Difference between revisions of "Digital Signal Transmission/Linear Nyquist Equalization"

From LNTwww
Line 16: Line 16:
 
In some derivations, transmitter and channel are combined by the ''common frequency response'' &nbsp;$H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$.&nbsp; <br>
 
In some derivations, transmitter and channel are combined by the ''common frequency response'' &nbsp;$H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$.&nbsp; <br>
  
*The receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is multiplicatively composed of the &nbsp;[[Theory_of_Stochastic_Signals/Matched_Filter|matched filter]]&nbsp; $H_{\rm MF}(f) = H_{\rm SK}^\star(f)$&nbsp; and the &nbsp;[[Digital_Signal_Transmission/Lineare_Nyquistentzerrung#Wirkungsweise_des_Transversalfilters|Transversalfilter]]&nbsp; $H_{\rm TF}(f)$ zusammen, zumindest kann es gedanklich so aufgespalten werden.
+
*The receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is multiplicatively composed of the &nbsp;[[Theory_of_Stochastic_Signals/Matched_Filter|matched filter]]&nbsp; $H_{\rm MF}(f) = H_{\rm SK}^\star(f)$&nbsp; and the &nbsp;[[Digital_Signal_Transmission/Linear_Nyquist_Equalization#Mode_of_action_of_the_transversal_filter|transversal filter]]&nbsp; $H_{\rm TF}(f)$, at least it can be split up mentally in this way.
  
*Der Gesamtfrequenzgang zwischen Diracquelle und Schwellenwertentscheider soll die &nbsp;[[Digitalsignal%C3%BCbertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich| erste Nyquistbedingung]]&nbsp; erfüllen. Es muss also gelten:
+
*The total frequency response between the Dirac source and the threshold decision should satisfy the &nbsp;[[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_frequency_domain| first Nyquist condition]].&nbsp; Thus, it must hold:
 
:$$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm MF}(f) \cdot H_{\rm TF}(f)
 
:$$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm MF}(f) \cdot H_{\rm TF}(f)
 
  = H_{\rm Nyq}(f)
 
  = H_{\rm Nyq}(f)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Mit dieser Bedingung  gibt es keine Impulsinterferenzen und man erhält die maximale Augenöffnung. Deshalb gelten für das &nbsp;[[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung#Optimaler_Bin.C3.A4rempf.C3.A4nger_-_Realisierung_mit_Matched-Filter|Detektions&ndash;SNR]]&nbsp; und den &nbsp;[[Digital_Signal_Transmission/Optimierung_der_Basisbandübertragungssysteme#Systemoptimierung_bei_Spitzenwertbegrenzung|Systemwirkungsgrad]]&nbsp; bei binärer Signalisierung:
+
*With this condition, there is no intersymbol interference and the maximum eye opening is obtained. Therefore, the &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Matched_Filter.22_realization|detection SNR]]&nbsp; and &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_peak_limitation|system efficiency]]&nbsp; for binary signaling are:
 
:$$\rho_d = \frac{2 \cdot s_0^2 \cdot T}{\sigma_d^2} =  \frac{2 \cdot s_0^2 \cdot T}{N_0}\cdot \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2}
 
:$$\rho_d = \frac{2 \cdot s_0^2 \cdot T}{\sigma_d^2} =  \frac{2 \cdot s_0^2 \cdot T}{N_0}\cdot \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2}
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 31: Line 31:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Die Optimierungsaufgabe beschränkt sich also darauf, das Empfangsfilter &nbsp;$H_{\rm E}(f)$&nbsp; so zu bestimmen, dass die normierte Rauschleistung vor dem Entscheider den kleinstmöglichen Wert annimmt:
+
*The optimization task is therefore limited to determining the receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; such that the normalized noise power before the decision takes the smallest possible value:
  
 
::<math>\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/
 
::<math>\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/
 
T} =T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2
 
T} =T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2
\,{\rm d} f \stackrel {!}{=} {\rm Minimum}\hspace{0.05cm}.</math>
+
\,{\rm d} f \stackrel {!}{=} {\rm minimum}\hspace{0.05cm}.</math>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Wir bezeichnen die hier beschriebene Konfiguration als &nbsp;'''Optimale Nyquistentzerrung''' (ONE). Obwohl diese auch &ndash; und besonders effektiv &ndash; bei Mehrstufensystemen anwendbar ist, setzen wir zunächst &nbsp;$M = 2$.}}<br><br>
+
$\text{Definition:}$&nbsp; We refer to the configuration described here as &nbsp;'''Optimal Nyquist Equalization''' (ONE). Although this can also &ndash; and especially effectively &ndash; be applied to multi-level systems, we initially set &nbsp;$M = 2$.}}<br><br>
  
 
== Mode of action of the transversal filter==
 
== Mode of action of the transversal filter==
 
<br>
 
<br>
[[File:P ID1424 Dig T 3 5 S2 version2.png|right|frame|Transversalfilter (zweiter Ordnung) als Teil des optimalen Nyquistentzerrers|class=fit]]
+
[[File:P ID1424 Dig T 3 5 S2 version2.png|right|frame|Transversal filter (second order) as part of the optimal Nyquist equalizer|class=fit]]
Verdeutlichen wir uns zunächst die Aufgabe des symmetrischen Transversalfilters
+
Let us first clarify the task of the symmetric transversal filter
 
