Difference between revisions of "Information Theory/Differential Entropy"

From LNTwww
 
(47 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Wertkontinuierliche Informationstheorie
+
|Untermenü=Information Theory for Continuous Random Variables
 
|Vorherige Seite=Anwendung auf die Digitalsignalübertragung
 
|Vorherige Seite=Anwendung auf die Digitalsignalübertragung
|Nächste Seite=AWGN–Kanalkapazität bei wertkontinuierlichem Eingang
+
|Nächste Seite=AWGN_Channel_Capacity_for_Continuous-Valued_Input
 
}}
 
}}
  
 
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 
<br>
 
<br>
In the last chapter of this book, the information-theoretical quantities defined so far for the discrete-value case are adapted in such a way that they can also be applied to continuous-value random quantities.
+
In the last chapter of this book,&nbsp; the information-theoretical quantities defined so far for the discrete case are adapted in such a way that they can also be applied to continuous random quantities.
*For example, the entropy&nbsp; $H(X)$&nbsp; for the discrete-value random variable&nbsp; $X$&nbsp; becomes the differential entropy&nbsp; $h(X)$ in the continuous-value case..
+
*For example,&nbsp; the entropy&nbsp; $H(X)$&nbsp; for the discrete random variable&nbsp; $X$&nbsp; becomes the &nbsp;&raquo;differential entropy&laquo;&nbsp; $h(X)$&nbsp; in the continuous case.
*While&nbsp; $H(X)$&nbsp; indicates the &bdquo;uncertainty&rdquo; with regard to the discrete random variable&nbsp; $X$&nbspwith regard to the discrete random variable&nbsp; $h(X)$&nbsp; in the same way in the continuous case.
+
 +
*While&nbsp; $H(X)$&nbsp; indicates the &nbsp;&raquo;uncertainty&laquo;&nbsp; with regard to the discrete random variable&nbsp; $X$;&nbsp; in the continuous case&nbsp; $h(X)$&nbsp; cannot be interpreted in the same way.
  
  
Many of the relationships derived in the third chapter &bdquo;Information between two discrete-value random variables &nbsp; &rArr; &nbsp; see&nbsp; [[Information_Theory|table of contents]]&nbsp; for conventional entropy also apply to differential entropy. &nbsp;  Thus, the differential joint entropy&nbsp; $h(XY)$&nbsp; can also be given for continuous-value random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; and likewise the two conditional differential entropies&nbsp; $h(Y|X)$&nbsp; and&nbsp; $h(X|Y)$.
+
Many of the relationships derived in the third chapter &nbsp;&raquo;Information between two discrete random variables&laquo;&nbsp; for conventional entropy also apply to differential entropy. &nbsp;  Thus,&nbsp; the differential joint entropy&nbsp; $h(XY)$&nbsp; can also be given for continuous random variables&nbsp; $X$&nbsp; and&nbsp; $Y$,&nbsp; and likewise also the two conditional differential entropies&nbsp; $h(Y|X)$&nbsp; and&nbsp; $h(X|Y)$.
  
  
In detail, this main chapter deals with:
+
In detail, this main chapter deals with
*the special features of continuous value random variables,
+
#the special features of &nbsp;&raquo;continuous random variables&laquo;,
*the definition and calculation of the differential entropy as well as its properties,
+
#the &nbsp;&raquo;definition and calculation of the differential entropy&laquo;&nbsp; as well as its properties,
*the mutual information between two value-continuous random variables,
+
#the &nbsp;&raquo;mutual information&laquo;&nbsp; between two continuous random variables,
*the capacity of the AWGN channel and several such parallel Gaussian channels,
+
#the &nbsp;&raquo;capacity of the AWGN channel&laquo;&nbsp; and several such parallel Gaussian channels,
*the channel coding theorem, one of the &bdquo;highlights&rdquo; of Shannon's information theory,
+
#the &nbsp;&raquo;channel coding theorem&laquo;,&nbsp; one of the highlights of Shannon's information theory,
*the AWGN channel capacity for discrete-value input sines (BPSK, QPSK).
+
#the &nbsp;&raquo;AWGN channel capacity&laquo;&nbsp; for discrete input&nbsp; $($BPSK,&nbsp; QPSK$)$.
  
  
  
  
==Properties of continuous-value random variables==   
+
==Properties of continuous random variables==   
 
<br>
 
<br>
Up to now,&nbsp; ''discrete-value random variables''&nbsp; of the form&nbsp; $X = \{x_1,\ x_2, \hspace{0.05cm}\text{...}\hspace{0.05cm} , x_μ, \text{...} ,\ x_M\}$&nbsp; have always been considered, which from an information-theoretical point of view are completely characterised by their&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Probability_function_and_probability_density_function|probability mass function]]&nbsp; (PMF)&nbsp; $P_X(X)$&nbsp; :
+
Up to now,&nbsp; "discrete random variables"&nbsp; of the form&nbsp; $X = \{x_1,\ x_2, \hspace{0.05cm}\text{...}\hspace{0.05cm} , x_μ, \text{...} ,\ x_M\}$&nbsp; have always been considered, which from an information-theoretical point of view are completely characterized by their&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Probability_mass_function_and_probability_density_function|"probability mass function"]]&nbsp; $\rm (PMF)$:
 
   
 
   
 
:$$P_X(X) = \big [ \hspace{0.1cm}  
 
:$$P_X(X) = \big [ \hspace{0.1cm}  
 
p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_{\mu},\hspace{0.05cm} \text{...}\hspace{0.15cm}, p_M \hspace{0.1cm}\big ]  
 
p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_{\mu},\hspace{0.05cm} \text{...}\hspace{0.15cm}, p_M \hspace{0.1cm}\big ]  
\hspace{0.3cm}{\rm mit} \hspace{0.3cm}  p_{\mu}= P_X(x_{\mu})= {\rm Pr}( X = x_{\mu})
+
\hspace{0.3cm}{\rm with} \hspace{0.3cm}  p_{\mu}= P_X(x_{\mu})= {\rm Pr}( X = x_{\mu})
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
A&nbsp; ''continuous-value random variable, '''&nbsp; on the other hand, can assume any value – at least in finite intervals:
+
A&nbsp; "continuous random variable",&nbsp; on the other hand, can assume any value – at least in finite intervals:
* Due to the uncountable supply of values, the description by a probability function is not possible in this case, or at least it does not make sense:
+
* Due to the uncountable supply of values, the description by a probability mass function is not possible in this case, or at least it does not make sense:
*This would result in&nbsp; $M \to ∞$&nbsp; as well as&nbsp; $p_1 \to 0$,&nbsp; $p_2 \to 0$,&nbsp; etc.
+
*This would result in the symbol set size&nbsp; $M \to ∞$&nbsp; as well as probabilities&nbsp; $p_1 \to 0$,&nbsp; $p_2 \to 0$,&nbsp; etc.
  
  
For the description of value-continuous random variables, one uses equally according to the definitions in the book&nbsp; [[Theory of Stochastic Signals]]&nbsp; :
+
For the description of continuous random variables, one uses equally according to the definitions in the book&nbsp; [[Theory of Stochastic Signals|"Theory of Stochastic Signals"]]:
  
[[File:P_ID2850__Inf_T_4_1_S1b.png|right|frame|PDF and CDF of a value-continuous random variable]]
+
[[File:EN_Inf_T_4_1_S1b.png|right|frame|PDF and CDF of a continuous random variable]]
  
* the&nbsp; [[Theory_of_Stochastic_Signals/Wahrscheinlichkeitsdichtefunktion_(WDF)|probability density function]]&nbsp; (PDF):
+
* the&nbsp; [[Theory_of_Stochastic_Signals/Wahrscheinlichkeitsdichtefunktion_(WDF)|"probability density function"]]&nbsp; $\rm (PDF)$:
 
   
 
   
 
:$$f_X(x_0)= \lim_{{\rm \Delta}  x\to \rm 0}\frac{p_{{\rm \Delta} x}}{{\rm \Delta} x} = \lim_{{\rm \Delta}  x\to \rm 0}\frac{{\rm Pr} \{ x_0- {\rm \Delta} x/\rm 2 \le \it X \le x_{\rm 0} +{\rm \Delta} x/\rm 2\}}{{\rm \Delta}  x};$$
 
:$$f_X(x_0)= \lim_{{\rm \Delta}  x\to \rm 0}\frac{p_{{\rm \Delta} x}}{{\rm \Delta} x} = \lim_{{\rm \Delta}  x\to \rm 0}\frac{{\rm Pr} \{ x_0- {\rm \Delta} x/\rm 2 \le \it X \le x_{\rm 0} +{\rm \Delta} x/\rm 2\}}{{\rm \Delta}  x};$$
  
:In words: &nbsp; the PDF value at&nbsp; $x_0$&nbsp; gives the probability&nbsp; $p_{Δx}$&nbsp; that&nbsp; $X$&nbsp; lies in an (infinitely small) interval of width&nbsp; $Δx$&nbsp; around&nbsp; $x_0$&nbsp;, divided by&nbsp; $Δx$; &nbsp; (note the entries in the adjacent graph);
+
:In words: &nbsp; the PDF value at&nbsp; $x_0$&nbsp; gives the probability&nbsp; $p_{Δx}$&nbsp; that&nbsp; $X$&nbsp; lies in an (infinitely small) interval of width&nbsp; $Δx$&nbsp; around&nbsp; $x_0$&nbsp;, divided by&nbsp; $Δx$ &nbsp; (note the entries in the adjacent graph);
*the&nbsp; [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente#Momentenberechnung_als_Scharmittelwert|mean value]]&nbsp; (first-order moment):
+
*the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Moment_calculation_as_ensemble_average|"mean value"]]&nbsp; (first moment):
 
   
 
   
 
:$$m_1 =  {\rm E}\big[ X \big]=  \int_{-\infty}^{+\infty} \hspace{-0.1cm} x \cdot f_X(x) \hspace{0.1cm}{\rm d}x  
 
:$$m_1 =  {\rm E}\big[ X \big]=  \int_{-\infty}^{+\infty} \hspace{-0.1cm} x \cdot f_X(x) \hspace{0.1cm}{\rm d}x  
 
\hspace{0.05cm};$$
 
\hspace{0.05cm};$$
  
*the&nbsp; [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente|variance]]&nbsp; (second-order moment):
+
*the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|"variance"]]&nbsp; (second central moment):
 
   
 
   
 
:$$\sigma^2 =  {\rm E}\big[(X- m_1 )^2 \big]=  \int_{-\infty}^{+\infty} \hspace{-0.1cm} (x- m_1 )^2 \cdot f_X(x- m_1 ) \hspace{0.1cm}{\rm d}x  
 
:$$\sigma^2 =  {\rm E}\big[(X- m_1 )^2 \big]=  \int_{-\infty}^{+\infty} \hspace{-0.1cm} (x- m_1 )^2 \cdot f_X(x- m_1 ) \hspace{0.1cm}{\rm d}x  
 
\hspace{0.05cm};$$
 
\hspace{0.05cm};$$
  
*the&nbsp; [[Theory_of_Stochastic_Signals/Verteilungsfunktion_(VTF)|cumulative distribution fucntion]]&nbsp; (CDF):
+
*the&nbsp; [[Theory_of_Stochastic_Signals/Cumulative_Distribution_Function|"cumulative distribution function"]]&nbsp; $\rm (CDF)$:
 
   
 
   
 
:$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  
 
:$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  
Line 66: Line 67:
 
  {\rm Pr}(X \le x)\hspace{0.05cm}.$$
 
  {\rm Pr}(X \le x)\hspace{0.05cm}.$$
  
Note that both the PDF area and the CDF final value are always equal to&nbsp; $1$&nbsp; .
+
Note that both the PDF area and the CDF final value are always equal to&nbsp; $1$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Nomenclature notes on PDF and CDF:}$
 
$\text{Nomenclature notes on PDF and CDF:}$
  
We use in this chapter for a&nbsp; '''probability density function'''&nbsp;  the representation form&nbsp; $f_X(x)$ often used in the literature, where holds::
+
We use in this chapter for a&nbsp; &raquo;'''probability density function'''&laquo;&nbsp; $\rm (PDF)$&nbsp;  the representation form&nbsp; $f_X(x)$&nbsp; often used in the literature, where holds:
*$X$&nbsp; denotes the (discrete-value or continuous-value) random variable,
+
*$X$&nbsp; denotes the (discrete or continuous) random variable,
*$x$&nbsp; is a possible realisation of&nbsp; $X$ &nbsp; ⇒ &nbsp; $x ∈ X$.
+
 
 +
*$x$&nbsp; is a possible realization of&nbsp; $X$ &nbsp; ⇒ &nbsp; $x ∈ X$.
  
  
Accordingly, we denote the&nbsp; '''cumulative distribution function''' (CDF) of the random variable $X$ by&nbsp; $F_X(x)$&nbsp; according to the following definition:
+
Accordingly, we denote the&nbsp; &raquo;'''cumulative distribution function'''&laquo;&nbsp; $\rm (CDF)$&nbsp; of the random variable&nbsp; $X$&nbsp; by&nbsp; $F_X(x)$&nbsp; according to the following definition:
  
 
:$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  
 
:$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  
Line 83: Line 85:
  
 
In other&nbsp; $\rm LNTwww$ books, we often write so as not to use up two characters for one variable:
 
In other&nbsp; $\rm LNTwww$ books, we often write so as not to use up two characters for one variable:
*For the PDF&nbsp; $f_x(x)$  &nbsp; ⇒ &nbsp; no distinction between random variable and realising, and
+
*For the PDF&nbsp; $f_x(x)$  &nbsp; ⇒ &nbsp; no distinction between random variable and realization.
*for the CDF&nbsp; $F_x(r) = {\rm Pr}(x ≤ r)$ &nbsp; ⇒ &nbsp; here one needs a second variable in any case.
+
 
 +
*For the CDF&nbsp; $F_x(r) = {\rm Pr}(x ≤ r)$ &nbsp; ⇒ &nbsp; here one needs a second variable in any case.
  
