Difference between revisions of "Linear and Time Invariant Systems/Properties of Balanced Copper Pairs"

From LNTwww
 
(136 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
{{LastPage}}
 
{{LastPage}}
 
{{Header
 
{{Header
|Untermenü=Eigenschaften elektrischer Leitungen
+
|Untermenü=Properties of Electrical Cables
|Vorherige Seite=Koaxialkabel
+
|Vorherige Seite=Properties_of_Coaxial_Cables
 
|Nächste Seite=
 
|Nächste Seite=
 
}}
 
}}
==Zugangsnetz eines Telekommunikationssystems (1)==
+
==Access network of a telecommunications system==
Bei einem Telekommunikationssystem unterscheidet man zwischen
+
<br>
*dem Fern– und Regionalnetz sowie
+
In a telecommunications system,&nbsp; a distinction is made between
*dem Teilnehmeranschlussbereich,  
+
[[File:EN_LZI_T_4_3_S2_neu.png| right|frame|Local loop area for ISDN]]
 +
*the long-distance and regional network,&nbsp; and
 +
 +
*the&nbsp; &raquo;local loop area&laquo;,
 +
 
 +
 
 +
which are separated from each other by the&nbsp; &raquo;local exchange&laquo;.&nbsp; 
 +
 
 +
The graph shows the network infrastructure for&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|$\text{$\rm ISDN$}$]]&nbsp;  $($&raquo;Integrated Services Digital Network&laquo;$)$.&nbsp; Originally,&nbsp; the entire telephone network was based on copper lines.&nbsp; In the mid-1980s,&nbsp; however,&nbsp; the&nbsp; $($mainly coaxial$)$&nbsp; copper cables were replaced by optical fiber for long-distance traffic,&nbsp; as the steadily growing demand for bandwidth could only be met with optical transmission technology.
 +
 
 +
*Due to the immensely high installation costs,&nbsp; optical fibers in the local loop area are still not economically viable today&nbsp; $($2009$)$,&nbsp; although plans for&nbsp; &raquo;Fiber–to–the–Building&laquo;&nbsp; $\rm (FttB)$&nbsp; and&nbsp; &raquo;Fiber–to–the–Home&laquo;&nbsp; $\rm (FttH)$&nbsp; have long been in the pipeline.
 +
 
 +
*Instead,&nbsp; over the past twenty years,&nbsp; the path has been taken to provide sufficient capacity via the conventional access network based on copper lines by developing high-rate transmission systems such as&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL|$\text{$\rm DSL$}$]]&nbsp;  $($&raquo;Digital Subscriber Line&laquo;$)$.
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp;
 +
In Germany,&nbsp; the so-called&nbsp; &raquo;last mile&raquo; &nbsp; $($&rArr; &nbsp; the local loop area$)$&nbsp; is shorter than four kilometers on average in the country,&nbsp; and in urban areas&nbsp; $90\%$&nbsp; are even shorter than&nbsp; $\text{2.8 km}$.&nbsp;
 +
[[File:EN_LZI_T_4_3_S1b.png|right|frame| Bundling and twisting of copper wires]]
 +
The local loop area is usually structured as follows:
 +
 
 +
*The&nbsp; &raquo;main cable&laquo;&nbsp; with up to&nbsp; $2000$&nbsp; pairs as a connection between the local exchange and the cable branch,
 +
 
 +
*the&nbsp; &raquo;branch cable&laquo;&nbsp; between the cable branch and the final branch,&nbsp; with up to&nbsp; $300$&nbsp; pairs and significantly shorter than a main cable&nbsp; $($maximum&nbsp; $\text{500 m)}$,
 +
 +
*the&nbsp; &raquo;house connection cable&laquo;&nbsp; between the terminal box and the network termination box at the subscriber with two pairs of wires.
 +
 
 +
 
 +
To reduce crosstalk on neighboring line pairs due to inductive and capacitive couplings and to increase the packing density,&nbsp; two double wires are twisted into a so-called&nbsp; &raquo;star quad&raquo;.&nbsp;
 +
 
 +
The diagram below shows such a star quad and a bundled cable.
 +
*Here,&nbsp; five such quads each are combined to form a basic bundle,&nbsp; and five basic bundles each are combined to form a main bundle.
 +
 +
*This thus contains&nbsp; $50$&nbsp; twin pairs with polyethylene&nbsp; $\rm (PE)$&nbsp; insulation. }}
 +
 