:$$H_{\rm TF}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
 
:$$H_{\rm TF}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
 
  \hspace{0.4cm}  
 
  \hspace{0.4cm}  
Line 49: Line 49:
 
  $$
 
  $$
  
mit folgenden Eigenschaften:
+
with the following properties:
*$N$&nbsp; gibt die ''Ordnung'' des Filters an &nbsp; &rArr; &nbsp; die Grafik zeigt ein Filter zweiter Ordnung &nbsp;$(N=2)$.  
+
*$N$&nbsp; indicates the ''order'' of the filter &nbsp; &rArr; &nbsp; the graph shows a second order filter &nbsp;$(N=2)$.  
*Für die Filterkoeffizienten gilt &nbsp;$k_{-\lambda} = k_{\lambda}$ &nbsp; &rArr; &nbsp; symmetrische Struktur &nbsp; &rArr; &nbsp; $H_{\rm TF}(f)$ ist reell.  
+
*For the filter coefficients &nbsp;$k_{-\lambda} = k_{\lambda}$ &nbsp; &rArr; &nbsp; symmetric structure &nbsp; &rArr; &nbsp; $H_{\rm TF}(f)$ is real.
*$H_{\rm TF}(f)$&nbsp; ist somit durch die Koeffizienten &nbsp;$k_0$, ... , $k_N$&nbsp; vollständig bestimmt.  
+
*$H_{\rm TF}(f)$&nbsp; is thus completely determined by the coefficients &nbsp;$k_0$, ... , $k_N$&nbsp; completely determined.
  
  
Für den Eingangsimpuls &nbsp;$g_m(t)$&nbsp; setzen wir ohne Einschränkung der Allgemeingültigkeit voraus, dass dieser
+
For the input pulse &nbsp;$g_m(t)$&nbsp; we assume without restriction of generality that it is
  
*symmetrisch um &nbsp;$t=0$&nbsp; ist (Ausgang des Matched&ndash;Filters),<br>
+
*symmetric about &nbsp;$t=0$&nbsp; (output of the matched filter),<br>
*zu den Zeiten &nbsp;$\nu \cdot T$&nbsp; und &nbsp;$-\nu \cdot T$&nbsp; jeweils den Wert &nbsp;$g_m(\nu)$ besitzt.<br>
+
*has the value &nbsp;$g_m(\nu)$ at times &nbsp;$\nu \cdot T$&nbsp; and &nbsp;$-\nu \cdot T$,&nbsp; respectively.<br>
  
  
Damit lauten die Eingangsimpulswerte:
+
Thus, the input pulse values are:
 
:$$\text{...}\hspace{0.2cm} , g_m(3),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(1),\hspace{0.15cm}\hspace
 
:$$\text{...}\hspace{0.2cm} , g_m(3),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(1),\hspace{0.15cm}\hspace
 
{0.15cm}g_m(0),\hspace{0.15cm}g_m(1),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(3),\hspace{0.1cm}
 
{0.15cm}g_m(0),\hspace{0.15cm}g_m(1),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(3),\hspace{0.1cm}
 
\text{...}\hspace{0.05cm}.$$
 
\text{...}\hspace{0.05cm}.$$
  
Für den Detektionsgrundimpuls &nbsp;$g_d(t)$&nbsp; am Filterausgang ergeben sich demzufolge zu den Zeitpunkten &nbsp;$\nu \cdot T$&nbsp; mit den Abkürzungen &nbsp;$g_0 =g_d(t= 0)$, &nbsp; $g_1 =g_d(t= \pm T)$, &nbsp; $g_2 =g_d(t= \pm 2T)$&nbsp; folgende Werte:
+
Consequently, for the basic transmitter pulse &nbsp;$g_d(t)$&nbsp; at the filter output, the following values result at the time instants &nbsp;$\nu \cdot T$&nbsp; with the abbreviations &nbsp;$g_0 =g_d(t= 0)$, &nbsp; $g_1 =g_d(t= \pm T)$, &nbsp; $g_2 =g_d(t= \pm 2T)$:&nbsp;  
 
:$$ t = 0\hspace{-0.1cm}:\hspace{0.9cm}g_0  =  k_0 \cdot g_m(0) + k_1 \cdot 2
 
:$$ t = 0\hspace{-0.1cm}:\hspace{0.9cm}g_0  =  k_0 \cdot g_m(0) + k_1 \cdot 2
 
\cdot g_m(1) \hspace{1.23cm}+k_2 \cdot 2 \cdot g_m(2),\hspace{0.05cm} $$
 
\cdot g_m(1) \hspace{1.23cm}+k_2 \cdot 2 \cdot g_m(2),\hspace{0.05cm} $$
Line 75: Line 75:
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
Aus diesem System mit drei linear unabhängigen Gleichungen kann man nun die Filterkoeffizienten &nbsp;$k_0$, &nbsp;$k_1$&nbsp; und&nbsp; $k_2$&nbsp; so bestimmen, dass der Detektionsgrundimpuls &nbsp;$g_d(t)$&nbsp; folgende Stützstellen aufweist:
+
From this system with three linearly independent equations, one can now determine the filter coefficients &nbsp;$k_0$, &nbsp;$k_1$&nbsp; and&nbsp; $k_2$&nbsp; in such a way that the basic transmitter pulse &nbsp;$g_d(t)$&nbsp; has the following interpolation points:
 
