


If  $K$  identical Gaussian channels are used in parallel, the total capacity is:

$$C_K(P_X,\ P_N) = K \cdot C_{\rm AWGN}(P_X/K, \ P_N) \hspace{0.05cm}.$$

Here it is considered that

  • in each channel the same interference power  $P_N$  is present,
  • thus each channel receives the same transmit power  $(P_X/K)$ ,
  • the total power is equal to  $P_X$ exactly as in the case  $K = 1$ .


In the adjacent graph, the signal space points for some digital modulation schemes are given:


At the beginning of this exercise, check which  $K$–parameter is valid for each method.





Hints:



Questions

1

Which parameters   $K$  are valid for the following modulation methods?

$K \ = \ $

$\text{ (ASK)}$
$K \ = \ $

$\text{ (BPSK)}$
$K \ = \ $

$\text{ (4-QAM)}$
$K \ = \ $

$\text{ (8-PSK)}$
$K \ = \ $

$\text{ (16-ASK/PSK)}$

2

What is the channel capacity  $C_K$  for  $K$  equal channels,  each with the noise power  $P_N$  and the transmission power  $P_X(K)$?

  $C_K = K/2 \cdot \log_2 \ \big[1 + P_X/P_N \big]$.
  $C_K = K/2 \cdot \log_2 \ \big[1 + P_X/(K \cdot P_N) \big]$.
  $C_K = 1/2 \cdot \log_2 \ \big[1 + P_X/P_N \big]$.

3

What are the capacities for  $P_X/P_N = 15$?

$K = 1\text{:} \ \ C_K \ = \ $

$\ \rm bit$
$K = 2\text{:} \ \ C_K \ = \ $

$\ \rm bit$
$K = 4\text{:} \ \ C_K \ = \ $

$\ \rm bit$

4

Is there a  (theoretical)  optimum with respect to the number  $K$  of channels?

Yes:   The largest channel capacity results for  $K = 2$.
Yes:   The largest channel capacity results for  $K = 4$.
No:   The larger  $K$, the larger the channel capacity.
The limit value for  $K \to \infty$  (in bit)  is  $C_K = P_X/P_N/2/\ln (2)$  in  "bit".


Solution

(1)  The parameter  $K$  is equal to the dimension of the signal space representation:

  • For  ASK and BPSK,  $\underline{K=1}$.
  • For  constellations 3 to 5,  however,  $\underline{K=2}$  (orthogonal modulation with cosine and sine).


(2)  Correct is the proposed solution 2:

  • For each of the channels  $(1 ≤ k ≤ K)$,  the channel capacitance is   $C = 1/2 \cdot \log_2 \ \big[1 + (P_X/K) /P_N) \big]$. 
  • The total capacitance is then larger by a factor of  $K$ :
$$C_K(P_X) = \sum_{k= 1}^K \hspace{0.1cm}C_k = \frac{K}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{K \cdot P_N} \right )\hspace{0.05cm}.$$
  • The proposed solution 1 is too positive.  This would apply when limiting the total power to  $K · P_X$ .
  • Proposition 3 would imply that no capacity increase is achieved by using multiple independent channels,  which is obviously not true.


Channel capacity  $C_K$  of  $K$  parallel Gaussian channels for different  $\xi = P_X/P_N$

(3)  The table shows the results for  $K = 1$,  $K = 2$  and  $K = 4$,  and various signa–to–noise power ratios  $\xi = P_X/P_N$.
For  $\xi = P_X/P_N = 15$  (highlighted column),  the result is:

  • $K=1$:   $C_K = 1/2 · \log_2 \ (16)\hspace{0.05cm}\underline{ = 2.000}$ bit,
  • $K=2$:   $C_K = 1/2 · \log_2 \ (8.5)\hspace{0.05cm}\underline{ = 3.087}$ bit,
  • $K=4$:   $C_K = 1/2 · \log_2 \ (4.75)\hspace{0.05cm}\underline{ = 4.496}$ bit.


(4)  Propositions 3 and 4 are correct, as the following calculations show:

  • It is already obvious from the above table that the first proposed solution must be wrong.
  • We now write the channel capacity using the natural logarithm and the abbreviation  $\xi = P_X/P_N$:
$$C_{\rm nat}(\xi, K) ={K}/{2} \cdot {\rm ln}\hspace{0.05cm}\left ( 1 + {\xi}/{K} \right )\hspace{0.05cm}.$$
  • Then,  for large values of  $K$  i.e., for small values of the quotient  $\varepsilon =\xi/K$  holds:
$${\rm ln}\hspace{0.05cm}\left ( 1 + \varepsilon \right )= \varepsilon - \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3} - ... \hspace{0.3cm}\Rightarrow \hspace{0.3cm} C_{\rm nat}(\xi, K) = \frac{K}{2} \cdot \left [ \frac{\xi}{K} - \frac{\xi^2}{2K^2} + \frac{\xi^3}{3K^3} - \text{...} \right ]$$
$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm} C_{\rm bit}(\xi, K) = \frac{\xi}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} \cdot \left [ 1 - \frac{\xi}{2K} + \frac{\xi^2}{3K^2} -\frac{\xi^3}{4K^3} + \frac{\xi^4}{5K^4} - \text{...} \right ] \hspace{0.05cm}.$$
  • For  $K → ∞$ , the proposed value is:
$$C_{\rm bit}(\xi, K \rightarrow\infty) = \frac{\xi}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} = \frac{P_X/P_N}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} \hspace{0.05cm}.$$
  • For smaller values of  $K$,  the result is always a smaller  $C$–value, since
$$\frac{\xi}{2K} > \frac{\xi^2}{3K^2}\hspace{0.05cm}, \hspace{0.5cm} \frac{\xi^3}{4K^3} > \frac{\xi^4}{5K^4} \hspace{0.05cm}, \hspace{0.5cm} {\rm usw.}$$

The last row of the table shows:   With  $K = 4$  one is still far away from the theoretical maximum  $($for $K → ∞)$  for large   $\xi$–values.