 +
 
 +
==Attenuation function of two-wire lines==
 +
<br>
 +
The attenuation function &nbsp;$α(f)$&nbsp; $($per unit length$)$&nbsp;  and the wave impedance &nbsp;$Z_{\rm W}(f)$&nbsp; of twisted pairs in real laid cables deviate to a greater or lesser extent from the theory presented in the chapter &nbsp; [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|&raquo;Some Results from Line Transmission Theory&laquo;]].&nbsp; Reasons for this are:
 +
[[File:P_ID1955__Bei_T_2_4_S1b_v1.png |frame| Attenuation function of two-wire lines of different diameters]]
 +
 
 +
#non-consideration of complex processes of eddy current formation and current displacement,
 +
#inhomogeneities in cable structure in spliced cable sections.
 +
 
 +
 
 +
Various network operators have measured &nbsp;$α(f)$&nbsp; and &nbsp;$Z_{\rm W}(f)$&nbsp; and derived empirical equations from them. &nbsp; We refer here to the work of M. Pollakowski and H.W. Wellhausen of the Fernmeldetechnisches Zentralamt der Deutschen Bundespost in Darmstadt documented in&nbsp; [PW95]<ref name="PW95">Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im
 +
Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum
 +
Darmstadt, 1995.</ref>.
 +
 
 +
They determined for different line diameters &nbsp;$d$&nbsp; among other things the empirical attenuation function from forty measurements each in the frequency range up to &nbsp;$\text{30 MHz}$&nbsp; according to the equation
 +
:$$\alpha (f) = k_1 + k_2  \cdot (f/{\rm MHz})^{k_3} \hspace{0.05cm}.$$
 +
 
 +
The graph shows the measurement results:
 +
* $d = 0.35 \ {\rm mm}$: &nbsp;  $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
 +
* $d = 0.40 \ {\rm mm}$: &nbsp;  $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
 +
* $d = 0.50 \ {\rm mm}$: &nbsp;  $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$, 
 +
* $d = 0.60 \ {\rm mm}$: &nbsp;  $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$. 
 +
 
 +
 
 +
One can see from this representation:
 +
#The attenuation function per unit length &nbsp; &rArr; &nbsp; $α(f)$&nbsp; and the attenuation function &nbsp; &rArr; &nbsp;${\rm a}_{\rm K}(f) = α(f) · l$&nbsp; depend significantly on the cable diameter.&nbsp; The cables laid since 1994 with &nbsp;$d = 0.35 \ \rm (mm)$&nbsp; and  &nbsp;$d = 0.5$&nbsp; have about &nbsp;$10\%$&nbsp; larger attenuation than the older cables with &nbsp;$d = 0.4$&nbsp; and &nbsp;$d= 0.6$.
 +
#However,&nbsp; this smaller diameter,&nbsp; justified by the manufacturing and laying costs,&nbsp; significantly reduces the range &nbsp;$l_{\rm max}$&nbsp; of the transmission systems used on these lines,&nbsp; so that in the worst case expensive&nbsp; &raquo;intermediate regenerators&laquo;&nbsp; have to be used.
 +
#However,&nbsp; the transmission methods commonly used today for copper lines,&nbsp; occupy only a relatively narrow frequency band,&nbsp; e.g. &nbsp; $120\ \rm kHz$&nbsp; for&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|$\text{$\rm ISDN$}$]]&nbsp; $($&raquo;Integrated Services Digital Network&laquo;$)$ &nbsp;and about&nbsp; $1100 \ \rm kHz$&nbsp; for [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL|$\text{$\rm DSL$}$]]&nbsp; $($&raquo;Digital Subscriber Line&laquo;$)$.&nbsp;
 +
#For &nbsp;$f = 1 \ \rm MHz$,&nbsp; the attenuation function per unit length for a &nbsp;$0.4 \ \rm mm$&nbsp; cable is about &nbsp;$20 \ \rm dB/km$,&nbsp; so that even with a cable length of &nbsp;$l = 4 \ \rm km$&nbsp; the attenuation value with these systems does not exceed &nbsp;$80 \ \rm dB$.
 +
#One exception is &nbsp;[[Examples_of_Communication_Systems/xDSL_Systems#VDSL_.E2.80.93_Very.E2.80.93high.E2.80.93speed_Digital_Subscriber_Line|$\text{$\rm VDSL$}$]]&nbsp; $($&raquo;Very High Data Rate Digital Subscriber Line&laquo;$)$,&nbsp; which is offered in Germany by Deutsche Telekom in larger cities.&nbsp; Here,&nbsp; the frequency range goes up to &nbsp;$30 \ \rm MHz$.&nbsp;
 +
#For this reason,&nbsp; fiber optic connections were laid right up to the cable branch in order to keep the length short that still has to be bridged with copper.&nbsp; This is known as&nbsp; &raquo;Fibre–to–the–Cabinet&laquo;&nbsp; $\rm (FttC)$.
 +
 