:$$\text{...}\hspace{0.15cm} , g_3,\hspace{0.25cm}g_2 = 0 ,\hspace{0.15cm}g_1 = 0
 
:$$\text{...}\hspace{0.15cm} , g_3,\hspace{0.25cm}g_2 = 0 ,\hspace{0.15cm}g_1 = 0
 
,\hspace{0.15cm}g_0 = 1,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_2
 
,\hspace{0.15cm}g_0 = 1,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_2
Line 81: Line 81:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Wir gehen von dem symmetrischen Eingangssignal entsprechend dem oberen Diagramm in der Grafik aus. Mit der Abkürzung &nbsp;$g_m(\nu)= g_m(\pm \nu \cdot T)$&nbsp; gibt es folgende Abtastwerte im Abstand der Symboldauer &nbsp;$T$:
+
$\text{Example 1:}$&nbsp; We assume the symmetrical input signal according to the upper diagram in the graph. With the abbreviation &nbsp;$g_m(\nu)= g_m(\pm \nu \cdot T)$&nbsp; there are the following samples at the distance of the symbol duration &nbsp;$T$:
 
:$$g_m(t) = {\rm e}^{  - \sqrt{2 \hspace{0.05cm} \cdot \hspace{0.05cm}\vert\hspace{0.05cm} t \hspace{0.05cm} \vert /T} }\hspace{0.3cm}
 
:$$g_m(t) = {\rm e}^{  - \sqrt{2 \hspace{0.05cm} \cdot \hspace{0.05cm}\vert\hspace{0.05cm} t \hspace{0.05cm} \vert /T} }\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} g_m(0) = 1 ,\hspace{0.35cm}g_m(1)=
 
\Rightarrow \hspace{0.3cm} g_m(0) = 1 ,\hspace{0.35cm}g_m(1)=
Line 87: Line 87:
 
\hspace{0.35cm}g_m(4)= 0.059 \hspace{0.05cm}.$$
 
\hspace{0.35cm}g_m(4)= 0.059 \hspace{0.05cm}.$$
  
Für den Ausgangsimpuls soll &nbsp;$g_d(t =0) = 1$&nbsp; und&nbsp;  $g_d(t =\pm T) = 0$&nbsp; gelten. Hierzu eignet sich ein Laufzeitfilter erster Ordnung mit den Koeffizienten &nbsp;$k_0$&nbsp; und&nbsp;  $k_1$, die folgende Bedingungen erfüllen müssen:
+
For the output pulse &nbsp;$g_d(t =0) = 1$&nbsp; and&nbsp;  $g_d(t =\pm T) = 0$&nbsp; should be valid. For this purpose, a first-order delay filter with coefficients &nbsp;$k_0$&nbsp; and&nbsp;  $k_1$ is suitable, which must satisfy the following conditions:
[[File:P ID1425 Dig T 3 5 S2b version1.png|right|frame|Eingangs- und Ausgangsimpuls des optimalen Nyquistentzerrers]]
+
[[File:P ID1425 Dig T 3 5 S2b version1.png|right|frame|Input and output pulse of the optimal Nyquist equalizer]]
 
:$$t = \pm T\hspace{-0.1cm}  :  \hspace{0.2cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot
 
:$$t = \pm T\hspace{-0.1cm}  :  \hspace{0.2cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot
 
\big [1.000 +0.135 \big  ] = 0\hspace{0.3cm}\Rightarrow
 
\big [1.000 +0.135 \big  ] = 0\hspace{0.3cm}\Rightarrow
Line 97: Line 97:
 
= 1 \hspace{0.05cm}.$$
 
= 1 \hspace{0.05cm}.$$
  
Daraus erhält man die optimalen Filterkoeffizienten &nbsp;$k_0 = 1.116$&nbsp; und&nbsp; $k_1 = 0.239$.  
+
From this, the optimal filter coefficients &nbsp;$k_0 = 1.116$&nbsp; and&nbsp; $k_1 = 0.239$ are obtained.  
*Das mittlere Diagramm zeigt, dass damit der erste Vorläufer und der erste Nachläufer kompensiert werden können und zugleich &nbsp;$g_d(0) =1$&nbsp; gilt (gelbe Hinterlegung).  
+
*The middle diagram shows that thus the first precursor and the first trailer can be compensated and at the same time &nbsp;$g_d(0) =1$&nbsp; is valid (yellow background).
*Die weiteren Detektionsgrundimpulswerte (blaue Kreise) sind aber von Null verschieden und bewirken Impulsinterferenzen.<br><br>
+
*However, the further basic transmitter pulse values (blue circles) are different from zero and cause intersymbol interference.<br><br>
  