  
We apologise for this formal inaccuracy.}}  
+
We apologize for this formal inaccuracy.}}  
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Example 1:}$&nbsp; We now consider an important special case with the uniform distribution.
+
$\text{Example 1:}$&nbsp; We now consider with the&nbsp; &raquo;'''uniform distribution'''&laquo;&nbsp;  an important special case.
 +
 
 +
[[File:EN_Inf_T_4_1_S1.png|right|frame|Two analog signals as examples of continuous random variables]]
  
[[File:P_ID2849__Inf_T_4_1_S1.png|right|frame|Two analogue signals as examples of continuous-value random variables]]
 
 
*The graph shows the course of two uniformly distributed variables, which can assume all values between&nbsp; $1$&nbsp; and&nbsp; $5$&nbsp; $($mean value $m_1 = 3)$&nbsp; with equal probability.
 
*The graph shows the course of two uniformly distributed variables, which can assume all values between&nbsp; $1$&nbsp; and&nbsp; $5$&nbsp; $($mean value $m_1 = 3)$&nbsp; with equal probability.
 +
 
*On the left is the result of a random process, on the right a deterministic signal with the same amplitude distribution.
 
*On the left is the result of a random process, on the right a deterministic signal with the same amplitude distribution.
  
 
[[File:P_ID2870__Inf_A_4_1a.png|right|frame|PDF and CDF of an uniformly distributed random variable]]
 
[[File:P_ID2870__Inf_A_4_1a.png|right|frame|PDF and CDF of an uniformly distributed random variable]]
<br>The&nbsp; ''probability density function''&nbsp; of the uniform distribution has the course sketched in the second graph above:
+
 
 +
<br>The&nbsp; "probability density function"&nbsp; $\rm (PDF)$&nbsp; of the uniform distribution has the course sketched in the second graph above:
 
   
 
   
:$$f_X(x) = \left\{ \begin{array}{c} \hspace{0.25cm}(x_{\rm max} - x_{\rm min})^{-1} \\  1/2 \cdot (x_{\rm max} - x_{\rm min})^{-1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.  \begin{array}{*{20}c}  {\rm{f\ddot{u}r} }  \\  {\rm{f\ddot{u}r} }  \\  {\rm{f\ddot{u}r} }  \\ \end{array}
+
:$$f_X(x) = \left\{ \begin{array}{c} \hspace{0.25cm}(x_{\rm max} - x_{\rm min})^{-1} \\  1/2 \cdot (x_{\rm max} - x_{\rm min})^{-1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.  \begin{array}{*{20}c}  {\rm{for} }  \\  {\rm{for} }  \\  {\rm{for} }  \\ \end{array}
\begin{array}{*{20}l}  {x_{\rm min} < x < x_{\rm max},}  \\  x ={x_{\rm min} \hspace{0.1cm}{\rm und}\hspace{0.1cm}x = x_{\rm max},}  \\  x > x_{\rm max}. \\ \end{array}$$
+
\begin{array}{*{20}l}  {x_{\rm min} < x < x_{\rm max},}  \\  x ={x_{\rm min} \hspace{0.15cm}{\rm and}\hspace{0.15cm}x = x_{\rm max},}  \\  x > x_{\rm max}. \\ \end{array}$$
  
 
The following equations are obtained here for the mean&nbsp; $m_1 ={\rm E}\big[X\big]$&nbsp; and the variance&nbsp; $σ^2={\rm E}\big[(X – m_1)^2\big]$&nbsp; :
 
The following equations are obtained here for the mean&nbsp; $m_1 ={\rm E}\big[X\big]$&nbsp; and the variance&nbsp; $σ^2={\rm E}\big[(X – m_1)^2\big]$&nbsp; :
Line 108: Line 114:
 
:$$\sigma^2 = \frac{(x_{\rm max} - x_{\rm min})^2}{12}\hspace{0.05cm}.$$
 
:$$\sigma^2 = \frac{(x_{\rm max} - x_{\rm min})^2}{12}\hspace{0.05cm}.$$
  
Shown below is the &nbsp; ''cumulative distribution function''&nbsp; (CDF):
+
Shown below is the &nbsp; &raquo;'''cumulative distribution function'''&laquo;&nbsp; $\rm (CDF)$:
 
   
 
   
 
:$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  
 
:$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  
Line 115: Line 121:
  
 
*This is identically zero for&nbsp; $x ≤ x_{\rm min}$, increases linearly thereafter and reaches the CDF final value of &nbsp; $1$ at&nbsp; $x = x_{\rm max}$&nbsp;.
 
*This is identically zero for&nbsp; $x ≤ x_{\rm min}$, increases linearly thereafter and reaches the CDF final value of &nbsp; $1$ at&nbsp; $x = x_{\rm max}$&nbsp;.
 +
 
*The probability that the random variable&nbsp; $X$&nbsp; takes on a value between&nbsp; $3$&nbsp; and&nbsp; $4$&nbsp; can be determined from both the PDF and the CDF:
 
*The probability that the random variable&nbsp; $X$&nbsp; takes on a value between&nbsp; $3$&nbsp; and&nbsp; $4$&nbsp; can be determined from both the PDF and the CDF:
 
:$${\rm Pr}(3 \le X \le 4) = \int_{3}^{4} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  = 0.25\hspace{0.05cm}\hspace{0.05cm},$$
 
:$${\rm Pr}(3 \le X \le 4) = \int_{3}^{4} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi  = 0.25\hspace{0.05cm}\hspace{0.05cm},$$
Line 121: Line 128:
 
Furthermore, note:
 
Furthermore, note:
 
*The result&nbsp; $X = 0$&nbsp; is excluded for this random variable  &nbsp; ⇒  &nbsp; ${\rm  Pr}(X = 0) = 0$.
 
*The result&nbsp; $X = 0$&nbsp; is excluded for this random variable  &nbsp; ⇒  &nbsp; ${\rm  Pr}(X = 0) = 0$.
*The result&nbsp; $X = 4$&nbsp;, on the other hand, is quite possible.&nbsp; Nevertheless, auch hier&nbsp; ${\rm  Pr}(X = 4) = 0 $also applies here.}}
 
  
==Entropy of continuous-value random variables after quantisation ==
+
*The result&nbsp; $X = 4$&nbsp;, on the other hand, is quite possible.&nbsp; Nevertheless,&nbsp; ${\rm  Pr}(X = 4) = 0 $&nbsp; also applies here.}}
 +
 
 +
==Entropy of continuous random variables after quantization ==
 
<br>
 
<br>
Wir betrachten nun eine wertkontinuierliche Zufallsgröße&nbsp; $X$&nbsp; im Bereich von&nbsp; $0 \le x \le 1$.
+
We now consider a continuous random variable&nbsp; $X$&nbsp; in the range&nbsp; $0 \le x \le 1$.
*Wir quantisieren die kontinuierliche Zufallsgröße&nbsp; $X$, um die bisherige Entropieberechnung weiter anwenden zu können.&nbsp; Die so entstehende diskrete (quantisierte) Größe nennen wir&nbsp; $Z$.
+
*We quantize this random variable&nbsp; $X$,&nbsp; in order to be able to further apply the previous entropy calculation.&nbsp; We call the resulting discrete (quantized) quantity&nbsp; $Z$.
*Die Quantisierungsstufenzahl sei&nbsp; $M$, so dass jedes Quantisierungsintervall&nbsp; $μ$&nbsp; bei der vorliegenden WDF die Breite&nbsp; ${\it Δ} = 1/M$&nbsp; aufweist.&nbsp; Die Intervallmitten bezeichnen wir mit&nbsp; $x_μ$.
+
 
*Die Wahrscheinlichkeit&nbsp; $p_μ = {\rm Pr}(Z = z_μ)$&nbsp; bezüglich&nbsp; $Z$&nbsp; ist gleich der Wahrscheinlichkeit, dass die kontinuierliche Zufallsgröße&nbsp; $X$&nbsp; einen Wert zwischen&nbsp; $x_μ - {\it Δ}/2$&nbsp; und&nbsp; $x_μ + {\it Δ}/2$&nbsp; besitzt.
+
*Let the number of quantization steps be&nbsp; $M$,&nbsp; so that each quantization interval&nbsp; $μ$&nbsp; has the width&nbsp; ${\it Δ} = 1/M$&nbsp; in the present PDF.&nbsp; We denote the interval centres by&nbsp; $x_μ$.
*Zunächst setzen wir&nbsp; $M = 2$&nbsp; und verdoppeln anschließend diesen Wert in jeder Iteration.&nbsp; Dadurch wird die Quantisierung zunehmend feiner.&nbsp; Im&nbsp; $n$–ten Versuch gilt dann&nbsp; $M = 2^n$&nbsp; und&nbsp; ${\it Δ} =2^{–n}$.
+
 
 +
*The probability&nbsp; $p_μ = {\rm Pr}(Z = z_μ)$&nbsp; with respect to&nbsp; $Z$&nbsp; is equal to the probability that the random variable&nbsp; $X$&nbsp; has a value between&nbsp; $x_μ - {\it Δ}/2$&nbsp; and&nbsp; $x_μ + {\it Δ}/2$.
 +
 
 +
*First we set&nbsp; $M = 2$&nbsp; and then double this value in each iteration.&nbsp; This makes the quantization increasingly finer.&nbsp; In the&nbsp; $n$th try,&nbsp;  then apply&nbsp; $M = 2^n$&nbsp; and&nbsp; ${\it Δ} =2^{–n}$.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp; Die Grafik zeigt die Ergebnisse der ersten drei Versuche für eine unsymmetrisch&ndash;dreieckförmige WDF&nbsp; $($zwischen&nbsp; $0$&nbsp; und&nbsp; $1)$:
+
$\text{Example 2:}$&nbsp; The graph shows the results of the first three trials for an asymmetrical triangular PDF&nbsp; $($betweeen&nbsp; $0$&nbsp; and&nbsp; $1)$:
[[File:P_ID2851__Inf_T_4_1_S2.png|right|frame|Entropiebestimmung der Dreieck–WDF nach Quantisierung]]
+
[[File:EN_Inf_T_4_1_S2.png|right|frame|Entropy determination of the triangular PDF after quantization]]
 
* $n = 1 \ ⇒  \ M = 2  \ ⇒  \ {\it Δ} = 1/2\text{:}$ &nbsp; &nbsp; $H(Z) = 0.811\ \rm  bit,$  
 
* $n = 1 \ ⇒  \ M = 2  \ ⇒  \ {\it Δ} = 1/2\text{:}$ &nbsp; &nbsp; $H(Z) = 0.811\ \rm  bit,$  
 
* $n = 2 \ ⇒  \ M = 4  \ ⇒  \ {\it Δ} = 1/4\text{:}$ &nbsp; &nbsp;  $H(Z) = 1.749\ \rm  bit,$
 
* $n = 2 \ ⇒  \ M = 4  \ ⇒  \ {\it Δ} = 1/4\text{:}$ &nbsp; &nbsp;  $H(Z) = 1.749\ \rm  bit,$
Line 140: Line 151:
  
  
 
+
Additionally, the following quantities can be taken from the graph, for example for&nbsp; ${\it Δ} = 1/8$:
 
+
*The interval centres are at   
Zudem können der Grafik noch folgende Größen entnommen werden, zum Beispiel für&nbsp; &nbsp;  ${\it Δ} = 1/8$:
 
*Die Intervallmitten liegen bei &nbsp;
 
 
:$$x_1 = 1/16,\ x_2 = 3/16,\text{ ...} \ ,\ x_8 = 15/16 $$  
 
:$$x_1 = 1/16,\ x_2 = 3/16,\text{ ...} \ ,\ x_8 = 15/16 $$  
 
:$$ ⇒ \ x_μ = {\it Δ} · (μ - 1/2).$$
 
:$$ ⇒ \ x_μ = {\it Δ} · (μ - 1/2).$$
  
*Die Intervallflächen ergeben sich zu &nbsp;  
+
*The interval areas result in &nbsp;  
 
:$$p_μ = {\it Δ} · f_X(x_μ)  ⇒  p_8 = 1/8 · (7/8+1)/2 = 15/64.$$
 
:$$p_μ = {\it Δ} · f_X(x_μ)  ⇒  p_8 = 1/8 · (7/8+1)/2 = 15/64.$$
*Damit erhält man für die Wahrscheinlichkeitsfunktion der quantisierten Zufallsgröße&nbsp;$Z$:
+
*Thus, we obtain for the&nbsp; $\rm PMF$&nbsp; of the quantized random variable&nbsp;$Z$:
 
:$$P_Z(Z) = (1/64, \ 3/64, \ 5/64, \ 7/64, \ 9/64, \ 11/64, \ 13/64, \ 15/64).$$}}
 
:$$P_Z(Z) = (1/64, \ 3/64, \ 5/64, \ 7/64, \ 9/64, \ 11/64, \ 13/64, \ 15/64).$$}}
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
Die Ergebnisse dieses Experiments interpretieren wir wie folgt:
+
We interpret the results of this experiment as follows:
*Die Entropie&nbsp; $H(Z)$&nbsp; wird mit steigendem $M$ immer größer.
+
#The entropy&nbsp; $H(Z)$&nbsp; becomes larger and larger as&nbsp; $M$&nbsp; increases.
*Der Grenzwert von&nbsp; $H(Z)$&nbsp; für&nbsp; $M \to ∞ \ ⇒  \ {\it Δ} → 0$&nbsp; ist unendlich.
+
#The limit of&nbsp; $H(Z)$&nbsp; for&nbsp; $M \to ∞ \ ⇒  \ {\it Δ} → 0$&nbsp; is infinite.
*Damit ist auch die Entropie&nbsp; $H(X)$&nbsp; der wertkontinuierlichen Zufallsgröße&nbsp; $X$&nbsp; unendlich groß.
+
#Thus, the entropy&nbsp; $H(X)$&nbsp; of the continuous random variable&nbsp; $X$&nbsp; is also infinite.
*Daraus folgt: &nbsp; '''Die bisherige Entropie–Definition versagt hier'''.}}  
+
#It follows: &nbsp; '''The previous definition of entropy fails for continuous random variables'''.}}  
  
  
Zur Verifizierung unseres empirischen Ergebnisses gehen wir von folgender Gleichung aus:
+
To verify our empirical result, we assume the following equation:
 
   
 
   
 
:$$H(Z) = \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.2cm} p_{\mu} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\mu}}=  \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.2cm} {\it \Delta} \cdot f_X(x_{\mu} ) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{{\it \Delta} \cdot f_X(x_{\mu} )}\hspace{0.05cm}.$$
 