 +
==Conversion between&nbsp;  $k$&nbsp; and&nbsp; $\alpha$&nbsp; parameters==
 +
To calculate the frequency response &nbsp;$H_{\rm K}(f)$,&nbsp; one should always start from the measured attenuation function per unit length:
 +
:$$\alpha (f) = k_1 + k_2  \cdot (f/f_0)^{k_3}= \alpha_{\rm I} (f) \hspace{0.05cm}, \hspace{0.2cm}{\rm with} \hspace{0.15cm} f_0 = 1\,{\rm MHz}.$$
 +
*If,&nbsp; on the other hand,&nbsp; one wishes to determine the associated time function in terms of the impulse response &nbsp;$h_{\rm K}(t)$,&nbsp; it is more convenient as shown in the&nbsp; [[Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs#Interpretation_and_manipulation_of_the_individual_impulse_responses|&raquo;section after the next&laquo;]],&nbsp; if the attenuation function per unit length can be represented in the form that is also common for coaxial cables:
 +
:$$\alpha(f)  = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}= \alpha_{\rm II} (f).$$
 +
 
 +
*As a criterion of this conversion we use that the squared deviation between both functions is minimal in the range from &nbsp;$f = 0$&nbsp;  to &nbsp;$f = B$&nbsp;:
 +
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
 +
*It is obvious that &nbsp;$α_0 = k_1$&nbsp; will hold.&nbsp; The parameters &nbsp;$α_1$&nbsp; and &nbsp;$α_2$&nbsp; depend on the desired bandwidth&nbsp; $B$.&nbsp; According to&nbsp; [[Aufgaben:Exercise_4.6:_k-parameters_and_alpha-parameters|$\text{Exercise 4.6}$]],&nbsp; they are:
 +
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 +
 
 +
{{BlaueBox|TEXT=
 +
$(1)$&nbsp; For &nbsp;$k_3 = 1$&nbsp; $($frequency-proportional attenuation function per unit length$)$,&nbsp; the $\alpha$–parameters logically result in
 +
:$$\alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} ,$$
 +
$(2)$&nbsp; For &nbsp;$k_3 = 0.5$&nbsp; the following coefficients are obtained:
 +
:$$\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$$
 +
 
 +
:In this case,  &nbsp;$α(f)$&nbsp; increases with the square root of the frequency.&nbsp; This results in the same curve as for a coaxial cable,&nbsp; where the well-known skin effect dominates.}}
 +
 
 +
 
 +
In the following,&nbsp; three examples will illustrate how the underlying bandwidth &nbsp;$B$&nbsp; influences the results of this conversion.
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;
 +
For this graph we assume the line length &nbsp;$l = 1 \ \rm km$&nbsp; and the diameter &nbsp;$d = 0.4 \ \rm  mm$,&nbsp; so that the following applies:
 +
 
 +
:$$k_1 = 5.1 \ \rm  dB/km, \ k_2 = 14.3 \ \rm  dB/km, \ k_3 = \ 0.59.$$
 +
For this case the following graph shows
 +
*the attenuation&nbsp; ${\rm a_K}(f)$&nbsp;  approximated by &nbsp;$α_0,&nbsp; α_1$,&nbsp; $α_2$&nbsp; $($blue curve$)$
 +
*compared to the &nbsp; ${\rm a_K}(f)$&nbsp; curve according to &nbsp;$k_1,&nbsp; k_2,&nbsp; k_3$&nbsp; $($red curve$)$.
 +
 
 +
:[[File:EN_LZI_T_4_3_S3_v2.png|right|frame| Approximation of&nbsp; $k$–parameters&nbsp; by&nbsp; $\alpha$–parameters]]
 +
The three diagrams are valid for the bandwidths &nbsp;$B = 10 \ \rm  MHz$, &nbsp;$B = 20  \ \rm  MHz$&nbsp; and &nbsp;$B = \ \rm  30 \ MHz$.
 +
*The determined coefficients &nbsp;$α_1$&nbsp; and &nbsp;$α_2$&nbsp; are indicated.
 +
 