Das untere Diagramm zeigt, dass mit einem Filter zweiter Ordnung &nbsp;$(N = 2)$&nbsp; Nulldurchgänge bei &nbsp;$\pm T$&nbsp; und bei &nbsp;$\pm 2T$&nbsp; erzwungen werden, wenn die Koeffizienten &nbsp;$k_0 = 1.127$, &nbsp;$k_1 = 0.219$&nbsp; und&nbsp; $k_2 =  0.075$&nbsp; geeignet gewählt sind. Das Gleichungssystem zur Bestimmung der optimalen Koeffizienten lautet dabei:
+
The lower diagram shows that with a second order filter &nbsp;$(N = 2)$&nbsp; zero crossings are forced at &nbsp;$\pm T$&nbsp; and at &nbsp;$\pm 2T$&nbsp; if the coefficients &nbsp;$k_0 = 1.127$, &nbsp;$k_1 = 0.219$&nbsp; and&nbsp; $k_2 =  0.075$&nbsp; are suitably chosen. The system of equations for determining the optimal coefficients is thereby:
 
:$$t = 0\hspace{-0.1cm}:\hspace{0.85cm}g_0  =  k_0 \cdot 1.000 + k_1 \cdot 2
 
:$$t = 0\hspace{-0.1cm}:\hspace{0.85cm}g_0  =  k_0 \cdot 1.000 + k_1 \cdot 2
 
\cdot  0.243 + k_2 \cdot 2 \cdot 0.135 = 1\hspace{0.05cm},$$
 
\cdot  0.243 + k_2 \cdot 2 \cdot 0.135 = 1\hspace{0.05cm},$$
Line 110: Line 110:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Die Ergebnisse können wie folgt verallgemeinert werden:
+
$\text{Conclusion:}$&nbsp; The results can be generalized as follows:
*Mit einem Laufzeitfilter &nbsp;$N$&ndash;ter Ordnung können der Hauptwert &nbsp;$g_d(0)$&nbsp; zu Eins (normiert) sowie die ersten $N$&nbsp; Nachläufer &nbsp;$g_{\nu}$&nbsp; und die ersten $N$&nbsp;  Vorläufer &nbsp;$g_{-\nu}$&nbsp; zu Null gemacht werden.<br>
+
*With an &nbsp;$N$&ndash;th order delay filter, the main value &nbsp;$g_d(0)$&nbsp; can be made one (normalized), and the first $N$&nbsp; trailers &nbsp;$g_{\nu}$&nbsp; and the first $N$&nbsp;  precursors &nbsp;$g_{-\nu}$&nbsp; can be made zero.<br>
  
*Weitere Vor&ndash; und Nachläufer &nbsp;$(\nu \gt N)$&nbsp; lassen sich so nicht kompensieren. Es ist sogar möglich, dass die Vor&ndash; und Nachläufer außerhalb des Kompensationsbereichs vergrößert werden oder sogar neu entstehen.<br>
+
*Further precursors and trailers &nbsp;$(\nu \gt N)$&nbsp; cannot be compensated in this way. It is even possible that the precursors and trailers outside the compensation range are enlarged or even new ones are created.<br>
  
*Im Grenzübergang &nbsp;$N \to \infty$&nbsp; (in der Praxis heißt das: &nbsp; ein Filter mit sehr vielen Koeffizienten) ist eine vollständige Nyquistentzerrung und damit eine impulsinterferenzfreie Übertragung möglich.}}
+
*In the limit &nbsp;$N \to \infty$&nbsp; (in practice this means: &nbsp; a filter with very many coefficients) a complete Nyquist equalization and thus an intersymbol interference free transmission is possible.}}
  
  
== Beschreibung im Frequenzbereich ==
+
== Description in the frequency domain ==
 
<br>
 
<br>
Die Tatsache, dass sich der optimale Nyquistentzerrer multiplikativ aus
+
The fact that the optimal Nyquist equalizer is multiplicatively derived from
*dem Matched&ndash;Filter &nbsp;$H_{\rm MF}(f) = H_{\rm S}^\star (f)\cdot H_{\rm K}^\star(f)$&nbsp; &ndash; also angepasst an den Empfangsgrundimpuls &nbsp;$g_r(t)$&nbsp; &ndash; und<br>
+
*the matched filter &nbsp;$H_{\rm MF}(f) = H_{\rm S}^\star (f)\cdot H_{\rm K}^\star(f)$&nbsp; &ndash; i.e. matched to the basic receiver pulse &nbsp;$g_r(t)$&nbsp; &ndash; and<br>
*einem Transversalfilter &nbsp;$H_{\rm MF}(f)$&nbsp; mit unendlich vielen Filterkoeffizienten<br><br>
+
*a transversal filter &nbsp;$H_{\rm MF}(f)$&nbsp; with infinitely many filter coefficients<br><br>
  
zusammensetzt, folgt aus dem ersten Nyquistkriterium. Durch Anwendung der &nbsp;[https://de.wikipedia.org/wiki/Variationsrechnung Variationsrechnung]&nbsp; erhält man den Frequenzgang des Transversalfilters &ndash; siehe [ST85]<ref name='ST85'>  Söder, G.; Tröndle, K.: ''Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme.'' Berlin – Heidelberg: Springer, 1985.</ref>:
+
follows from the first Nyquist criterion. Durch Anwendung der &nbsp;[https://de.wikipedia.org/wiki/Variationsrechnung Variationsrechnung]&nbsp; erhält man den Frequenzgang des Transversalfilters &ndash; siehe [ST85]<ref name='ST85'>  Söder, G.; Tröndle, K.: ''Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme.'' Berlin – Heidelberg: Springer, 1985.</ref>:
 