:$$H(Z) = \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.2cm} p_{\mu} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\mu}}=  \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.2cm} {\it \Delta} \cdot f_X(x_{\mu} ) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{{\it \Delta} \cdot f_X(x_{\mu} )}\hspace{0.05cm}.$$
  
Wir spalten nun&nbsp; $H(Z) = S_1 + S_2$&nbsp; in zwei Summen auf:
+
*We now split&nbsp; $H(Z) = S_1 + S_2$&nbsp; into two summands:
 
   
 
   
 
:$$\begin{align*}S_1 & =  {\rm log}_2 \hspace{0.1cm} \frac{1}{\it \Delta}  \cdot  \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.02cm} {\it \Delta} \cdot f_X(x_{\mu} ) \approx - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.05cm},\\  
 
:$$\begin{align*}S_1 & =  {\rm log}_2 \hspace{0.1cm} \frac{1}{\it \Delta}  \cdot  \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.02cm} {\it \Delta} \cdot f_X(x_{\mu} ) \approx - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.05cm},\\  
Line 172: Line 181:
 
\hspace{0.2cm}  \int_{0}^{1} \hspace{0.05cm}  f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.\end{align*}$$
 
\hspace{0.2cm}  \int_{0}^{1} \hspace{0.05cm}  f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.\end{align*}$$
  
*Die Näherung&nbsp; $S_1 ≈ -\log_2 {\it Δ}$&nbsp; gilt exakt nur im Grenzfall&nbsp; ${\it Δ} → 0$.&nbsp;  
+
*The approximation&nbsp; $S_1 ≈ -\log_2 {\it Δ}$&nbsp; applies exactly only in the borderline case&nbsp; ${\it Δ} → 0$.&nbsp;  
*Die angegebene Näherung für&nbsp; $S_2$&nbsp; gilt ebenfalls nur für kleine&nbsp; ${\it Δ} → {\rm d}x$, so dass man die Summe durch das Integral ersetzen sollte.
+
 
 +
*The given approximation for&nbsp; $S_2$&nbsp; is also only valid for small&nbsp; ${\it Δ} → {\rm d}x$,&nbsp; so that one should replace the sum by the integral.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Verallgemeinerung:}$&nbsp;
+
$\text{Generalization:}$&nbsp;
Nähert man die wertkontinuierliche Zufallsgröße&nbsp; $X$&nbsp; mit der WDF&nbsp; $f_X(x)$&nbsp; durch eine wertdiskrete Zufallsgröße&nbsp; $Z$&nbsp; an, indem man eine (feine) Quantisierung mit der Intervallbreite&nbsp; ${\it Δ}$&nbsp; durchführt, so erhält man für die Entropie der Zufallsgröße&nbsp; $Z$:
+
If one approximates the continuous random variable&nbsp; $X$&nbsp; with the PDF&nbsp; $f_X(x)$&nbsp; by a discrete random variable&nbsp; $Z$&nbsp; by performing a (fine) quantization with the interval width&nbsp; ${\it Δ}$,&nbsp; one obtains for the entropy of the random variable&nbsp; $Z$:
 
:$$H(Z) \approx  - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.2cm}+
 
:$$H(Z) \approx  - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.2cm}+
 
\hspace{-0.35cm}  \int\limits_{\text{supp}(f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x =  - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.2cm} + h(X) \hspace{0.5cm}\big [{\rm in \hspace{0.15cm}bit}\big ] \hspace{0.05cm}.$$
 
\hspace{-0.35cm}  \int\limits_{\text{supp}(f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x =  - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.2cm} + h(X) \hspace{0.5cm}\big [{\rm in \hspace{0.15cm}bit}\big ] \hspace{0.05cm}.$$
  
Das Integral beschreibt die&nbsp; [[Information_Theory/Differentielle_Entropie#Definition_und_Eigenschaften_der_differentiellen_Entropie|differentielle Entropie]]&nbsp; $h(X)$&nbsp; der wertkontinuierlichen Zufallsgröße&nbsp; $X$.&nbsp; Für den Sonderfall&nbsp;  ${\it Δ} = 1/M = 2^{-n}$&nbsp; kann die obige Gleichung auch wie folgt geschrieben werden:
+
*The integral describes the&nbsp; [[Information_Theory/Differentielle_Entropie#Definition_and_properties_of_differential_entropy|"differential  entropy"]]&nbsp; $h(X)$&nbsp; of the continuous random variable&nbsp; $X$.&nbsp;  
 +
 
 +
For the special case &nbsp;  ${\it Δ} = 1/M = 2^{-n}$,&nbsp; the above equation can also be written as follows:
 
   
 
   
 
:$$H(Z) =  n + h(X) \hspace{0.5cm}\big [{\rm in \hspace{0.15cm}bit}\big ] \hspace{0.05cm}.$$
 
:$$H(Z) =  n + h(X) \hspace{0.5cm}\big [{\rm in \hspace{0.15cm}bit}\big ] \hspace{0.05cm}.$$
  
*Im Grenzfall&nbsp; ${\it Δ} → 0 \ ⇒ \ M → ∞ \ ⇒ \ n → ∞$&nbsp; ist auch die Entropie der wertkontinuierlichen Zufallsgröße unendlich groß: &nbsp; $H(X) → ∞$.
+
*In the borderline case&nbsp; ${\it Δ} → 0 \ ⇒ \ M → ∞ \ ⇒ \ n → ∞$,&nbsp; the entropy of the continuous random variable is also infinite: &nbsp; $H(X) → ∞$.
*Auch bei kleinerem&nbsp; $n$&nbsp; stellt diese Gleichung lediglich eine Näherung für&nbsp; $H(Z)$&nbsp; dar, wobei die differentielle Entropie&nbsp; $h(X)$&nbsp; der wertkontinuierlichen Größe als Korrekturfaktor dient.}}
+
*For each&nbsp; $n$&nbsp; the equation&nbsp; $H(Z) = n$&nbsp; is only an approximation,&nbsp; where the differential entropy&nbsp; $h(X)$&nbsp; of the continuous quantity serves as a correction factor.
 +
}}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 3:}$&nbsp; Wir betrachten wie im&nbsp; $\text{Beispiel 2}$&nbsp; eine Dreieck–WDF&nbsp; $($zwischen&nbsp; $0$&nbsp; und&nbsp; $1)$.&nbsp; Deren differentielle Entropie ergibt sich, wie in&nbsp; [[Aufgaben:4.2_Dreieckförmige_WDF| Aufgabe 4.2]]&nbsp; berechnet,  zu&nbsp;  
+
$\text{Example 3:}$&nbsp; As in&nbsp; $\text{Example 2}$,&nbsp; we consider a asymmetrical triangular PDF &nbsp; $($between&nbsp; $0$&nbsp; and&nbsp; $1)$.&nbsp; Its differential entropy, as calculated in&nbsp; [[Aufgaben:Exercise_4.2:_Triangular_PDF|"Exercise 4.2"]]&nbsp; results in&nbsp;  
[[File:P_ID2852__Inf_T_4_1_S2c.png|right|frame|Entropie der Dreieck–WDF nach Quantisierung ]]  
+
[[File:EN_Inf_T_4_1_S2c.png|right|frame|Entropy of the asymmetrical triangular PDF after quantization ]]  
 
:$$h(X) = \hspace{0.05cm}-0.279 \ \rm bit.$$
 
:$$h(X) = \hspace{0.05cm}-0.279 \ \rm bit.$$
  
* In der Tabelle ist die Entropie&nbsp; $H(Z)$&nbsp; der mit&nbsp; $n$&nbsp; Bit&nbsp; quantisierten Größe&nbsp; $Z$&nbsp; angegeben.
+
* The table shows the entropy&nbsp; $H(Z)$&nbsp; of the quantity&nbsp; $Z$&nbsp; quantized with&nbsp; $n$&nbsp; bits.
  
*Man erkennt schon für&nbsp; $n = 3$&nbsp; eine gute Übereinstimmung zwischen Näherung (untere Zeile) und der exakten Berechnung (Zeile 2).
+
*Already fo&nbsp; $n = 3$&nbsp; one can see a good agreement between the approximation&nbsp; (lower row)&nbsp; and the exact calculation&nbsp; (row 2).
  
*Für&nbsp; $n = 10$&nbsp; wird die Näherung noch besser mit der exakten Berechnung&nbsp; (die extrem aufwändig ist)&nbsp; übereinstimmen.
+
*For&nbsp; $n = 10$,&nbsp; the approximation will agree even better with the exact calculation&nbsp; (which is extremely time-consuming.
 
}}
 
}}
 
 
  
 
   
 
   
==Definition und Eigenschaften der differentiellen Entropie ==  
+
==Definition and properties of differential entropy ==  
 
<br>
 
<br>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Verallgemeinerung:}$&nbsp;
+
$\text{Generalization:}$&nbsp;
Die&nbsp; '''differentielle Entropie'''&nbsp; $h(X)$&nbsp; einer wertkontinuierlichen Zufallsgröße&nbsp; $X$&nbsp; lautet mit der Wahrscheinlichkeitsdichtefunktion&nbsp; $f_X(x)$:
+
The&nbsp; &raquo;'''differential entropy'''&laquo;&nbsp; $h(X)$&nbsp; of a continuous value random variable&nbsp; $X$&nbsp; with probability density function&nbsp; $f_X(x)$&nbsp; is:
 
   
 
   
 
:$$h(X) =  
 
:$$h(X) =  
 
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{\text{supp}(f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[ f_X(x) \big] \hspace{0.1cm}{\rm d}x  
 
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{\text{supp}(f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[ f_X(x) \big] \hspace{0.1cm}{\rm d}x  
\hspace{0.6cm}{\rm mit}\hspace{0.6cm} {\rm supp}(f_X) = \{ x\text{:} \ f_X(x) > 0 \}
+
\hspace{0.6cm}{\rm with}\hspace{0.6cm} {\rm supp}(f_X) = \{ x\text{:} \ f_X(x) > 0 \}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Hinzugefügt werden muss jeweils eine Pseudo–Einheit:
+
A pseudo-unit must be added in each case:
*„nat” bei Verwendung von „ln” &nbsp; ⇒ &nbsp;  natürlicher Logarithmus,
+
*"nat" when using&nbsp; "ln" &nbsp; ⇒ &nbsp;  natural logarithm,
*„bit” bei Verwendung von „log<sub>2</sub> &nbsp; ⇒ &nbsp;  Logarithmus dualis.}}
+
 
 +
*"bit" when using&nbsp; "log<sub>2</sub>" &nbsp; ⇒ &nbsp;  binary logarithm.}}
  
  
Während für die (herkömmliche) Entropie einer wertdiskreten Zufallsgröße&nbsp; $X$&nbsp; stets&nbsp; $H(X) ≥ 0$&nbsp; gilt, kann die differentielle Entropie&nbsp; $h(X)$&nbsp; einer wertkontinuierlichen Zufallsgröße auch negativ sein. Daraus ist bereits ersichtlich, dass&nbsp; $h(X)$&nbsp; im Gegensatz zu&nbsp; $H(X)$&nbsp; nicht als „Unsicherheit” interpretiert werden kann.
+
While the (conventional) entropy of a discrete random variable&nbsp; $X$&nbsp; is always&nbsp; $H(X) ≥ 0$&nbsp;, the differential entropy&nbsp; $h(X)$&nbsp; of a continuous random variable can also be negative.&nbsp; From this it is already evident that&nbsp; $h(X)$&nbsp; in contrast to&nbsp; $H(X)$&nbsp; cannot be interpreted as "uncertainty".
  
[[File:P_ID2854__Inf_T_4_1_S3a_neu.png|right|frame|WDF einer gleichverteilten Zufallsgröße]]
+
[[File:P_ID2854__Inf_T_4_1_S3a_neu.png|right|frame|PDF of an uniform distributed random variable]]
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 4:}$&nbsp;  
+
$\text{Example 4:}$&nbsp;  
Die obere Grafik zeigt die Wahrscheinlichkeitsdichte einer zwischen&nbsp; $x_{\rm min}$&nbsp; und&nbsp; $x_{\rm max}$&nbsp; gleichverteilten Zufallsgröße&nbsp; $X$.&nbsp; Für deren differentielle Entropie erhält man in „nat”:
+
The upper graph shows the&nbsp; $\rm PDF$&nbsp; of a random variable&nbsp; $X$,&nbsp; which is uniform distributed between&nbsp; $x_{\rm min}$&nbsp; and&nbsp; $x_{\rm max}$.  
 +
*For its differential entropy one obtains in&nbsp; "nat":
 
    
 
    
 
:$$\begin{align*}h(X)  & =    -  \hspace{-0.18cm}\int\limits_{x_{\rm min} }^{x_{\rm max} } \hspace{-0.28cm}  \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \cdot {\rm ln} \hspace{0.1cm}\big [ \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} }\big ] \hspace{0.1cm}{\rm d}x \\ & =   
 
:$$\begin{align*}h(X)  & =    -  \hspace{-0.18cm}\int\limits_{x_{\rm min} }^{x_{\rm max} } \hspace{-0.28cm}  \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \cdot {\rm ln} \hspace{0.1cm}\big [ \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} }\big ] \hspace{0.1cm}{\rm d}x \\ & =   
 
{\rm ln} \hspace{0.1cm} \big[ {x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} }\big ]  \cdot \big [ \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \big ]_{x_{\rm min} }^{x_{\rm max} }={\rm ln} \hspace{0.1cm} \big[ {x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \big]\hspace{0.05cm}.\end{align*} $$
 
{\rm ln} \hspace{0.1cm} \big[ {x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} }\big ]  \cdot \big [ \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \big ]_{x_{\rm min} }^{x_{\rm max} }={\rm ln} \hspace{0.1cm} \big[ {x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \big]\hspace{0.05cm}.\end{align*} $$
  
Die Gleichung für die differentielle Entropie in „bit” lautet: &nbsp;   
+
*The equation for the differential entropy in "bit" is: &nbsp;   
 
:$$h(X) = \log_2 \big[x_{\rm max} – x_{ \rm min} \big].$$  
 
:$$h(X) = \log_2 \big[x_{\rm max} – x_{ \rm min} \big].$$  
  
[[File:P_ID2855__Inf_T_4_1_S3b_neu.png|left|frame|$h(X)$&nbsp; für verschiedene rechteckförmige Dichtefunktionen]]
+
[[File:P_ID2855__Inf_T_4_1_S3b_neu.png|left|frame|$h(X)$&nbsp; for different rectangular density functions &nbsp; &rArr; &nbsp; uniform distributed random variables]]
<br><br><br><br>Die linke Grafik zeigt anhand einiger Beispiele die numerische Auswertung des obigen Ergebnisses.  
+
<br><br><br><br>The graph on the left shows the numerical evaluation of the above result by means of some examples.  
 