 +
*&nbsp;$α_0 = k_1 = 5.1 \ \rm  dB/km$&nbsp; is always valid.
 +
 
 +
 
 +
One recognizes from these representations:
 +
#Even with the largest approximation range &nbsp;$(B = 30 \ \rm MHz)$,&nbsp; the blue curve &nbsp;$($with&nbsp; $α_0, \ α_1, \ α_2)$&nbsp; approximates the red curve&nbsp; $($described by &nbsp;$k_1, \ k_2, \ k_3)$&nbsp; very well.
 +
#For smaller bandwidth &nbsp;$(B = 20 \ \rm MHz$&nbsp;  or &nbsp;$B = 10 \ \rm MHz)$&nbsp; the approximation in the range &nbsp;$0≤ f ≤ B$&nbsp; is even better,&nbsp; but now distortions occur for &nbsp;$f > B$&nbsp;.
 +
#The attenuation value &nbsp;$a_{\rm K}(f = 30 \ \rm MHz) ≈ 112.2 \ \rm dB$&nbsp; is composed as follows for the considered two-wire cable: <br> &nbsp; &nbsp; $4.5\%$&nbsp; is due to the coefficient &nbsp;$α_0$&nbsp; $($ohmic losses$)$, <br>&nbsp; &nbsp; $23.5\%$&nbsp; to the&nbsp; $f$&ndash;proportional component &nbsp;$α_1$&nbsp; and <br>&nbsp; &nbsp; $72\%$&nbsp; to the coefficient &nbsp;$α_2$.
 +
#In comparison, the standard coaxial cable&nbsp; $\text{2.6/9.5 mm}$&nbsp; exhibits comparable attenuation &nbsp;$(≈ 112 \ \rm dB)$&nbsp; only at a length of &nbsp;$l = 8.7 \ \rm km$,&nbsp;  with most of the attenuation&nbsp; $(98.9\%)$&nbsp; coming from the skin effect &nbsp;$(α_2)$.}}
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
In the opposite direction &nbsp;$(α_1, \ α_2  ⇒  k_2, \ k_3)$&nbsp; the conversion rule for the exponent is:
 +
 
 +
:$$k_3 = \frac{H + 0.5} {H +1}, \hspace{0.4cm}\text{with auxiliary:  }H = \frac{2} {3} \cdot  \frac{\alpha_1 \cdot \sqrt{f_0} }{\alpha_2} \cdot \sqrt{B/f_0}.$$
 +
 
 +
With this result, &nbsp;$k_2$&nbsp; can be calculated using either of the two equations given above.}}
 +
 
 +
 
 +
==Impulse response of a two-wire line==
 +
<br>
 +
With this coefficient conversion &nbsp;$(k_1, \ k_2, \ k_3) \ \ ⇒ \ \ (α_0, \ α_1, \ α_2)$&nbsp; we can now write for the&nbsp; &raquo;total frequency response&laquo;&nbsp; of a two-wire line:
 +
:$$H_{\rm K}(f)  = H_{\alpha 0}(f) \cdot H_{\alpha 1}(f) \cdot H_{\beta 1}(f)\cdot H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \hspace{0.05cm}.$$
 +
 
 +
Here,&nbsp; the following abbreviations are used:
 +
:$$\begin{align*} H_{\alpha 0}(f) & = {\rm e}^{-\alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}= {\rm e}^{-{\rm a}_0}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_0= \alpha_0\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l,\\ H_{\alpha 1}(f) & = {\rm e}^{-\alpha_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l}= {\rm  e}^{-{\rm a}_1 \cdot 2f/R}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_1 = \alpha_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l \cdot {R}/{2} \hspace{0.05cm},
 +
\\ H_{\beta 1}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l} = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}\tau_{\rm P}}  \hspace{0.05cm},\hspace{0.2cm} \tau_{\rm P} = {\beta_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l }/({2 \pi}) \hspace{0.05cm},
 +
\\ H_{\alpha 2}(f) & = {\rm e}^{-\alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot  \hspace{0.05cm}l}= {\rm  e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_2 = \alpha_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm},
 +
\\ H_{\beta 2}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2 \hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm  e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} b_2 = \beta_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm} \end{align*}$$
 +
 