:$$H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
:$$H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  \frac{\kappa}{T})
 
  \frac{\kappa}{T})

Revision as of 17:01, 4 May 2022

Structure of the optimal Nyquist equalizer


Block diagram of the optimal Nyquist equalizer

In this section we assume the following block diagram of a binary system. In this regard, it should be noted:

  • The Dirac source provides the message to be transmitted in binary bipolar form   ⇒   amplitude coefficients  $a_\nu \in \{ -1, \hspace{0.05cm}+1\}$. The source is assumed to be redundancy-free.
  • The transmission pulse shape  $g_s(t)$  is taken into account by the transmitter frequency response  $H_{\rm S}(f)$.  In all examples,  $H_{\rm S}(f) = {\rm si}(\pi f T)$  is based   ⇒   NRZ rectangular transmission pulses.


In some derivations, transmitter and channel are combined by the common frequency response  $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$. 

  • The receiver filter  $H_{\rm E}(f)$  is multiplicatively composed of the  matched filter  $H_{\rm MF}(f) = H_{\rm SK}^\star(f)$  and the  transversal filter  $H_{\rm TF}(f)$, at least it can be split up mentally in this way.
  • The total frequency response between the Dirac source and the threshold decision should satisfy the   first Nyquist condition.  Thus, it must hold:
$$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm MF}(f) \cdot H_{\rm TF}(f) = H_{\rm Nyq}(f) \hspace{0.05cm}.$$
  • With this condition, there is no intersymbol interference and the maximum eye opening is obtained. Therefore, the  detection SNR  and  system efficiency  for binary signaling are:
$$\rho_d = \frac{2 \cdot s_0^2 \cdot T}{\sigma_d^2} = \frac{2 \cdot s_0^2 \cdot T}{N_0}\cdot \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta = \frac{\rho_d }{\rho_{d,\hspace{0.05cm} {\rm max}}} = \frac{\rho_d }{2 \cdot s_0^2 \cdot T/N_0} = \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2} \hspace{0.05cm}.$$
  • The optimization task is therefore limited to determining the receiver filter  $H_{\rm E}(f)$  such that the normalized noise power before the decision takes the smallest possible value:
\[\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/ T} =T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f \stackrel {!}{=} {\rm minimum}\hspace{0.05cm}.\]

$\text{Definition:}$  We refer to the configuration described here as  Optimal Nyquist Equalization (ONE). Although this can also – and especially effectively – be applied to multi-level systems, we initially set  $M = 2$.



Mode of action of the transversal filter


Transversal filter (second order) as part of the optimal Nyquist equalizer

Let us first clarify the task of the symmetric transversal filter

$$H_{\rm TF}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm TF}(t) = \sum_{\lambda = -N}^{+N} k_\lambda \cdot \delta(t - \lambda \cdot T) $$

with the following properties:

  • $N$  indicates the order of the filter   ⇒   the graph shows a second order filter  $(N=2)$.
  • For the filter coefficients  $k_{-\lambda} = k_{\lambda}$   ⇒   symmetric structure   ⇒   $H_{\rm TF}(f)$ is real.
  • $H_{\rm TF}(f)$  is thus completely determined by the coefficients  $k_0$, ... , $k_N$  completely determined.


For the input pulse  $g_m(t)$  we assume without restriction of generality that it is

  • symmetric about  $t=0$  (output of the matched filter),
  • has the value  $g_m(\nu)$ at times  $\nu \cdot T$  and  $-\nu \cdot T$,  respectively.


Thus, the input pulse values are:

$$\text{...}\hspace{0.2cm} , g_m(3),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(1),\hspace{0.15cm}\hspace {0.15cm}g_m(0),\hspace{0.15cm}g_m(1),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(3),\hspace{0.1cm} \text{...}\hspace{0.05cm}.$$

Consequently, for the basic transmitter pulse  $g_d(t)$  at the filter output, the following values result at the time instants  $\nu \cdot T$  with the abbreviations  $g_0 =g_d(t= 0)$,   $g_1 =g_d(t= \pm T)$,   $g_2 =g_d(t= \pm 2T)$: 

$$ t = 0\hspace{-0.1cm}:\hspace{0.9cm}g_0 = k_0 \cdot g_m(0) + k_1 \cdot 2 \cdot g_m(1) \hspace{1.23cm}+k_2 \cdot 2 \cdot g_m(2),\hspace{0.05cm} $$
$$ t = \pm T\hspace{-0.1cm}:\hspace{0.45cm}g_1 = k_0 \cdot g_m(1) + k_1 \cdot \big [g_m(0)+g_m(2)]+ k_2 \cdot [g_m(1)+g_m(3) \big ], $$
$$ t = \pm 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_0 \cdot g_m(2) + k_1 \cdot \big [g_m(1)+g_m(3)\big ]+ k_2 \cdot \big [g_m(2)+g_m(4)\big ] \hspace{0.05cm}. $$