  }}
 
  }}
  
Line 240: Line 255:
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Interpretation:}$&nbsp;
 
$\text{Interpretation:}$&nbsp;
Aus den sechs Skizzen im letzten Beispiel lassen sich wichtige Eigenschaften der differentiellen Entropie&nbsp; $h(X)$&nbsp; ablesen:
+
From the six sketches in the last example, important properties of the differential entropy&nbsp; $h(X)$&nbsp; can be read:
*Die differentielle Entropie wird durch eine WDF–Verschiebung&nbsp; $($um&nbsp; $k)$&nbsp; nicht verändert:
+
*The differential entropy is not changed by a PDF shift &nbsp; $($by&nbsp; $k)$&nbsp;:
:$$h(X + k) = h(X) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \text{Beispielsweise gilt} \ \ h_3(X) = h_4(X) = h_5(X)  \hspace{0.05cm}.$$
+
:$$h(X + k) = h(X) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \text{For example:} \ \ h_3(X) = h_4(X) = h_5(X)  \hspace{0.05cm}.$$
  
* $h(X)$&nbsp; ändert sich durch Stauchung/Spreizung der WDF um den Faktor&nbsp; $k ≠ 0$&nbsp; wie folgt:
+
* $h(X)$&nbsp; changes by compression/spreading of the PDF by the factor&nbsp; $k ≠ 0$&nbsp; as follows:
 
:$$h( k\hspace{-0.05cm} \cdot \hspace{-0.05cm}X) = h(X) + {\rm log}_2 \hspace{0.05cm} \vert k \vert \hspace{0.2cm}\Rightarrow \hspace{0.2cm}
 
:$$h( k\hspace{-0.05cm} \cdot \hspace{-0.05cm}X) = h(X) + {\rm log}_2 \hspace{0.05cm} \vert k \vert \hspace{0.2cm}\Rightarrow \hspace{0.2cm}
  \text{Beispielsweise gilt} \ \ h_6(X) = h_5(AX) = h_5(X) + {\rm log}_2 \hspace{0.05cm} (A) =
+
  \text{For example:} \ \ h_6(X) = h_5(AX) = h_5(X) + {\rm log}_2 \hspace{0.05cm} (A) =
 
{\rm log}_2 \hspace{0.05cm} (2A)   
 
{\rm log}_2 \hspace{0.05cm} (2A)   
 
\hspace{0.05cm}.$$}}
 
\hspace{0.05cm}.$$}}
  
  
Des Weiteren gelten viele der im Kapitel&nbsp; [[Information_Theory/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen|Verschiedene Entropien zweidimensionaler Zufallsgrößen]]&nbsp; für den wertdiskreten Fall hergeleitete Gleichungen auch für wertkontinuierliche Zufallsgrößen.  
+
Many of the equations derived in the chapter&nbsp; [[Information_Theory/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen|"Different entropies of two-dimensional random variables"]]&nbsp; for the discrete case also apply to continuous random variables.
  
Aus der folgenden Zusammenstellung erkennt man, dass oft nur das (große) &nbsp;$H$&nbsp; durch ein (kleines) &nbsp;$h$&nbsp; sowie die Wahrscheinlichkeitsfunktion&nbsp; (englische Abkürzung:&nbsp; $\rm PMF)$&nbsp; durch die entsprechende Wahrscheinlichkeitsdichtefunktion&nbsp; $\rm (PDF$&nbsp;  bzw.&nbsp; $\rm WDF)$&nbsp; zu ersetzen ist.
+
From the following compilation one can see that often only the (large) &nbsp;$H$&nbsp; has to be replaced by a (small) &nbsp;$h$&nbsp; as well as the probability mass function&nbsp; $\rm (PMF)$&nbsp; by the corresponding probability density function&nbsp; $\rm (PDF)$&nbsp;.
  
* '''Bedingte differentielle Entropie'''&nbsp; (englisch:&nbsp; ''Conditional Differential Entropy''):
+
* &raquo;'''Conditional Differential Entropy'''&laquo;:
 
    
 
    
 
:$$H(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log} \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ]=\hspace{-0.04cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{XY}\hspace{-0.08cm})}  
 
:$$H(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log} \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ]=\hspace{-0.04cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{XY}\hspace{-0.08cm})}  
Line 265: Line 280:
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
  
* '''Differentielle Verbundentropie'''&nbsp; (englisch:&nbsp; ''Joint Differential Entropy''):
+
* &raquo;'''Joint Differential Entropy'''&laquo;:
 
    
 
    
 
:$$H(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] =\hspace{-0.04cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{XY}\hspace{-0.08cm})}  
 
:$$H(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] =\hspace{-0.04cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{XY}\hspace{-0.08cm})}  
Line 274: Line 289:
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
  
* '''Kettenregel'''&nbsp; der differentiellen Entropie:
+
* &raquo;'''Chain rule'''&laquo;&nbsp; of differential entropy:
 
    
 
    
 
:$$H(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n) =\sum_{i = 1}^{n}
 
:$$H(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n) =\sum_{i = 1}^{n}
Line 289: Line 304:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* '''Kullback–Leibler–Distanz'''&nbsp; zwischen den Zufallsgrößen&nbsp; $X$&nbsp; und&nbsp; $Y$:
+
* &raquo;'''Kullback–Leibler distance'''&laquo;&nbsp; between the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$:
 
  
 
  
 
:$$D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{X})\hspace{-0.8cm}}
 
:$$D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{X})\hspace{-0.8cm}}
Line 299: Line 314:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
==Differentielle Entropie einiger spitzenwertbegrenzter Zufallsgrößen ==
+
==Differential entropy of some peak-constrained random variables ==
 
<br>
 
<br>
[[File:P_ID2867__Inf_A_4_1.png|right|frame|Differentielle Entropie spitzenwertbegrenzter Zufallsgrößen]]
+
[[File:EN_Inf_T_4_1_S4a.png|right|frame|Differential entropy of peak-constrained random variables]]
Die Tabelle zeigt die Ergebnisse hinsichtlich der differentiellen Entropie für drei beispielhafte Wahrscheinlichkeitsdichtefunktionen&nbsp; $f_X(x)$.&nbsp; Diese sind alle spitzenwertbegrenzt, das heißt, es gilt jeweils&nbsp; $|X| ≤ A$.  
+
The table shows the results regarding the differential entropy for three exemplary probability density functions&nbsp; $f_X(x)$.&nbsp; These are all peak-constrained, i.e. &nbsp; $|X| ≤ A$ applies in each case.  
  
*Bei&nbsp; ''Spitzenwertbegrenzung''&nbsp; kann man die differentielle Entropie stets wie folgt darstellen:
+
*With&nbsp; "peak constraint"&nbsp;, the differential entropy can always be represented as follows:
 +
:$$h(X) =  {\rm log}\,\, ({\it \Gamma}_{\rm A} \cdot A).$$
  
:$$h(X) =  {\rm log}\,\, ({\it \Gamma}_{\rm A} \cdot A).$$
+
*Add the pseudo-unit&nbsp; "nat"&nbsp; when using&nbsp; $\ln$&nbsp; and the pseudo-unit&nbsp; "bit"&nbsp; when using&nbsp; $\log_2$.
 +
 
 +
*${\it \Gamma}_{\rm A}$&nbsp; depends solely on the PDF form and applies only to&nbsp; "peak limitation" &nbsp; &rArr; &nbsp; German:&nbsp; "Amplitudenbegrenzung"  &nbsp; &rArr; &nbsp; Index&nbsp; $\rm A$.
  
Das Argument&nbsp; ${\it \Gamma}_A · A$&nbsp; ist unabhängig davon, welchen Logarithmus man verwendet.&nbsp; Anzufügen ist
+
*A uniform distribution in the range&nbsp; $|X| ≤ 1$&nbsp; yields&nbsp; $h(X) = 1$&nbsp; bit, a second one in the range&nbsp; $|Y| ≤ 4$&nbsp; to&nbsp; $h(Y) = 3$&nbsp; bit.
*bei Verwendung von&nbsp; $\ln$&nbsp; die Pseudo–Einheit „nat”,
 
*bei Verwendung von&nbsp; $\log_2$&nbsp; die Pseudo–Einheit „bit”.
 
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Theorem:}$&nbsp;  
 
$\text{Theorem:}$&nbsp;  
Unter der Nebenbedingung&nbsp; '''Spitzenwertbegrenzung'''&nbsp; (englisch:&nbsp; ''Peak Constraint'') &nbsp; ⇒ &nbsp; also WDF&nbsp; $f_X(x) = 0$ &nbsp;für&nbsp; $ \vert x \vert > A$  &nbsp; – &nbsp;  führt die&nbsp; '''Gleichverteilung'''&nbsp; zur maximalen differentiellen Entropie:
+
Under the &nbsp; &raquo;'''peak contstraint'''&laquo;&nbsp; ⇒ &nbsp; i.e. PDF&nbsp; $f_X(x) = 0$ &nbsp;for&nbsp; $ \vert x \vert > A$  &nbsp; – &nbsp;  the&nbsp; &raquo;'''uniform distribution'''&laquo;&nbsp; leads to the maximum differential entropy:
 
:$$h_{\rm max}(X) = {\rm log} \hspace{0.1cm} (2A)\hspace{0.05cm}.$$
 
:$$h_{\rm max}(X) = {\rm log} \hspace{0.1cm} (2A)\hspace{0.05cm}.$$
Hier ist die geeignete Kenngröße&nbsp; ${\it \Gamma}_{\rm A} = 2$&nbsp; maximal.
+
Here,&nbsp; the appropriate parameter&nbsp; ${\it \Gamma}_{\rm A} = 2$&nbsp; is maximal.
Sie finden den&nbsp; [[Information_Theory/Differentielle_Entropie#Beweis:_Maximale_differentielle_Entropie_bei_Spitzenwertbegrenzung|Beweis]]&nbsp; am Ende dieses Kapitels.}}
+
You will find the&nbsp; [[Information_Theory/Differential_Entropy#Proof:_Maximum_differential_entropy_with_peak_constraint|$\text{proof}$]]&nbsp; at the end of this chapter.}}
  
  
Das Theorem bedeutet gleichzeitig, dass bei jeder anderen spitzenwertbegrenzten WDF (außer der Gleichverteilung) der Kennparameter&nbsp; ${\it \Gamma}_{\rm A} < 2$&nbsp; ist.
+
The theorem simultaneously means that for any other peak-constrained PDF&nbsp; (except the uniform distribution)&nbsp; the characteristic parameter&nbsp; ${\it \Gamma}_{\rm A} < 2$.
*Für die symmetrische Dreieckverteilung ergibt sich nach obiger Tabelle&nbsp; ${\it \Gamma}_{\rm A} = \sqrt{\rm e} ≈ 1.649$.
+
*For the symmetric triangular distribution, the above table gives&nbsp; ${\it \Gamma}_{\rm A} = \sqrt{\rm e} ≈ 1.649$.
*Beim einseitigen Dreieck&nbsp; $($zwischen&nbsp; $0$&nbsp; und&nbsp; $A)$&nbsp; ist demgegenüber&nbsp; ${\it \Gamma}_{\rm A}$&nbsp; nur halb so groß.
+
*In contrast, for the one-sided triangle&nbsp; $($between&nbsp; $0$&nbsp; and&nbsp; $A)$&nbsp; &nbsp; ${\it \Gamma}_{\rm A}$&nbsp; is only half as large.
*Auch für jedes andere Dreieck&nbsp; $($Breite&nbsp; $A$,&nbsp; Spitze beliebig zwischen&nbsp; $0$&nbsp; und&nbsp; $A)$&nbsp; gilt&nbsp; ${\it \Gamma}_{\rm A} ≈ 0.824$.
+
*For every other triangle&nbsp; $($width&nbsp; $A$,&nbsp; arbitrary peak between&nbsp; $0$&nbsp; and&nbsp; $A)$&nbsp; &nbsp; ${\it \Gamma}_{\rm A} ≈ 0.824$&nbsp; also applies.
  
  
Die jeweils zweite&nbsp; $h(X)$–Angabe und die Kenngröße&nbsp; ${\it \Gamma}_{\rm L}$&nbsp; eignet sich dagegen für den Vergleich von Zufallsgrößen bei Leistungsbegrenzung, der im nächsten Abschnitt behandelt wird.&nbsp; Unter dieser Nebenbedingung ist zum Beispiel die symmetrische Dreieckverteilung&nbsp; $({\it \Gamma}_{\rm L} ≈ 16.31)$&nbsp; besser als die Gleichverteilung&nbsp; ${\it \Gamma}_{\rm L} = 12)$.
+
The respective second&nbsp; $h(X)$ specification and the characteristic&nbsp; ${\it \Gamma}_{\rm L}$&nbsp; on the other hand, are suitable for the comparison of random variables with power constraints, which will be discussed in the next section.&nbsp; Under this constraint, e.g. the symmetric triangular distribution&nbsp; $({\it \Gamma}_{\rm L} ≈ 16.31)$&nbsp; is better than the uniform distribution&nbsp; $({\it \Gamma}_{\rm L} = 12)$.
 