 +
The meaning of the quantities implicitly defined here will be discussed a little later.
 +
 
 +
&rArr; &nbsp; We proceed  here first quite formally.&nbsp; According to the &nbsp;[[Signal_Representation/The_Convolution_Theorem_and_Operation|&raquo;convolution theorem&laquo;]],&nbsp; the resulting impulse response is the &nbsp;[[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|&raquo;Fourier retransform&laquo;]]&nbsp; of &nbsp;$H_{\rm K}(f)$:
 +
:$$h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\alpha 1}(t) \star h_{\beta 1}(t)\star h_{\alpha 2}(t) \star h_{\beta 2}(t) \hspace{0.05cm},$$
 +
:$$h_{\alpha 0}(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 0}(f) \hspace{0.05cm},\hspace{0.2cm} h_{\alpha 1}(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 1}(f) \hspace{0.05cm},\hspace{0.2cm} {\rm etc.}$$
 +
 
 +
These five components are now to be considered separately,&nbsp; with the numerical results referring to
 +
*a digital transmission system with bit rate &nbsp;$R = 30 \ \rm Mbit/s$&nbsp; and
 +
 +
*a two-wire line with dimensions&nbsp; $d = 0.4 \ \rm mm$&nbsp; and&nbsp; $l = 1 \ \rm km$.&nbsp;
 +
 
  
 +
Thus,&nbsp; the&nbsp; $α$–coefficients in Neper&nbsp; $\rm (Np)$&nbsp; are:
 +
:$$\alpha_0  = 0.59\, \frac{ {\rm Np} }{ {\rm km} } \hspace{0.05cm}, \hspace{0.2cm} \alpha_1  = 0.10\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2  = 1.69\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.$$
  
die durch die Ortsvermittlungsstelle voneinander getrennt sind. Die Grafik zeigt die Netzinfrastruktur bei $\href{https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=buchseite&due=inhalt&zustand=1921&session_id=}{ISDN}$  ''(Integrated Services Digital Network).''
+
The phase function per unit length of this line is also given in&nbsp; [PW95]<ref name="PW95">Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im
 +
Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum
 +
Darmstadt, 1995.</ref>:
 +
:$$b_{\rm K}(f)  =  \beta_1 \cdot f +  \beta_2 \cdot \sqrt {f}\hspace{0.05cm}, \hspace{0.2cm} \beta_1  = 32.9\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2  = 2.26\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 +
The symbol duration &nbsp;$T = 1/R ≈ 33 \ \rm ns$&nbsp; is suitable as a normalization quantity of time.
  
 +
==Interpretation and manipulation of the individual impulse responses==
 +
<br>
 +
Now the five impulse response components &nbsp;$h_{α0}(t), \ h_{α1}(t), \ h_{α2}(t), \ h_{β1}(t)$&nbsp; and &nbsp;$h_{β2}(t)$&nbsp; are interpreted:
  
[[File:P_ID1806__LZI_T_4_3_S1a_neu.png | Teilnehmeranschlussbereich bei ISDN]]
+
'''(1)'''&nbsp;&nbsp; The first term resulting from the ohmic losses&nbsp; $($frequency-independent attenuation$)$&nbsp; leads to a Dirac delta function with weight &nbsp;$K$,&nbsp; so that the convolution with &nbsp;$h_{α0}(t)$&nbsp; can be replaced by the multiplication with &nbsp;$K = {\rm e}^{–0.59} ≈ 0.55$:
 +
:$$h_{\alpha 0}(t) =  K \cdot \delta(t) \hspace{0.25cm}{\rm with}\hspace{0.25cm} K = {\rm  e}^{-{\rm a}_0}\hspace{0.45cm}\Rightarrow\hspace{0.45cm} h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\rm Rest}(t) = K \cdot  h_{\rm Rest}(t)\hspace{0.05cm}.$$
  