From this system with three linearly independent equations, one can now determine the filter coefficients  $k_0$,  $k_1$  and  $k_2$  in such a way that the basic transmitter pulse  $g_d(t)$  has the following interpolation points:

$$\text{...}\hspace{0.15cm} , g_3,\hspace{0.25cm}g_2 = 0 ,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_0 = 1,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_2 = 0 ,\hspace{0.25cm}g_3 ,\hspace{0.15cm} \text{...}$$

$\text{Example 1:}$  We assume the symmetrical input signal according to the upper diagram in the graph. With the abbreviation  $g_m(\nu)= g_m(\pm \nu \cdot T)$  there are the following samples at the distance of the symbol duration  $T$:

$$g_m(t) = {\rm e}^{ - \sqrt{2 \hspace{0.05cm} \cdot \hspace{0.05cm}\vert\hspace{0.05cm} t \hspace{0.05cm} \vert /T} }\hspace{0.3cm} \Rightarrow \hspace{0.3cm} g_m(0) = 1 ,\hspace{0.35cm}g_m(1)= 0.243,\hspace{0.35cm}g_m(2)= 0.135,\hspace{0.35cm}g_m(3)= 0.086, \hspace{0.35cm}g_m(4)= 0.059 \hspace{0.05cm}.$$

For the output pulse  $g_d(t =0) = 1$  and  $g_d(t =\pm T) = 0$  should be valid. For this purpose, a first-order delay filter with coefficients  $k_0$  and  $k_1$ is suitable, which must satisfy the following conditions:

Input and output pulse of the optimal Nyquist equalizer
$$t = \pm T\hspace{-0.1cm} : \hspace{0.2cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot \big [1.000 +0.135 \big ] = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{k_1} = -0.214 \cdot {k_0}\hspace{0.05cm},$$
$$ t = 0 \hspace{-0.1cm} : \hspace{0.6cm}g_0 = k_0 \cdot 1.000 + k_1 \cdot 2 \cdot 0.243= 1\hspace{0.3cm}\Rightarrow \hspace{0.3cm}0.896 \cdot {k_0} = 1 \hspace{0.05cm}.$$

From this, the optimal filter coefficients  $k_0 = 1.116$  and  $k_1 = 0.239$ are obtained.

  • The middle diagram shows that thus the first precursor and the first trailer can be compensated and at the same time  $g_d(0) =1$  is valid (yellow background).
  • However, the further basic transmitter pulse values (blue circles) are different from zero and cause intersymbol interference.

The lower diagram shows that with a second order filter  $(N = 2)$  zero crossings are forced at  $\pm T$  and at  $\pm 2T$  if the coefficients  $k_0 = 1.127$,  $k_1 = 0.219$  and  $k_2 = 0.075$  are suitably chosen. The system of equations for determining the optimal coefficients is thereby:

$$t = 0\hspace{-0.1cm}:\hspace{0.85cm}g_0 = k_0 \cdot 1.000 + k_1 \cdot 2 \cdot 0.243 + k_2 \cdot 2 \cdot 0.135 = 1\hspace{0.05cm},$$
$$t= \pm T\hspace{-0.1cm}:\hspace{0.45cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot \big [1.000+0.135 \big ]+ k_2 \cdot \big [0.243+0.086 \big ] = 0\hspace{0.05cm},$$
$$t = \pm 2 T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_0 \cdot 0.135 + k_1 \cdot \big [0.243+0.086\big ]+ k_2 \cdot \big [1.000 + 0.059 \big ]= 0 \hspace{0.05cm}.$$


$\text{Conclusion:}$  The results can be generalized as follows:

  • With an  $N$–th order delay filter, the main value  $g_d(0)$  can be made one (normalized), and the first $N$  trailers  $g_{\nu}$  and the first $N$  precursors  $g_{-\nu}$  can be made zero.
  • Further precursors and trailers  $(\nu \gt N)$  cannot be compensated in this way. It is even possible that the precursors and trailers outside the compensation range are enlarged or even new ones are created.
  • In the limit  $N \to \infty$  (in practice this means:   a filter with very many coefficients) a complete Nyquist equalization and thus an intersymbol interference free transmission is possible.


Description in the frequency domain


The fact that the optimal Nyquist equalizer is multiplicatively derived from

  • the matched filter  $H_{\rm MF}(f) = H_{\rm S}^\star (f)\cdot H_{\rm K}^\star(f)$  – i.e. matched to the basic receiver pulse  $g_r(t)$  – and
  • a transversal filter  $H_{\rm MF}(f)$  with infinitely many filter coefficients

follows from the first Nyquist criterion. Durch Anwendung der  Variationsrechnung  erhält man den Frequenzgang des Transversalfilters – siehe [ST85][1]:

$$H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - \frac{\kappa}{T}) |^2} \hspace{0.3cm}{\rm{mit}}\hspace{0.3cm}H_{\rm SK}(f) = H_{\rm S}(f)\cdot H_{\rm K}(f) \hspace{0.05cm}.$$

Die linke Grafik zeigt den Funktionsverlauf  $20 \cdot \lg \ H_{\rm TF}(f)$  im Bereich  $| f | \le 1/T$. Vorausgesetzt sind hierfür rechteckförmige NRZ–Sendeimpulse und ein Koaxialkabel mit der charakteristischen Kabeldämpfung  $a_\star$.