 
 
 
  
==Differentielle Entropie einiger leistungsbegrenzter Zufallsgrößen ==   
+
==Differential entropy of some power-constrained random variables ==   
 
<br>
 
<br>
Die differentiellen Entropien&nbsp; $h(X)$&nbsp; für drei beispielhafte Dichtefunktionen&nbsp; $f_X(x)$&nbsp; ohne Begrenzung, die durch entsprechende Parameterwahl alle die gleiche Varianz&nbsp; $σ^2 = {\rm E}\big[|X -m_x|^2 \big]$&nbsp;  und damit gleiche  Streuung&nbsp; $σ$&nbsp; aufweisen, sind der folgenden Tabelle zu entnehmen.&nbsp; Berücksichtigt sind:
+
The differential entropies&nbsp; $h(X)$&nbsp; for three exemplary density functions&nbsp; $f_X(x)$&nbsp; without boundary, which all have the same variance&nbsp; $σ^2 = {\rm E}\big[|X -m_x|^2 \big]$&nbsp;  and thus the same standard deviation&nbsp; $σ$&nbsp; through appropriate parameter selection, can be taken from the following table.&nbsp; Considered are:
  
[[File:P_ID2873__Inf_T_4_1_S5a_neu.png|right|frame|Differentielle Entropie leistungsbegrenzter Zufallsgrößen]]
+
[[File:EN_Inf_T_4_1_S5a_v5.png|right|frame|Differential entropy of power-constrained random variables]]
*die&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|Gaußverteilung]]'',
+
*the&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|"Gaussian distribution"]],
*die&nbsp; [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Zweiseitige_Exponentialverteilung_.E2.80.93_Laplaceverteilung|Laplaceverteilung]]&nbsp;  ⇒  &nbsp; eine zweiseitige Exponentialverteilung,
 
*die  (einseitige) &nbsp;  [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Einseitige_Exponentialverteilung|Exponentialverteilung]].
 
  
 +
*the&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Two-sided_exponential_distribution_-_Laplace_distribution|"Laplace distribution"]]&nbsp;  ⇒  &nbsp; a two-sided exponential distribution,
  
Die differentielle Entropie lässt sich hier stets darstellen als
+
*the  (one-sided) &nbsp;  [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#One-sided_exponential_distribution|"exponential distribution"]].
 +
 
 +
 
 +
The differential entropy can always be represented here as
 
:$$h(X) = 1/2 \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\rm L} \cdot \sigma^2).$$
 
:$$h(X) = 1/2 \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\rm L} \cdot \sigma^2).$$
Das Ergebnis unterscheidet sich nur durch die Pseudo–Einheit  
+
${\it \Gamma}_{\rm L}$&nbsp; depends solely on the PDF form and applies only to&nbsp; "power limitation" &nbsp; &rArr; &nbsp; German:&nbsp; "Leistungsbegrenzung" &nbsp; &rArr; &nbsp; Index&nbsp; $\rm L$.
*„nat” bei Verwendung von&nbsp; $\ln$&nbsp; bzw.
+
 
*„bit” bei Verwendung vo&nbsp;n $\log_2$.
+
The result differs only by the pseudo-unit
 +
*"nat" when using&nbsp; $\ln$&nbsp; or
 +
 +
*"bit" when using&nbsp; $\log_2$.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Theorem:}$&nbsp;  
 
$\text{Theorem:}$&nbsp;  
Unter der Nebenbedingung der&nbsp; '''Leistungsbegrenzung'''&nbsp; (englisch:&nbsp; ''Power Constraint'')&nbsp; führt die '''Gaußverteilung'''
+
Under the constraint of&nbsp; &raquo;'''power constraint'''&laquo;, the &raquo;'''Gaussian PDF'''&laquo;,
:$$f_X(x) = \frac{1}{\sqrt{2\pi  \sigma^2} } \cdot {\rm exp} \left [
+
:$$f_X(x) = \frac{1}{\sqrt{2\pi  \sigma^2} } \cdot {\rm e}^{
- \hspace{0.05cm}\frac{(x - m_1)^2}{2 \sigma^2}\right ]$$
+
- \hspace{0.05cm}{(x - m_1)^2}/(2 \sigma^2)},$$
unabhängig vom Mittelwert&nbsp; $m_1$&nbsp; zur maximalen differentiellen Entropie:
+
leads to the maximum differential entropy,&nbsp; independent of the mean&nbsp; $m_1$:
 
:$$h(X) = 1/2 \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}{\it \Gamma}_{\rm L} < 2π{\rm e} ≈ 17.08\hspace{0.05cm}.$$
 
:$$h(X) = 1/2 \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}{\it \Gamma}_{\rm L} < 2π{\rm e} ≈ 17.08\hspace{0.05cm}.$$
Sie finden den&nbsp; [[Information_Theory/Differentielle_Entropie#Beweis:_Maximale_differentielle_Entropie_bei_Leistungsbegrenzung|Beweis]]&nbsp; am Ende dieses Kapitels.}}
+
You will find the&nbsp; [[Information_Theory/Differential_Entropy#Proof:_Maximum_differential_entropy_with_power_constraint|"proof"]]&nbsp; at the end of this chapter.}}
  
  
Diese Aussage bedeutet gleichzeitig, dass für jede andere WDF als die Gaußverteilung die Kenngröße&nbsp; ${\it \Gamma}_{\rm L} < 2π{\rm e} ≈ 17.08$&nbsp; sein wird.&nbsp; Beispielsweise ergibt sich der Kennwert
+
This statement means at the same time that for any PDF other than the Gaussian distribution, the characteristic value will be&nbsp; ${\it \Gamma}_{\rm L} < 2π{\rm e} ≈ 17.08$.&nbsp; For example, the characteristic value
*für die Dreieckverteilung  zu&nbsp; ${\it \Gamma}_{\rm L} = 6{\rm e} ≈ 16.31$,  
+
*for the triangular distribution to&nbsp; ${\it \Gamma}_{\rm L} = 6{\rm e} ≈ 16.31$,
*für die Laplaceverteilung zu&nbsp; ${\it \Gamma}_{\rm L} = 2{\rm e}^2 ≈ 14.78$, und
+
*für die Gleichverteilung zu&nbsp; $Γ_{\rm L} = 12$ .  
+
*for the Laplace distribution to&nbsp; ${\it \Gamma}_{\rm L} = 2{\rm e}^2 ≈ 14.78$, and
 +
 +
*for the uniform distribution to&nbsp; ${\it \Gamma}_{\rm L} = 12$ .  
  
==Beweis: Maximale differentielle Entropie bei Spitzenwertbegrenzung==  
+
==Proof: Maximum differential entropy with peak constraint==  
 
<br>
 
<br>
Unter der Nebenbedingung der Spitzenwertbegrenzung &nbsp; ⇒  &nbsp; $|X| ≤ A$&nbsp; gilt für die differentielle Entropie:
+
Under the peak constraint &nbsp; ⇒  &nbsp; $|X| ≤ A$&nbsp; the differential entropy is:
 
:$$h(X) = \hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
 
:$$h(X) = \hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
  
Von allen möglichen Wahrscheinlichkeitsdichtefunktionen&nbsp; $f_X(x)$, die die Bedingung
+
Of all possible probability density functions&nbsp; $f_X(x)$ that satisfy the condition
 
:$$\int_{-A}^{+A} \hspace{0.05cm}  f_X(x)  \hspace{0.1cm}{\rm d}x = 1$$
 
:$$\int_{-A}^{+A} \hspace{0.05cm}  f_X(x)  \hspace{0.1cm}{\rm d}x = 1$$
erfüllen, ist nun diejenige Funktion&nbsp; $g_X(x)$&nbsp; gesucht, die zur maximalen differentiellen Entropie&nbsp; $h(X)$&nbsp; führt.  
+
we are now looking for the function&nbsp; $g_X(x)$&nbsp; that leads to the maximum differential entropy&nbsp; $h(X)$.  
  
Zur Herleitung benutzen wir das Verfahren der&nbsp; [https://de.wikipedia.org/wiki/Lagrange-Multiplikator Lagrange–Multiplikatoren]:
+
For derivation we use the&nbsp; [https://en.wikipedia.org/wiki/Lagrange_multiplier $&raquo;\text{Lagrange multiplier method}$&laquo;]:
*Wir definieren die Lagrange–Kenngröße&nbsp; $L$&nbsp; in der Weise, dass darin sowohl&nbsp; $h(X)$&nbsp; als auch die Nebenbedingung&nbsp; $|X| ≤ A$&nbsp; enthalten sind:
+
*We define the Lagrangian parameter&nbsp; $L$&nbsp; in such a way that it contains both&nbsp; $h(X)$&nbsp; and the constraint&nbsp; $|X| ≤ A$&nbsp;:
 
:$$L= \hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.5cm}+ \hspace{0.5cm}
 
:$$L= \hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.5cm}+ \hspace{0.5cm}
 
\lambda \cdot
 
\lambda \cdot
 
\int_{-A}^{+A} \hspace{0.05cm}  f_X(x)  \hspace{0.1cm}{\rm d}x   
 
\int_{-A}^{+A} \hspace{0.05cm}  f_X(x)  \hspace{0.1cm}{\rm d}x   
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Wir setzen allgemein&nbsp; $f_X(x) = g_X(x) + ε · ε_X(x)$, wobei&nbsp; $ε_X(x)$&nbsp; eine beliebige Funktion darstellt, mit der Einschränkung, dass die WDF–Fläche gleich&nbsp; $1$ sein muss.&nbsp; Damit erhalten wir:
+
*We generally set&nbsp; $f_X(x) = g_X(x) + ε · ε_X(x)$, where&nbsp; $ε_X(x)$&nbsp; is an arbitrary function,&nbsp; with the restriction that the PDF area must equal&nbsp; $1$.&nbsp; Thus we obtain:
 
:$$\begin{align*}L = \hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}\big [ g_X(x) + \varepsilon \cdot \varepsilon_X(x)\big ] \cdot {\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) + \varepsilon \cdot \varepsilon_X(x) } \hspace{0.1cm}{\rm d}x + \lambda \cdot
 
:$$\begin{align*}L = \hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}\big [ g_X(x) + \varepsilon \cdot \varepsilon_X(x)\big ] \cdot {\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) + \varepsilon \cdot \varepsilon_X(x) } \hspace{0.1cm}{\rm d}x + \lambda \cdot
 
\int_{-A}^{+A} \hspace{0.05cm} \big [ g_X(x) + \varepsilon \cdot \varepsilon_X(x) \big ]  \hspace{0.1cm}{\rm d}x   
 
\int_{-A}^{+A} \hspace{0.05cm} \big [ g_X(x) + \varepsilon \cdot \varepsilon_X(x) \big ]  \hspace{0.1cm}{\rm d}x   
 
\hspace{0.05cm}.\end{align*}$$
 
\hspace{0.05cm}.\end{align*}$$
*Die bestmögliche Funktion ergibt sich dann, wenn es für&nbsp; $ε = 0$&nbsp; eine stationäre Lösung gibt:
+
*The best possible function is obtained when there is a stationary solution for&nbsp; $ε = 0$&nbsp;:
 
:$$\left [\frac{{\rm d}L}{{\rm d}\varepsilon} \right ]_{\varepsilon \hspace{0.05cm}= \hspace{0.05cm}0}=\hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}  \varepsilon_X(x)  \cdot \big [ {\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) } -1 \big ]\hspace{0.1cm}{\rm d}x \hspace{0.3cm} + \hspace{0.3cm}\lambda \cdot
 
:$$\left [\frac{{\rm d}L}{{\rm d}\varepsilon} \right ]_{\varepsilon \hspace{0.05cm}= \hspace{0.05cm}0}=\hspace{0.1cm}  \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}  \varepsilon_X(x)  \cdot \big [ {\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) } -1 \big ]\hspace{0.1cm}{\rm d}x \hspace{0.3cm} + \hspace{0.3cm}\lambda \cdot
 
\int_{-A}^{+A} \hspace{0.05cm}  \varepsilon_X(x)  \hspace{0.1cm}{\rm d}x \stackrel{!}{=} 0  
 
\int_{-A}^{+A} \hspace{0.05cm}  \varepsilon_X(x)  \hspace{0.1cm}{\rm d}x \stackrel{!}{=} 0  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Diese Bedingungsgleichung ist unabhängig von&nbsp; $ε_X$&nbsp; nur dann zu erfüllen, wenn gilt:
+
*This conditional equation can be satisfied independently of&nbsp; $ε_X$&nbsp; only if holds:
 
:$${\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) } -1 + \lambda  = 0 \hspace{0.4cm}
 
:$${\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) } -1 + \lambda  = 0 \hspace{0.4cm}
 
\forall x \in \big[-A, +A \big]\hspace{0.3cm} \Rightarrow\hspace{0.3cm}
 
\forall x \in \big[-A, +A \big]\hspace{0.3cm} \Rightarrow\hspace{0.3cm}
Line 390: Line 413:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Resümee bei Spitzenwertbegrenzung:}$&nbsp;  
+
$\text{Summary for peak constraints:}$&nbsp;  
  
Die maximale differentielle Entropie ergibt sich unter der Nebenbedingung&nbsp; $ \vert X \vert ≤ A$&nbsp; für die&nbsp; '''Gleichverteilung'''&nbsp; (englisch: ''Uniform PDF''):
+
The maximum differential entropy is obtained under the constraint&nbsp; $ \vert X \vert ≤ A$&nbsp; for the&nbsp; &raquo;'''uniform PDF'''&laquo;:
 
:$$h_{\rm max}(X) = {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\rm A} \cdot A) = {\rm log} \hspace{0.1cm} (2A) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {\it \Gamma}_{\rm A} = 2
 
:$$h_{\rm max}(X) = {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\rm A} \cdot A) = {\rm log} \hspace{0.1cm} (2A) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {\it \Gamma}_{\rm A} = 2
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Jede andere Zufallsgröße mit der WDF–Eigenschaft &nbsp;$f_X(\vert x \vert  > A) = 0$&nbsp; führt zu einer kleineren differentiellen Entropie, gekennzeichnet durch den Parameter &nbsp;${\it \Gamma}_{\rm A} < 2$.}}
+
Any other random variable with the PDF property &nbsp;$f_X(\vert x \vert  > A) = 0$ &nbsp; leads to a smaller differential entropy, characterized by the parameter &nbsp;${\it \Gamma}_{\rm A} < 2$.}}
  
==Beweis: Maximale differentielle Entropie bei Leistungsbegrenzung==
+
==Proof: Maximum differential entropy with power constraint==
 
<br>
 
<br>
Vorneweg zur Begriffserklärung:  
+
Let's start by explaining the term:
*Eigentlich wird nicht die Leistung  &nbsp; ⇒  &nbsp;   das&nbsp; [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente#Momentenberechnung_als_Scharmittelwert|zweite Moment]]&nbsp; $m_2$ begrenzt, sondern das&nbsp; [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente|zweite Zentralmoment]]&nbsp;  ⇒ &nbsp; Varianz $μ_2 = σ^2$.  
+
*Actually,&nbsp; it is not the power &nbsp; ⇒ the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Moment_calculation_as_ensemble_average|"second moment"]]&nbsp; $m_2$ that  is limited,&nbsp; but the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|"second central moment"]]&nbsp;  ⇒ &nbsp; variance&nbsp; $μ_2 = σ^2$.
*Gesucht wird also nun die maximale differentielle Entropie unter der Nebenbedingung&nbsp; ${\rm E}\big[|X m_1|^2 \big] ≤ σ^2$.  
+
 
*Das&nbsp; $≤$&ndash;Zeichen dürfen wir hierbei durch das Gleichheitszeichen ersetzen.
+
*We are now looking for the maximum differential entropy under the constraint&nbsp; ${\rm E}\big[|X - m_1|^2 \big] ≤ σ^2$.  
 +
*Here we may replace the&nbsp; "smaller/equal sign"&nbsp; by the&nbsp; "equal sign".  
  