 +
'''(2)'''&nbsp;&nbsp;  $H_{α1}(f)$&nbsp; is a real and even function of frequency,&nbsp; so the Fourier retransform is also real and symmetric at &nbsp;$t =0$:
 +
:$$H_{\alpha 1}(f) = {\rm  e}^{-2\cdot{\rm a}_1 \cdot |f/R|} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad  h_{\alpha 1}(t)= \frac{1}{T} \cdot  \frac{{\rm a}_1}{{\rm a}_1^2 + \pi \cdot (t/T)^2}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_1 \hspace{0.15cm}{\rm in \hspace{0.15cm}Np  } \hspace{0.05cm}.$$
 +
:With the exemplary numerical values &nbsp;$α_1 = 0.1 \ \rm  Np/(km · MHz)$, &nbsp; $l = 1 \ \rm km$, &nbsp; $R = 30 \ \rm MHz$  &nbsp; &rArr; &nbsp; ${\rm a}_1 = 1.5 \ \rm (Np)$,&nbsp; we obtain for the maximum of this fraction:
 +
:$$h_{α1}(t = 0) = 1/{\rm a}_1 = 2/3 · 1/T.$$
  
Ursprünglich basierte das gesamte Fernsprechnetz auf Kupferleitungen. Mitte der 1980–Jahre wurden aber im Weitverkehr die – vorwiegend koaxialen – Kupferkabel durch Glasfaserkabel ersetzt, da der stetig wachsende Bandbreitebedarf nur mit optischer Übertragungstechnik befriedigt werden konnte.  
+
'''(3)'''&nbsp;&nbsp;  As for the coaxial cable systems, &nbsp;$H_{β1}(f)$&nbsp; does not lead to any signal distortion,&nbsp; but only to a time delay by the &nbsp;[[Linear_and_Time_Invariant_Systems/Linear_Distortions#Difference_between_phase_and_group_delay_time|&raquo;phase delay time&laquo;]]:
 +
:$$τ_{\rm P} ≈ 5.24 \ \rm &micro;s  \hspace{0.2cm} &rArr; \hspace{0.2cm} τ_{\rm P}/T ≈ 157.$$
  
 +
'''(4)'''&nbsp;&nbsp;  Let us turn to the combined consideration of the &nbsp;$H_{α2}(f)$&nbsp; and &nbsp;$H_{β2}(f)$&nbsp; components,&nbsp; which is described in the time domain by the common impulse response &nbsp;$h_2(t)$:
 +
:$$H_{\alpha 2}(f) \cdot H_{\beta 2}(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad  h_{2}(t) \hspace{0.05cm}.$$
  
Aufgrund der immens hohen Verlegekosten sind Glasfasern im Teilnehmeranschlußbereich bis heute (2009) nicht wirtschaftlich, allerdings gibt es schon lange Planungen zu ''Fiber–to–the–Building'' (FttB) bzw. ''Fiber–to–the–Home'' (FttH). Vielmehr ist man in den letzten 20 Jahren den Weg gegangen, durch die Entwicklung und die Verbesserung hochratiger Übertragungssysteme wie $\href{https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=buchseite&due=inhalt&zustand=1967&session_id=}{DSL}$ ''(Digital Subscriber Line)'' über das konventionelle, kupferbasierte Zugangsnetz ausreichend Kapazität bereitzustellen.
+
'''(5)'''&nbsp;&nbsp;  To apply the results of the chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|&raquo;Properties of Coaxial Cables&laquo;]],&nbsp; we replace &nbsp;$β_2$&nbsp; by &nbsp;$α_2 · \rm rad/Np$&nbsp; and &nbsp;$b_2$&nbsp; by &nbsp;${\rm a}_2 · \text{rad/Np}$,&nbsp; so that &nbsp;${\rm a}_2$&nbsp; and &nbsp;$b_2$&nbsp; have the same numerical value.&nbsp; As an example, we substitute here:
 +
:$$ b_2 = 8.75\, {\rm rad}\hspace{0.2cm} \Rightarrow  \hspace{0.2cm} b_2 = 6.55 \,{\rm rad}\hspace{0.05cm}.$$
 +
:One thus reduces the constant &nbsp;$β_2 = 2.26 \ \rm rad/(km · \sqrt{MHz})$&nbsp; to &nbsp;$β_2 = 1.69 \ \rm rad/(km · \sqrt{MHz})$&nbsp;.
  