(Betrags–) Frequenzgang des Transversalfilter (links) und des gesamten optimalen Nyquistentzerrers (rechts)

Man erkennt aus obiger Gleichung und der linken Grafik:

  • $H_{\rm TF}(f)$  ist reell, woraus sich die symmetrische Struktur des Transversalfilters ergibt:   $k_{-\lambda} =k_{+\lambda} $.
  • $H_{\rm TF}(f)$  ist gleichzeitig eine mit der Frequenz  $1/T$  periodische Funktion.
  • Die Koeffizienten ergeben sich somit aus der  Fourierreihe  (angewandt auf die Spektralfunktion):
$$k_\lambda =T \cdot \int_{-1/(2T)}^{+1/(2T)}\frac{\cos(2 \pi f \lambda T)} {\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2} \hspace{0.2cm} {\rm d} f \hspace{0.25cm}\Rightarrow \hspace{0.25cm}H_{\rm TF}(f) = \sum\limits_{\lambda = -\infty}^{+\infty} k_\lambda \cdot {\rm e}^{-{\rm j}2 \pi f \lambda T}\hspace{0.05cm}.$$

In der rechten Grafik ist der Frequenzgang  $20 \cdot \lg \ |H_{\rm E}(f)|$  des gesamten Empfangsfilters einschließlich Matched–Filter dargestellt. Es gilt:

$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f) = \frac{H_{\rm SK}^{\star}(f)}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}.$$

Zu diesen Darstellungen ist anzumerken:

$$H_{\rm E}(f) =H_{\rm S}(f) = {\rm si} (\pi f T).$$
  • Während der Transversalfilter–Frequenzgang  $H_{\rm TF}(f)$  bei  $a_\star \ne 0 \ \rm dB$  symmetrisch zur Nyquistfrequenz  $f_{\rm Nyq} = 1/(2T)$  ist, ist diese Symmetrie beim Empfangsfilter–Gesamtfrequenzgang  $H_{\rm E}(f)$  nicht mehr gegeben.
  • Die Maxima der Frequenzgänge  $H_{\rm TF}(f)$  und  $|H_{\rm E}(f)|$  hängen signifikant von der charakteristischen Kabeldämpfung  $a_\star$  ab. Aus dem blauen bzw. roten Funktionsverlauf kann abgelesen werden:
$$a_{\star} = 40\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}\big[H_{\rm TF}(f)\big]\hspace{0.1cm} \approx 80\,{\rm dB}, \hspace{0.2cm}{\rm Max}\big[\ |H_{\rm E}(f)| \ \big] \approx 40\,{\rm dB}\hspace{0.05cm},$$
$$a_{\star} = 80\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}\big[H_{\rm TF}(f)\big] \approx 160\,{\rm dB}, \hspace{0.2cm}{\rm Max}\big[\ |H_{\rm E}(f)|\ \big] \approx 80\,{\rm dB}\hspace{0.05cm}.$$


Approximation des optimalen Nyquistentzerrers


Optimaler Nyquistfrequenzgang bei einem Koaxialkabel

Wir betrachten nun den Gesamtfrequenzgang zwischen Diracquelle und Entscheider.

  • Dieser setzt sich multiplikativ aus den Frequenzgängen von Sender, Kanal und Empfänger zusammen.
  • Entsprechend der Herleitung muss der Gesamtfrequenzgang die Nyquistbedingung erfüllen:
$$H_{\rm Nyq}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f) = \frac{|H_{\rm SK}(f)|^2}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}\hspace{0.05cm}.$$


Die Grafik zeigt folgende Eigenschaften des optimalen Nyquistentzerrers (ONE):

  • Ist die Kabeldämpfung hinreichend groß  $(a_\star \ge 10 \ \rm dB)$, so kann man den Gesamtfrequenzgang mit guter Näherung durch den   Cosinus–Rolloff–Tiefpass  beschreiben.
  • Je größer  $a_\star$  ist, desto kleiner ist der Rolloff–Faktor  $r$  und um so steiler verläuft der Flankenabfall. Für die charakteristische Kabeldämpfung  $a_\star = 40 \ \rm dB$  (blaue Kurve) ergibt sich  $r \approx 0.4$, für  $a_\star = 80 \ \rm dB$  (rote Kurve) $r \approx 0.18$.
  • Oberhalb der Frequenz  $f_{\rm Nyq} \cdot (1 + r)$  besitzt  $H_{\rm Nyq}(f)$  keine Anteile. Bei idealem Kanal   ⇒    $a_\star = 0 \ \rm dB$  (grüne Kurve) reicht  $H_{\rm Nyq}(f)= {\rm si}^2(\pi f T)$  allerdings theoretisch bis ins Unendliche.


Das interaktive Applet Frequenzgang und Impulsantwort verdeutlicht unter anderem die Eigenschaften des Cosinus–Rolloff–Tiefpasses.