  
Lassen wir nur mittelwertfreie Zufallsgrößen zu, so umgehen wir das Problem.&nbsp; Damit lautet der&nbsp; [https://de.wikipedia.org/wiki/Lagrange-Multiplikator Lagrange-Multiplikator]:
+
If we only allow mean-free random variables, we circumvent the problem.&nbsp; Thus the&nbsp; [https://en.wikipedia.org/wiki/Lagrange_multiplier "Lagrange multiplier"]:
 
   
 
   
 
:$$L= \hspace{0.1cm}  \hspace{0.05cm} \int_{-\infty}^{+\infty} \hspace{-0.1cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.1cm}+ \hspace{0.1cm}
 
:$$L= \hspace{0.1cm}  \hspace{0.05cm} \int_{-\infty}^{+\infty} \hspace{-0.1cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.1cm}+ \hspace{0.1cm}
Line 415: Line 439:
 
\int_{-\infty}^{+\infty}\hspace{-0.1cm}  x^2 \cdot f_X(x)  \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
 
\int_{-\infty}^{+\infty}\hspace{-0.1cm}  x^2 \cdot f_X(x)  \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
  
Nach ähnlichem Vorgehen wie beim&nbsp; [[Information_Theory/Differentielle_Entropie#Beweis:_Maximale_differentielle_Entropie_bei_Spitzenwertbegrenzung|Beweis für Spitzenwertbegrenzung]]&nbsp; zeigt sich, dass die „bestmögliche” Funktion&nbsp; $g_X(x) \sim {\rm e}^{–λ_2\hspace{0.05cm} · \hspace{0.05cm} x^2}$&nbsp; sein muss  &nbsp;  ⇒  &nbsp;  [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgröße|Gaußverteilung]]:
+
Following a similar procedure as in the&nbsp; [[Information_Theory/Differentielle_Entropie#Proof:_Maximum_differential_entropy_with_peak_constraint|"proof of the peak constraint"]]&nbsp; it turns out, that the "best possible" function must be  &nbsp; $g_X(x) \sim {\rm e}^{–λ_2\hspace{0.05cm} · \hspace{0.05cm} x^2}$&nbsp; &nbsp;  ⇒  &nbsp;  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|"Gaussian distribution"]]:
 
   
 
   
 
:$$g_X(x) ={1}/{\sqrt{2\pi  \sigma^2}} \cdot {\rm e}^{  
 
:$$g_X(x) ={1}/{\sqrt{2\pi  \sigma^2}} \cdot {\rm e}^{  
 
- \hspace{0.05cm}{x^2}/{(2 \sigma^2)} }\hspace{0.05cm}.$$
 
- \hspace{0.05cm}{x^2}/{(2 \sigma^2)} }\hspace{0.05cm}.$$
  
Wir verwenden hier aber für den expliziten Beweis die&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Kullback–Leibler–Distanz]]&nbsp; zwischen einer geeigneten allgemeinen WDF&nbsp; $f_X(x)$&nbsp; und der Gauß–WDF&nbsp; $g_X(x)$:
+
However, we use here for the explicit proof the&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Informational_divergence_-_Kullback-Leibler_distance|"Kullback–Leibler distance"]]&nbsp; between a suitable general PDF&nbsp; $f_X(x)$&nbsp; and the Gaussian PDF&nbsp; $g_X(x)$:
 
    
 
    
 
:$$D(f_X \hspace{0.05cm} ||  \hspace{0.05cm}g_X) = \int_{-\infty}^{+\infty} \hspace{0.02cm}
 
:$$D(f_X \hspace{0.05cm} ||  \hspace{0.05cm}g_X) = \int_{-\infty}^{+\infty} \hspace{0.02cm}
Line 427: Line 451:
 
  f_X(x) \cdot {\rm ln} \hspace{0.1cm} {g_X(x)} \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
 
  f_X(x) \cdot {\rm ln} \hspace{0.1cm} {g_X(x)} \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
  
Zur Vereinfachung ist hier der natürliche Logarithmus &nbsp; &rArr; &nbsp; $\ln$ verwendet. Damit erhalten wir für das zweite Integral:
+
For simplicity, the natural logarithm &nbsp; &rArr; &nbsp; $\ln$&nbsp; is used here.&nbsp; Thus we obtain for the second integral:
 
   
 
   
 
:$$I_2 = - \frac{1}{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi\sigma^2)  \cdot \hspace{-0.1cm}\int_{-\infty}^{+\infty} \hspace{-0.4cm}  f_X(x) \hspace{0.1cm}{\rm d}x
 
:$$I_2 = - \frac{1}{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi\sigma^2)  \cdot \hspace{-0.1cm}\int_{-\infty}^{+\infty} \hspace{-0.4cm}  f_X(x) \hspace{0.1cm}{\rm d}x
Line 434: Line 458:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das erste Integral ist definitionsgemäß gleich&nbsp; $1$&nbsp; und das zweite Integral ergibt&nbsp; $σ^2$:
+
By definition, the first integral is equal to&nbsp; $1$&nbsp; and the second integral gives&nbsp; $σ^2$:
 
    
 
    
 
:$$I_2 = - {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi\sigma^2)  - {1}/{2} \cdot [{\rm ln} \hspace{0.1cm} ({\rm e})] = - {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)$$
 
:$$I_2 = - {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi\sigma^2)  - {1}/{2} \cdot [{\rm ln} \hspace{0.1cm} ({\rm e})] = - {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)$$
Line 440: Line 464:
 
-h(X) + {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.05cm}.$$
 
-h(X) + {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.05cm}.$$
  
Da auch bei wertkontinuierlichen Zufallsgrößen die Kullback–Leibler–Distanz stets&nbsp; $\ge 0$&nbsp; ist, erhält man nach Verallgemeinerung (&bdquo;ln&rdquo; &nbsp; ⇒ &nbsp;  &bdquo;log&rdquo;):
+
Since also for continuous  random variables the Kullback-Leibler distance is always&nbsp; $\ge 0$&nbsp;, after generalization ("ln" &nbsp; ⇒ &nbsp;  "log"):
 
   
 
   
 
:$$h(X) \le {1}/{2} \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.05cm}.$$
 
:$$h(X) \le {1}/{2} \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.05cm}.$$
  
Das Gleichzeichen gilt nur, wenn die Zufallsgröße&nbsp; $X$&nbsp; gaußverteilt ist.
+
The equal sign only applies if the random variable&nbsp; $X$&nbsp; is Gaussian distributed.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Resümee bei Leistungsbegrenzung:}$&nbsp;  
+
$\text{Summary for power constraints:}$&nbsp;  
  
Die maximale differentielle Entropie ergibt sich unter der Bedingung&nbsp; ${\rm E}\big[ \vert X – m_1 \vert ^2 \big] ≤ σ^2$&nbsp;  unabhängig von&nbsp; $m_1$&nbsp; für die&nbsp; '''Gaußverteilung'''&nbsp; (englisch:&nbsp; Gaussian PDF):
+
The maximum differential entropy is obtained under the condition&nbsp; ${\rm E}\big[ \vert X – m_1 \vert ^2 \big] ≤ σ^2$&nbsp;  independent of&nbsp; $m_1$&nbsp; for the&nbsp; &raquo;'''Gaussian PDF'''&laquo;:
 
:$$h_{\rm max}(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.01cm} \rm L} \cdot \sigma^2) =  
 
:$$h_{\rm max}(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.01cm} \rm L} \cdot \sigma^2) =  
 
  {1}/{2} \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {\it \Gamma}_{\rm L} = 2\pi{\rm e}
 
  {1}/{2} \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {\it \Gamma}_{\rm L} = 2\pi{\rm e}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Jede andere wertkontinuierliche Zufallsgröße&nbsp; $X$&nbsp; mit Varianz&nbsp; ${\rm E}\big[ \vert X – m_1 \vert ^2 \big] ≤ σ^2$&nbsp; führt zu einem kleineren Wert, gekennzeichnet durch die Kenngröße ${\it \Gamma}_{\rm L}  < 2πe$. }}
+
Any other  continuous random variable&nbsp; $X$&nbsp; with variance&nbsp; ${\rm E}\big[ \vert X – m_1 \vert ^2 \big] ≤ σ^2$&nbsp; leads to a smaller value,&nbsp; characterized by the parameter ${\it \Gamma}_{\rm L}  < 2πe$. }}
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:4.1 WDF, VTF und Wahrscheinlichkeit|Aufgabe 4.1: WDF, VTF und Wahrscheinlichkeit]]
+
[[Aufgaben:Exercise_4.1:_PDF,_CDF_and_Probability|Exercise 4.1: PDF, CDF and Probability]]
  
[[Aufgaben:4.1Z Momentenberechnung|Aufgabe 4.1Z: Momentenberechnung]]
+
[[Aufgaben:Exercise_4.1Z:_Calculation_of_Moments|Exercise 4.1Z: Calculation of Moments]]
  
[[Aufgaben:4.2 Dreieckförmige WDF|Aufgabe 4.2: Dreieckförmige WDF]]
+
[[Aufgaben:Exercise_4.2:_Triangular_PDF|Exercise 4.2: Triangular PDF]]
  
[[Aufgaben:4.2Z Gemischte Zufallsgrößen|Aufgabe 4.2Z: Gemischte Zufallsgrößen]]
+
[[Aufgaben:Exercise_4.2Z:_Mixed_Random_Variables|Exercise 4.2Z: Mixed Random Variables]]
  
[[Aufgaben:Aufgabe_4.3:_WDF–Vergleich_bezüglich_differentieller_Entropie|Aufgabe 4.3: WDF–Vergleich bezüglich  differentieller Entropie]]
+
[[Aufgaben:Exercise_4.3:_PDF_Comparison_with_Regard_to_Differential_Entropy|Exercise 4.3: PDF Comparison with Regard to Differential Entropy]]
  
[[Aufgaben:4.3Z Exponential– und Laplaceverteilung|Aufgabe 4.3Z: Exponential– und Laplaceverteilung]]
+
[[Aufgaben:Exercise_4.3Z:_Exponential_and_Laplace_Distribution|Exercise 4.3Z: Exponential and Laplace Distribution]]
  
[[Aufgaben:4.4 Herkömmliche Entropie und differenzielle Entropie|Aufgabe 4.4: Herkömmliche Entropie und differenzielle Entropie]]
+
[[Aufgaben:Exercise_4.4:_Conventional_Entropy_and_Differential_Entropy|Exercise 4.4: Conventional Entropy and Differential Entropy]]
  
  

Latest revision as of 15:29, 28 February 2023

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


In the last chapter of this book,  the information-theoretical quantities defined so far for the discrete case are adapted in such a way that they can also be applied to continuous random quantities.

  • For example,  the entropy  $H(X)$  for the discrete random variable  $X$  becomes the  »differential entropy«  $h(X)$  in the continuous case.
  • While  $H(X)$  indicates the  »uncertainty«  with regard to the discrete random variable  $X$;  in the continuous case  $h(X)$  cannot be interpreted in the same way.


Many of the relationships derived in the third chapter  »Information between two discrete random variables«  for conventional entropy also apply to differential entropy.   Thus,  the differential joint entropy  $h(XY)$  can also be given for continuous random variables  $X$  and  $Y$,  and likewise also the two conditional differential entropies  $h(Y|X)$  and  $h(X|Y)$.


In detail, this main chapter deals with

  1. the special features of  »continuous random variables«,
  2. the  »definition and calculation of the differential entropy«  as well as its properties,
  3. the  »mutual information«  between two continuous random variables,
  4. the  »capacity of the AWGN channel«  and several such parallel Gaussian channels,
  5. the  »channel coding theorem«,  one of the highlights of Shannon's information theory,
  6. the  »AWGN channel capacity«  for discrete input  $($BPSK,  QPSK$)$.



Properties of continuous random variables


Up to now,  "discrete random variables"  of the form  $X = \{x_1,\ x_2, \hspace{0.05cm}\text{...}\hspace{0.05cm} , x_μ, \text{...} ,\ x_M\}$  have always been considered, which from an information-theoretical point of view are completely characterized by their  "probability mass function"  $\rm (PMF)$:

$$P_X(X) = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_{\mu},\hspace{0.05cm} \text{...}\hspace{0.15cm}, p_M \hspace{0.1cm}\big ] \hspace{0.3cm}{\rm with} \hspace{0.3cm} p_{\mu}= P_X(x_{\mu})= {\rm Pr}( X = x_{\mu}) \hspace{0.05cm}.$$

A  "continuous random variable",  on the other hand, can assume any value – at least in finite intervals:

  • Due to the uncountable supply of values, the description by a probability mass function is not possible in this case, or at least it does not make sense:
  • This would result in the symbol set size  $M \to ∞$  as well as probabilities  $p_1 \to 0$,  $p_2 \to 0$,  etc.