==Zugangsnetz eines Telekommunikationssystems (2)==
+
'''(6)'''&nbsp;&nbsp;  Before we unnecessarily lead the reader to consider whether this approximation is indeed valid or not,&nbsp; we freely admit right away that this assumption is the weak point of our reasoning.&nbsp; A discussion of this faulty assumption follows in the &nbsp;[[Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs#Discussion_of_the_approximate_solution_found|&raquo;next secction&laquo;]].  
In Deutschland ist diese so genannte „Last Mile” im Landesdurchschnitt kürzer als 4 km, in städtischen Gebieten zu 90% sogar kürzer als 2.8 km. Der  Teilnehmeranschlußbereich setzt sich meist wie folgt zusammen:
 
*das ''Hauptkabel'' mit bis zu 2000 Doppeladern als Verbindung zwischen Ortsvermittlungsstelle und dem Kabelverzweiger,
 
*das ''Verzweigungskabel'' zwischen Kabel– und Endverzweiger, mit bis zu 300 Doppeladern und mit maximal 500 Metern deutlich kürzer als ein Hauptkabel,
 
*das ''Hausanschlußkabel'' zwischen Endverzweiger und der Netzabschlußdose beim Teilnehmer mit zwei Doppeladern.  
 
  
 +
'''(7)'''&nbsp;&nbsp;  Now that &nbsp;${\rm a}_2$&nbsp; and &nbsp;$b_2$&nbsp; have the same numerical values,&nbsp; we can further use the equation given in the chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|&raquo;Properties of Coaxial Cables&laquo;]],&nbsp; substituting &nbsp;$\rm a_∗$&nbsp; for &nbsp;$\rm a_2$&nbsp;:
 +
:$$h_{\rm 2}(t )  = \frac {1/T \cdot {\rm a_2}}{\pi \cdot \sqrt{2 \cdot(t/T)^3}}\cdot {\rm e}^{ - {{\rm a_2}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} t/T})} \hspace{0.05cm}, \hspace{0.2cm} {\rm a}_2\hspace{0.15cm}{\rm in \hspace{0.15cm}Np} \hspace{0.05cm}.$$
  
Zur Verminderung des Nebensprechens auf benachbarte Leitungspaare durch induktive und kapazitive Kopplungen und zur Erhöhung der Packungsdichte werden jeweils zwei Doppeladern zu einem so genannten Sternvierer verseilt. Die untere Grafik zeigt einen solchen Sternvierer und ein Bündelkabel. Hier werden je fünf solcher Vierer zu einem Grundbündel und je 5 Grundbündel zu einem Hauptbündel zusammengefasst. Dieses beinhaltet somit 50 Doppeladern mit PE–Isolierung ''(PE:'' Polyethylen).  
+
'''(8)'''&nbsp;&nbsp;  The total impulse response without consideration of the phase delay time is thus given by
 +
:$$h_{\rm K}(t + \tau_{\rm P}) = K \cdot h_{\alpha 1}(t) \star h_{2}(t)\hspace{0.05cm}.$$
 +
:By shifting &nbsp;$τ_{\rm P}$&nbsp; to the right, the searched function &nbsp;$h_{\rm K}(t)$&nbsp; is obtained.&nbsp; In the following example,&nbsp; this procedure is illustrated by graphs.
  
  
[[File:P_ID1807__LZI_T_4_3_S1b_neu.png | Bündelung und Verdrillung von Kupferadern]]
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;
 +
For the following graphs,&nbsp; a two-wire line with dimensions &nbsp;$d = 0.4 \ \rm mm$,&nbsp; and &nbsp;$l = 1 \ \rm km$&nbsp; is still assumed.&nbsp; Please note the different ordinate scaling of the three diagrams in the graph.
  
==Dämpfungsmaß von Zweidrahtleitungen==
+
#The bit rate is &nbsp;$R = 30 \ \rm Mbit/s$ &nbsp; ⇒ &nbsp; symbol duration &nbsp;$T ≈ 33\ \rm ns$.
Das Dämpfungsmaß $α(f)$ und der Wellenwiderstand $Z_{\rm W}(f)$ von Doppeladern in realen verlegten Kabeln weichen mehr oder weniger stark von der in $\href{http://en.lntwww.de/Lineare_zeitinvariante_Systeme/Einige_Ergebnisse_der_Leitungstheorie}{Kapitel 4.1}$ dargelegten Theorie ab. Gründe hierfür sind:
+
#We assume the quantities given in the yellow box,&nbsp; calculated in the last section.
*komplexe Vorgänge der Wirbelstrombildung und der Stromverdrängung, und
+
#For this purpose,&nbsp; the &nbsp;$b_2$ value is changed from &nbsp;$8.75 \ \rm rad$&nbsp; to &nbsp;$6.55 \ \rm rad$&nbsp; to match the &nbsp;${\rm a}_2$ value.  
*Inhomogenitäten im Kabelaufbau bei gespleißten Kabelabschnitten.  
+
#The effects of this measure are interpreted in the next section.
 +
[[File:EN_LZI_T_4_3_S4.png|right|frame| For calculating the impulse response of a two-wire line]] 
  