Berechnung der normierten Störleistung


Wir betrachten nun noch die (normierte) Störleistung am Entscheider. Für diese gilt:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/ (2T)} =T \cdot \int_{-1/(2T)}^{+1/(2T)} |H_{\rm E}(f)|^2 \,{\rm d} f .$$
Zur Berechnung der normierten Störleistung beim ONE
  • Das linke Diagramm der Grafik zeigt  $|H_{\rm E}(f)|^2$  im linearen Maßstab für die charakteristische Kabeldämpfung  $a_\star = 80 \ \rm dB$. Beachten Sie, dass  $|H_{\rm E}(f = 0)|^2 = 1$  ist.
  • Da die Frequenz in dieser Darstellung auf  $1/T$  normiert wurde, entspricht die normierte Störleistung genau der (rot hinterlegten) Fläche unter dieser Kurve. Die numerische Auswertung ergibt:
$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = 1.68 \cdot 10^7\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 \approx 72.25\,{\rm dB} \hspace{0.05cm}.$$
  • Es kann gezeigt werden, dass die normierte Störleistung allein mit dem Transversalfilter–Frequenzgang  $H_{\rm TF}(f)$  berechnet werden kann, wie in der rechten Grafik dargestellt:
$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f \hspace{0.3cm}(= k_0)\hspace{0.05cm}.$$
  • Die roten Flächen sind in beiden Bildern exakt gleich.


$\text{Fazit:}$  Die normierten Störleistung des optimalen Nyquistentzerrers ist gleich dem Fourierkoeffizienten  $k_0$, wenn man den reellen, symmetrischen und periodischen Transversalfilter–Frequenzgang  $H_{\rm TF}(f)$  als Fourierreihe darstellt.

Koeffizienten des optimalen Nyquistentzerrers
  • In der zweiten Spalte der Tabelle ist  $10 \cdot \lg \ (k_0)$  abhängig von der charakteristischen Kabeldämpfung  $a_\star$  eines Koaxialkabels angegeben.
  • Aufgrund der gewählten Normierung gilt die Tabelle auch für  redundanzfreie Mehrstufensysteme; hierbei bezeichnet  $M$  die Stufenzahl.
  • Die Koeffizienten  $k_1$,  $k_2$,  $k_3$, ... des Transversalfilters weisen für  $a_\star \ne 0 \ \rm dB$  alternierende Vorzeichen auf.
  • Für  $a_\star = 40 \ \rm dB$  sind vier Koeffizienten betragsmäßig größer als  $k_0/10$, für  $a_\star = 80 \ \rm dB$  sogar sieben.

Vergleich anhand des Systemwirkungsgrades


Für einen Systemvergleich eignet sich der  Systemwirkungsgrad, der das erreichbare Detektions–SNR  $\rho_d$  in Bezug zum maximalen SNR  $\rho_{d, \ {\rm max}}$  setzt, das allerdings nur bei idealem Kanal  $H_{\rm K}(f) \equiv 1$  erreichbar ist. Für den Systemwirkungsgrad gilt bei  $M$–stufiger Übertragung und optimaler Nyquistentzerrung:

$$\eta = \frac{\rho_d}{s_0^2 \cdot T / N_0}=\frac{{\rm log_2}\hspace{0.1cm}M}{(M-1)^2 \cdot k_0}.$$

Die (normierte) Störleistung  $k_0$  kann aus der   Tabelle  auf der letzten Seite abgelesen werden. Beachten Sie die Normierung der charakteristischen Kabeldämpfung  $a_\star$  in der ersten Spalte. Die folgende Tabelle aus [ST85][1] ermöglicht einen Systemvergleich für die charakteristische Kabeldämpfung  $a_\star = 80 \ \rm dB$.

Vergleich binärer und mehrstufiger Ünertragungssysteme gemäß  $\text{GTP}$  bzw.  $\text{ONE}$


Verglichen werden:



$\text{Fazit:}$  Die Ergebnisse dieses Systemvergleichs können wie folgt zusammengefasst werden:

  • Im binären Fall  $(M = 2)$  ist das impulsinterferenzfreie System  $\text{(ONE)}$  um etwa  $6 \ \rm dB$  besser als das impulsinterferenzbehaftete System  $\text{(GTP)}$.
  • Wendet man die optimale Nyquistentzerrung bei Mehrstufensystemen an, so ist gegenüber  $\text{GTP}$  ein weiterer, deutlicher Störabstandsgewinn möglich. Für  $M =4$  beträgt dieser Gewinn etwa  $18.2 \ \rm dB$.
  • Das schmalbandige  $\text{GTP}$–System kann allerdings deutlich verbessert werden, wenn man einen Empfänger mit Entscheidungsrückkopplung verwendet. Dieser wird im nächsten Kapitel behandelt.


Wir verweisen an dieser Stelle auf das interaktive Applet Lineare Nyquistentzerrung.


Aufgaben zum Kapitel


Aufgabe 3.6: Transversalfilter des Optimalen Nyquistentzerrers

Aufgabe 3.6Z: Optimaler Nyquistentzerrer für Exponentialimpuls

Aufgabe 3.7: Nochmals Optimale Nyquistentzerrung

Aufgabe 3.7Z: Regeneratorfeldlänge

Quellenverzeichnis

  1. 1.0 1.1 Söder, G.; Tröndle, K.: Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme. Berlin – Heidelberg: Springer, 1985.