For the description of continuous random variables, one uses equally according to the definitions in the book  "Theory of Stochastic Signals":

PDF and CDF of a continuous random variable
$$f_X(x_0)= \lim_{{\rm \Delta} x\to \rm 0}\frac{p_{{\rm \Delta} x}}{{\rm \Delta} x} = \lim_{{\rm \Delta} x\to \rm 0}\frac{{\rm Pr} \{ x_0- {\rm \Delta} x/\rm 2 \le \it X \le x_{\rm 0} +{\rm \Delta} x/\rm 2\}}{{\rm \Delta} x};$$
In words:   the PDF value at  $x_0$  gives the probability  $p_{Δx}$  that  $X$  lies in an (infinitely small) interval of width  $Δx$  around  $x_0$ , divided by  $Δx$   (note the entries in the adjacent graph);
$$m_1 = {\rm E}\big[ X \big]= \int_{-\infty}^{+\infty} \hspace{-0.1cm} x \cdot f_X(x) \hspace{0.1cm}{\rm d}x \hspace{0.05cm};$$
$$\sigma^2 = {\rm E}\big[(X- m_1 )^2 \big]= \int_{-\infty}^{+\infty} \hspace{-0.1cm} (x- m_1 )^2 \cdot f_X(x- m_1 ) \hspace{0.1cm}{\rm d}x \hspace{0.05cm};$$
$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(X \le x)\hspace{0.05cm}.$$

Note that both the PDF area and the CDF final value are always equal to  $1$.

$\text{Nomenclature notes on PDF and CDF:}$

We use in this chapter for a  »probability density function«  $\rm (PDF)$  the representation form  $f_X(x)$  often used in the literature, where holds:

  • $X$  denotes the (discrete or continuous) random variable,
  • $x$  is a possible realization of  $X$   ⇒   $x ∈ X$.


Accordingly, we denote the  »cumulative distribution function«  $\rm (CDF)$  of the random variable  $X$  by  $F_X(x)$  according to the following definition:

$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(X \le x)\hspace{0.05cm}.$$

In other  $\rm LNTwww$ books, we often write so as not to use up two characters for one variable:

  • For the PDF  $f_x(x)$   ⇒   no distinction between random variable and realization.
  • For the CDF  $F_x(r) = {\rm Pr}(x ≤ r)$   ⇒   here one needs a second variable in any case.


We apologize for this formal inaccuracy.


$\text{Example 1:}$  We now consider with the  »uniform distribution«  an important special case.

Two analog signals as examples of continuous random variables
  • The graph shows the course of two uniformly distributed variables, which can assume all values between  $1$  and  $5$  $($mean value $m_1 = 3)$  with equal probability.
  • On the left is the result of a random process, on the right a deterministic signal with the same amplitude distribution.
PDF and CDF of an uniformly distributed random variable


The  "probability density function"  $\rm (PDF)$  of the uniform distribution has the course sketched in the second graph above:

$$f_X(x) = \left\{ \begin{array}{c} \hspace{0.25cm}(x_{\rm max} - x_{\rm min})^{-1} \\ 1/2 \cdot (x_{\rm max} - x_{\rm min})^{-1} \\ \hspace{0.25cm} 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{for} } \\ {\rm{for} } \\ {\rm{for} } \\ \end{array} \begin{array}{*{20}l} {x_{\rm min} < x < x_{\rm max},} \\ x ={x_{\rm min} \hspace{0.15cm}{\rm and}\hspace{0.15cm}x = x_{\rm max},} \\ x > x_{\rm max}. \\ \end{array}$$

The following equations are obtained here for the mean  $m_1 ={\rm E}\big[X\big]$  and the variance  $σ^2={\rm E}\big[(X – m_1)^2\big]$  :

$$m_1 = \frac{x_{\rm max} + x_{\rm min} }{2}\hspace{0.05cm}, $$
$$\sigma^2 = \frac{(x_{\rm max} - x_{\rm min})^2}{12}\hspace{0.05cm}.$$

Shown below is the   »cumulative distribution function«  $\rm (CDF)$:

$$F_X(x) = \int_{-\infty}^{x} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(X \le x)\hspace{0.05cm}.$$
  • This is identically zero for  $x ≤ x_{\rm min}$, increases linearly thereafter and reaches the CDF final value of   $1$ at  $x = x_{\rm max}$ .
  • The probability that the random variable  $X$  takes on a value between  $3$  and  $4$  can be determined from both the PDF and the CDF:
$${\rm Pr}(3 \le X \le 4) = \int_{3}^{4} \hspace{-0.1cm}f_X(\xi) \hspace{0.1cm}{\rm d}\xi = 0.25\hspace{0.05cm}\hspace{0.05cm},$$
$${\rm Pr}(3 \le X \le 4) = F_X(4) - F_X(3) = 0.25\hspace{0.05cm}.$$

Furthermore, note:

  • The result  $X = 0$  is excluded for this random variable   ⇒   ${\rm Pr}(X = 0) = 0$.
  • The result  $X = 4$ , on the other hand, is quite possible.  Nevertheless,  ${\rm Pr}(X = 4) = 0 $  also applies here.

Entropy of continuous random variables after quantization


We now consider a continuous random variable  $X$  in the range  $0 \le x \le 1$.

  • We quantize this random variable  $X$,  in order to be able to further apply the previous entropy calculation.  We call the resulting discrete (quantized) quantity  $Z$.
  • Let the number of quantization steps be  $M$,  so that each quantization interval  $μ$  has the width  ${\it Δ} = 1/M$  in the present PDF.  We denote the interval centres by  $x_μ$.
  • The probability  $p_μ = {\rm Pr}(Z = z_μ)$  with respect to  $Z$  is equal to the probability that the random variable  $X$  has a value between  $x_μ - {\it Δ}/2$  and  $x_μ + {\it Δ}/2$.
  • First we set  $M = 2$  and then double this value in each iteration.  This makes the quantization increasingly finer.  In the  $n$th try,  then apply  $M = 2^n$  and  ${\it Δ} =2^{–n}$.


$\text{Example 2:}$  The graph shows the results of the first three trials for an asymmetrical triangular PDF  $($betweeen  $0$  and  $1)$:

Entropy determination of the triangular PDF after quantization
  • $n = 1 \ ⇒ \ M = 2 \ ⇒ \ {\it Δ} = 1/2\text{:}$     $H(Z) = 0.811\ \rm bit,$
  • $n = 2 \ ⇒ \ M = 4 \ ⇒ \ {\it Δ} = 1/4\text{:}$     $H(Z) = 1.749\ \rm bit,$
  • $n = 3 \ ⇒ \ M = 8 \ ⇒ \ {\it Δ} = 1/8\text{:}$     $H(Z) = 2.729\ \rm bit.$


Additionally, the following quantities can be taken from the graph, for example for  ${\it Δ} = 1/8$:

  • The interval centres are at
$$x_1 = 1/16,\ x_2 = 3/16,\text{ ...} \ ,\ x_8 = 15/16 $$
$$ ⇒ \ x_μ = {\it Δ} · (μ - 1/2).$$
  • The interval areas result in  
$$p_μ = {\it Δ} · f_X(x_μ) ⇒ p_8 = 1/8 · (7/8+1)/2 = 15/64.$$
  • Thus, we obtain for the  $\rm PMF$  of the quantized random variable $Z$:
$$P_Z(Z) = (1/64, \ 3/64, \ 5/64, \ 7/64, \ 9/64, \ 11/64, \ 13/64, \ 15/64).$$


$\text{Conclusion:}$  We interpret the results of this experiment as follows:

  1. The entropy  $H(Z)$  becomes larger and larger as  $M$  increases.
  2. The limit of  $H(Z)$  for  $M \to ∞ \ ⇒ \ {\it Δ} → 0$  is infinite.
  3. Thus, the entropy  $H(X)$  of the continuous random variable  $X$  is also infinite.
  4. It follows:   The previous definition of entropy fails for continuous random variables.


To verify our empirical result, we assume the following equation:

$$H(Z) = \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.2cm} p_{\mu} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\mu}}= \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.2cm} {\it \Delta} \cdot f_X(x_{\mu} ) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{{\it \Delta} \cdot f_X(x_{\mu} )}\hspace{0.05cm}.$$
  • We now split  $H(Z) = S_1 + S_2$  into two summands:
$$\begin{align*}S_1 & = {\rm log}_2 \hspace{0.1cm} \frac{1}{\it \Delta} \cdot \hspace{0.2cm} \sum_{\mu = 1}^{M} \hspace{0.02cm} {\it \Delta} \cdot f_X(x_{\mu} ) \approx - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.05cm},\\ S_2 & = \hspace{0.05cm} \sum_{\mu = 1}^{M} \hspace{0.2cm} f_X(x_{\mu} ) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ f_X(x_{\mu} ) } \cdot {\it \Delta} \hspace{0.2cm}\approx \hspace{0.2cm} \int_{0}^{1} \hspace{0.05cm} f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.\end{align*}$$
  • The approximation  $S_1 ≈ -\log_2 {\it Δ}$  applies exactly only in the borderline case  ${\it Δ} → 0$. 
  • The given approximation for  $S_2$  is also only valid for small  ${\it Δ} → {\rm d}x$,  so that one should replace the sum by the integral.


$\text{Generalization:}$  If one approximates the continuous random variable  $X$  with the PDF  $f_X(x)$  by a discrete random variable  $Z$  by performing a (fine) quantization with the interval width  ${\it Δ}$,  one obtains for the entropy of the random variable  $Z$:

$$H(Z) \approx - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.2cm}+ \hspace{-0.35cm} \int\limits_{\text{supp}(f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x = - {\rm log}_2 \hspace{0.1cm}{\it \Delta} \hspace{0.2cm} + h(X) \hspace{0.5cm}\big [{\rm in \hspace{0.15cm}bit}\big ] \hspace{0.05cm}.$$

For the special case   ${\it Δ} = 1/M = 2^{-n}$,  the above equation can also be written as follows:

$$H(Z) = n + h(X) \hspace{0.5cm}\big [{\rm in \hspace{0.15cm}bit}\big ] \hspace{0.05cm}.$$
  • In the borderline case  ${\it Δ} → 0 \ ⇒ \ M → ∞ \ ⇒ \ n → ∞$,  the entropy of the continuous random variable is also infinite:   $H(X) → ∞$.
  • For each  $n$  the equation  $H(Z) = n$  is only an approximation,  where the differential entropy  $h(X)$  of the continuous quantity serves as a correction factor.


$\text{Example 3:}$  As in  $\text{Example 2}$,  we consider a asymmetrical triangular PDF   $($between  $0$  and  $1)$.  Its differential entropy, as calculated in  "Exercise 4.2"  results in 

Entropy of the asymmetrical triangular PDF after quantization
$$h(X) = \hspace{0.05cm}-0.279 \ \rm bit.$$
  • The table shows the entropy  $H(Z)$  of the quantity  $Z$  quantized with  $n$  bits.
  • Already fo  $n = 3$  one can see a good agreement between the approximation  (lower row)  and the exact calculation  (row 2).
  • For  $n = 10$,  the approximation will agree even better with the exact calculation  (which is extremely time-consuming.


Definition and properties of differential entropy


$\text{Generalization:}$  The  »differential entropy«  $h(X)$  of a continuous value random variable  $X$  with probability density function  $f_X(x)$  is:

$$h(X) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{\text{supp}(f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[ f_X(x) \big] \hspace{0.1cm}{\rm d}x \hspace{0.6cm}{\rm with}\hspace{0.6cm} {\rm supp}(f_X) = \{ x\text{:} \ f_X(x) > 0 \} \hspace{0.05cm}.$$

A pseudo-unit must be added in each case:

  • "nat" when using  "ln"   ⇒   natural logarithm,
  • "bit" when using  "log2"   ⇒   binary logarithm.


While the (conventional) entropy of a discrete random variable  $X$  is always  $H(X) ≥ 0$ , the differential entropy  $h(X)$  of a continuous random variable can also be negative.  From this it is already evident that  $h(X)$  in contrast to  $H(X)$  cannot be interpreted as "uncertainty".

PDF of an uniform distributed random variable

$\text{Example 4:}$  The upper graph shows the  $\rm PDF$  of a random variable  $X$,  which is uniform distributed between  $x_{\rm min}$  and  $x_{\rm max}$.

  • For its differential entropy one obtains in  "nat":
$$\begin{align*}h(X) & = - \hspace{-0.18cm}\int\limits_{x_{\rm min} }^{x_{\rm max} } \hspace{-0.28cm} \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \cdot {\rm ln} \hspace{0.1cm}\big [ \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} }\big ] \hspace{0.1cm}{\rm d}x \\ & = {\rm ln} \hspace{0.1cm} \big[ {x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} }\big ] \cdot \big [ \frac{1}{x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \big ]_{x_{\rm min} }^{x_{\rm max} }={\rm ln} \hspace{0.1cm} \big[ {x_{\rm max}\hspace{-0.05cm} - \hspace{-0.05cm}x_{\rm min} } \big]\hspace{0.05cm}.\end{align*} $$
  • The equation for the differential entropy in "bit" is:  
$$h(X) = \log_2 \big[x_{\rm max} – x_{ \rm min} \big].$$
$h(X)$  for different rectangular density functions   ⇒   uniform distributed random variables





The graph on the left shows the numerical evaluation of the above result by means of some examples.


$\text{Interpretation:}$  From the six sketches in the last example, important properties of the differential entropy  $h(X)$  can be read:

  • The differential entropy is not changed by a PDF shift   $($by  $k)$ :
$$h(X + k) = h(X) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \text{For example:} \ \ h_3(X) = h_4(X) = h_5(X) \hspace{0.05cm}.$$
  • $h(X)$  changes by compression/spreading of the PDF by the factor  $k ≠ 0$  as follows:
$$h( k\hspace{-0.05cm} \cdot \hspace{-0.05cm}X) = h(X) + {\rm log}_2 \hspace{0.05cm} \vert k \vert \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \text{For example:} \ \ h_6(X) = h_5(AX) = h_5(X) + {\rm log}_2 \hspace{0.05cm} (A) = {\rm log}_2 \hspace{0.05cm} (2A) \hspace{0.05cm}.$$


Many of the equations derived in the chapter  "Different entropies of two-dimensional random variables"  for the discrete case also apply to continuous random variables.

From the following compilation one can see that often only the (large)  $H$  has to be replaced by a (small)  $h$  as well as the probability mass function  $\rm (PMF)$  by the corresponding probability density function  $\rm (PDF)$ .

  • »Conditional Differential Entropy«:
$$H(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log} \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ]=\hspace{-0.04cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{XY}\hspace{-0.08cm})} \hspace{-0.8cm} P_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (x \hspace{-0.05cm}\mid \hspace{-0.05cm} y)} \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm}h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log} \hspace{0.1cm}\frac{1}{f_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ]=\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.04cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{1}{f_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (x \hspace{-0.05cm}\mid \hspace{-0.05cm} y)} \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
  • »Joint Differential Entropy«:
$$H(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] =\hspace{-0.04cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{XY}\hspace{-0.08cm})} \hspace{-0.8cm} P_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ P_{XY}(x, y)} \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm}h(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{f_{XY}(X, Y)}\right ] =\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.04cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_{XY}(x, y) } \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
  • »Chain rule«  of differential entropy:
$$H(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n) =\sum_{i = 1}^{n} H(X_i | X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_{i-1}) \le \sum_{i = 1}^{n} H(X_i) \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} h(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n) =\sum_{i = 1}^{n} h(X_i | X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_{i-1}) \le \sum_{i = 1}^{n} h(X_i) \hspace{0.05cm}.$$
  • »Kullback–Leibler distance«  between the random variables  $X$  and  $Y$:
$$D(P_X \hspace{0.05cm} || \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}P_{X})\hspace{-0.8cm}} P_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{P_X(x)}{P_Y(x)} \ge 0$$
$$\Rightarrow \hspace{0.3cm}D(f_X \hspace{0.05cm} || \hspace{0.05cm}f_Y) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{f_X(X)}{f_Y(X)}\right ] \hspace{0.2cm}= \hspace{-0.4cm}\int\limits_{x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.03cm}(\hspace{-0.03cm}f_{X}\hspace{-0.08cm})} \hspace{-0.4cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{f_X(x)}{f_Y(x)} \hspace{0.15cm}{\rm d}x \ge 0 \hspace{0.05cm}.$$

Differential entropy of some peak-constrained random variables


Differential entropy of peak-constrained random variables

The table shows the results regarding the differential entropy for three exemplary probability density functions  $f_X(x)$.  These are all peak-constrained, i.e.   $|X| ≤ A$ applies in each case.

  • With  "peak constraint" , the differential entropy can always be represented as follows:
$$h(X) = {\rm log}\,\, ({\it \Gamma}_{\rm A} \cdot A).$$
  • Add the pseudo-unit  "nat"  when using  $\ln$  and the pseudo-unit  "bit"  when using  $\log_2$.
  • ${\it \Gamma}_{\rm A}$  depends solely on the PDF form and applies only to  "peak limitation"   ⇒   German:  "Amplitudenbegrenzung"   ⇒   Index  $\rm A$.
  • A uniform distribution in the range  $|X| ≤ 1$  yields  $h(X) = 1$  bit, a second one in the range  $|Y| ≤ 4$  to  $h(Y) = 3$  bit.


$\text{Theorem:}$  Under the   »peak contstraint«  ⇒   i.e. PDF  $f_X(x) = 0$  for  $ \vert x \vert > A$   –   the  »uniform distribution«  leads to the maximum differential entropy:

$$h_{\rm max}(X) = {\rm log} \hspace{0.1cm} (2A)\hspace{0.05cm}.$$

Here,  the appropriate parameter  ${\it \Gamma}_{\rm A} = 2$  is maximal. You will find the  $\text{proof}$  at the end of this chapter.


The theorem simultaneously means that for any other peak-constrained PDF  (except the uniform distribution)  the characteristic parameter  ${\it \Gamma}_{\rm A} < 2$.

  • For the symmetric triangular distribution, the above table gives  ${\it \Gamma}_{\rm A} = \sqrt{\rm e} ≈ 1.649$.
  • In contrast, for the one-sided triangle  $($between  $0$  and  $A)$    ${\it \Gamma}_{\rm A}$  is only half as large.
  • For every other triangle  $($width  $A$,  arbitrary peak between  $0$  and  $A)$    ${\it \Gamma}_{\rm A} ≈ 0.824$  also applies.


The respective second  $h(X)$ specification and the characteristic  ${\it \Gamma}_{\rm L}$  on the other hand, are suitable for the comparison of random variables with power constraints, which will be discussed in the next section.  Under this constraint, e.g. the symmetric triangular distribution  $({\it \Gamma}_{\rm L} ≈ 16.31)$  is better than the uniform distribution  $({\it \Gamma}_{\rm L} = 12)$.


Differential entropy of some power-constrained random variables


The differential entropies  $h(X)$  for three exemplary density functions  $f_X(x)$  without boundary, which all have the same variance  $σ^2 = {\rm E}\big[|X -m_x|^2 \big]$  and thus the same standard deviation  $σ$  through appropriate parameter selection, can be taken from the following table.  Considered are:

Differential entropy of power-constrained random variables


The differential entropy can always be represented here as

$$h(X) = 1/2 \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\rm L} \cdot \sigma^2).$$

${\it \Gamma}_{\rm L}$  depends solely on the PDF form and applies only to  "power limitation"   ⇒   German:  "Leistungsbegrenzung"   ⇒   Index  $\rm L$.

The result differs only by the pseudo-unit

  • "nat" when using  $\ln$  or
  • "bit" when using  $\log_2$.


$\text{Theorem:}$  Under the constraint of  »power constraint«, the »Gaussian PDF«,

$$f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2} } \cdot {\rm e}^{ - \hspace{0.05cm}{(x - m_1)^2}/(2 \sigma^2)},$$

leads to the maximum differential entropy,  independent of the mean  $m_1$:

$$h(X) = 1/2 \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}{\it \Gamma}_{\rm L} < 2π{\rm e} ≈ 17.08\hspace{0.05cm}.$$

You will find the  "proof"  at the end of this chapter.


This statement means at the same time that for any PDF other than the Gaussian distribution, the characteristic value will be  ${\it \Gamma}_{\rm L} < 2π{\rm e} ≈ 17.08$.  For example, the characteristic value

  • for the triangular distribution to  ${\it \Gamma}_{\rm L} = 6{\rm e} ≈ 16.31$,
  • for the Laplace distribution to  ${\it \Gamma}_{\rm L} = 2{\rm e}^2 ≈ 14.78$, and
  • for the uniform distribution to  ${\it \Gamma}_{\rm L} = 12$ .

Proof: Maximum differential entropy with peak constraint


Under the peak constraint   ⇒   $|X| ≤ A$  the differential entropy is:

$$h(X) = \hspace{0.1cm} \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$

Of all possible probability density functions  $f_X(x)$ that satisfy the condition

$$\int_{-A}^{+A} \hspace{0.05cm} f_X(x) \hspace{0.1cm}{\rm d}x = 1$$

we are now looking for the function  $g_X(x)$  that leads to the maximum differential entropy  $h(X)$.

For derivation we use the  $»\text{Lagrange multiplier method}$«:

  • We define the Lagrangian parameter  $L$  in such a way that it contains both  $h(X)$  and the constraint  $|X| ≤ A$ :
$$L= \hspace{0.1cm} \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.5cm}+ \hspace{0.5cm} \lambda \cdot \int_{-A}^{+A} \hspace{0.05cm} f_X(x) \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
  • We generally set  $f_X(x) = g_X(x) + ε · ε_X(x)$, where  $ε_X(x)$  is an arbitrary function,  with the restriction that the PDF area must equal  $1$.  Thus we obtain:
$$\begin{align*}L = \hspace{0.1cm} \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm}\big [ g_X(x) + \varepsilon \cdot \varepsilon_X(x)\big ] \cdot {\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) + \varepsilon \cdot \varepsilon_X(x) } \hspace{0.1cm}{\rm d}x + \lambda \cdot \int_{-A}^{+A} \hspace{0.05cm} \big [ g_X(x) + \varepsilon \cdot \varepsilon_X(x) \big ] \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.\end{align*}$$
  • The best possible function is obtained when there is a stationary solution for  $ε = 0$ :
$$\left [\frac{{\rm d}L}{{\rm d}\varepsilon} \right ]_{\varepsilon \hspace{0.05cm}= \hspace{0.05cm}0}=\hspace{0.1cm} \hspace{0.05cm} \int_{-A}^{+A} \hspace{0.05cm} \varepsilon_X(x) \cdot \big [ {\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) } -1 \big ]\hspace{0.1cm}{\rm d}x \hspace{0.3cm} + \hspace{0.3cm}\lambda \cdot \int_{-A}^{+A} \hspace{0.05cm} \varepsilon_X(x) \hspace{0.1cm}{\rm d}x \stackrel{!}{=} 0 \hspace{0.05cm}.$$
  • This conditional equation can be satisfied independently of  $ε_X$  only if holds:
$${\rm log} \hspace{0.1cm} \frac{1}{ g_X(x) } -1 + \lambda = 0 \hspace{0.4cm} \forall x \in \big[-A, +A \big]\hspace{0.3cm} \Rightarrow\hspace{0.3cm} g_X(x) = {\rm const.}\hspace{0.4cm} \forall x \in \big [-A, +A \big]\hspace{0.05cm}.$$

$\text{Summary for peak constraints:}$ 

The maximum differential entropy is obtained under the constraint  $ \vert X \vert ≤ A$  for the  »uniform PDF«:

$$h_{\rm max}(X) = {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\rm A} \cdot A) = {\rm log} \hspace{0.1cm} (2A) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {\it \Gamma}_{\rm A} = 2 \hspace{0.05cm}.$$

Any other random variable with the PDF property  $f_X(\vert x \vert > A) = 0$   leads to a smaller differential entropy, characterized by the parameter  ${\it \Gamma}_{\rm A} < 2$.

Proof: Maximum differential entropy with power constraint


Let's start by explaining the term:

  • We are now looking for the maximum differential entropy under the constraint  ${\rm E}\big[|X - m_1|^2 \big] ≤ σ^2$.
  • Here we may replace the  "smaller/equal sign"  by the  "equal sign".


If we only allow mean-free random variables, we circumvent the problem.  Thus the  "Lagrange multiplier":

$$L= \hspace{0.1cm} \hspace{0.05cm} \int_{-\infty}^{+\infty} \hspace{-0.1cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \frac{1}{ f_X(x) } \hspace{0.1cm}{\rm d}x \hspace{0.1cm}+ \hspace{0.1cm} \lambda_1 \cdot \int_{-\infty}^{+\infty} \hspace{-0.1cm} f_X(x) \hspace{0.1cm}{\rm d}x \hspace{0.1cm}+ \hspace{0.1cm} \lambda_2 \cdot \int_{-\infty}^{+\infty}\hspace{-0.1cm} x^2 \cdot f_X(x) \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$

Following a similar procedure as in the  "proof of the peak constraint"  it turns out, that the "best possible" function must be   $g_X(x) \sim {\rm e}^{–λ_2\hspace{0.05cm} · \hspace{0.05cm} x^2}$    ⇒   "Gaussian distribution":

$$g_X(x) ={1}/{\sqrt{2\pi \sigma^2}} \cdot {\rm e}^{ - \hspace{0.05cm}{x^2}/{(2 \sigma^2)} }\hspace{0.05cm}.$$

However, we use here for the explicit proof the  "Kullback–Leibler distance"  between a suitable general PDF  $f_X(x)$  and the Gaussian PDF  $g_X(x)$:

$$D(f_X \hspace{0.05cm} || \hspace{0.05cm}g_X) = \int_{-\infty}^{+\infty} \hspace{0.02cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} \frac{f_X(x)}{g_X(x)} \hspace{0.1cm}{\rm d}x = -h(X) - I_2\hspace{0.3cm} \Rightarrow\hspace{0.3cm}I_2 = \int_{-\infty}^{+\infty} \hspace{0.02cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} {g_X(x)} \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$

For simplicity, the natural logarithm   ⇒   $\ln$  is used here.  Thus we obtain for the second integral:

$$I_2 = - \frac{1}{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi\sigma^2) \cdot \hspace{-0.1cm}\int_{-\infty}^{+\infty} \hspace{-0.4cm} f_X(x) \hspace{0.1cm}{\rm d}x \hspace{0.3cm}- \hspace{0.3cm} \frac{1}{2\sigma^2} \cdot \hspace{-0.1cm}\int_{-\infty}^{+\infty} \hspace{0.02cm} x^2 \cdot f_X(x) \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$

By definition, the first integral is equal to  $1$  and the second integral gives  $σ^2$:

$$I_2 = - {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi\sigma^2) - {1}/{2} \cdot [{\rm ln} \hspace{0.1cm} ({\rm e})] = - {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)$$
$$\Rightarrow\hspace{0.3cm} D(f_X \hspace{0.05cm} || \hspace{0.05cm}g_X) = -h(X) - I_2 = -h(X) + {1}/{2} \cdot {\rm ln} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.05cm}.$$

Since also for continuous random variables the Kullback-Leibler distance is always  $\ge 0$ , after generalization ("ln"   ⇒   "log"):

$$h(X) \le {1}/{2} \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2)\hspace{0.05cm}.$$

The equal sign only applies if the random variable  $X$  is Gaussian distributed.

$\text{Summary for power constraints:}$ 

The maximum differential entropy is obtained under the condition  ${\rm E}\big[ \vert X – m_1 \vert ^2 \big] ≤ σ^2$  independent of  $m_1$  for the  »Gaussian PDF«:

$$h_{\rm max}(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.01cm} \rm L} \cdot \sigma^2) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} (2\pi{\rm e} \cdot \sigma^2) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {\it \Gamma}_{\rm L} = 2\pi{\rm e} \hspace{0.05cm}.$$

Any other continuous random variable  $X$  with variance  ${\rm E}\big[ \vert X – m_1 \vert ^2 \big] ≤ σ^2$  leads to a smaller value,  characterized by the parameter ${\it \Gamma}_{\rm L} < 2πe$.


Exercises for the chapter


Exercise 4.1: PDF, CDF and Probability

Exercise 4.1Z: Calculation of Moments

Exercise 4.2: Triangular PDF

Exercise 4.2Z: Mixed Random Variables

Exercise 4.3: PDF Comparison with Regard to Differential Entropy

Exercise 4.3Z: Exponential and Laplace Distribution

Exercise 4.4: Conventional Entropy and Differential Entropy