 +
*On the top right &nbsp;$h_1(t) = h_{\rm α1}(t + τ_{\rm P})$&nbsp; is shown. This component is due to the &nbsp;$α_1$&nbsp; and &nbsp;$β_1$&nbsp; coefficients. $h_1(t)$&nbsp; is a symmetric function with respect to the phase delay time &nbsp;$τ_{\rm P}$&nbsp; with the maximum value &nbsp;$(1.5T)^{–1}$, where the &nbsp;$1/(1 + t^2$) decay is rapidly decreased at &nbsp;$ \pm 5T$&nbsp; $($right and left of &nbsp;$τ_{\rm P})$.
  
Verschiedene Netzbetreiber haben $α(f)$ und $Z_{\rm W}(f)$ gemessen und daraus empirische Gleichungen abgeleitet. Wir beziehen uns hier auf die in $\href{https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=entitaet&e_id=25355&hyperlink_typ=entitaet_verweis&session_id=}{[PW95]}$ dokumentierten Arbeiten von M. Pollakowski und H.W. Wellhausen vom Fernmeldetechnischen Zentralamt der Deutschen Bundespost in Darmstadt. Diese ermittelten für unterschiedliche Leitungsdurchmesser $d$ unter anderem das empirische Dämpfungsmaß aus 40 Messungen im Frequenzbereich bis 30 MHz entsprechend der Gleichung
+
*The lower left diagram shows the signal component &nbsp;$h_2(t)$,&nbsp; due to the coefficients &nbsp;$α_2$&nbsp; and &nbsp;$β_2$.&nbsp; $h_2(t)$&nbsp; is identical to the &nbsp;[[Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables#Impulse_response_of_a_coaxial_cable|&raquo;coaxial cable impulse response&laquo;]]&nbsp;  $($ignoring the delay time$)$.&nbsp; Characteristic cable attenuation is &nbsp;${\rm a}_*=6.55 \ \rm Np$&nbsp; $(56.9 \ \rm dB)$.  
  
 +
*The red curve represents the convolution product &nbsp;$h_1(t) ∗ h_2(t)$.&nbsp; It can be seen that the waveform is essentially fixed by &nbsp;$h_2(t)$.&nbsp; However,&nbsp; convolution with &nbsp;$h_1(t)$&nbsp; leads to a&nbsp; (slight)&nbsp; distortion of the waveform in addition to an amplitude loss of about &nbsp;$10\%$.
  
[[File:P_ID1809__LZI_T_4_3_S2_93.png | Dämpfungsmaß von Zweidrahtleitungen unterschiedlicher Durchmesser | rechts]]
+
*The resulting impulse response&nbsp; $h_{\rm K}(t)$&nbsp; of the 0.4mm two-wire line is shown as a blue curve in the lower right diagram.&nbsp; The difference to the convolution product &nbsp;$h_1(t) ∗ h_2(t)$&nbsp; drawn in red results from the influence of the DC signal attenuation $($coefficient &nbsp;$α_0)$. }}
$$\alpha (f) = k_1 + k_2  \cdot (f/{\rm MHz})^{k_3} \hspace{0.05cm}.$$
 
Die Grafik zeigt die Messergebnisse:
 
* $d =$ 0.35 mm: $k_1 =$ 7.9 dB/km, $k_2 =$ 15.1 dB/km, $k_3 =$ 0.62,
 
* $d =$ 0.40 mm: $k_1 =$ 5.1 dB/km, $k_2 =$ 14.3 dB/km, $k_3 =$ 0.59,
 
* $d =$ 0.50 mm: $k_1 =$ 4.4 dB/km, $k_2 =$ 10.8 dB/km, $k_3 =$ 0.60,
 
* $d =$ 0.60 mm: $k_1 =$ 3.8 dB/km, $k_2 =$  9.2 dB/km, $k_3 =$ 0.61.
 
  
  
Man erkennt aus dieser Darstellung:
 
*Das Dämpfungsmaß $α(f)$ sowie die Dämpfungsfunktion $a_{\rm K}(f) = α(f) · l$ hängt signifikant vom Leitungsdurchmesser ab. Die seit 1994 verlegten Kabel (Durchmessern; 0.35 mm und 0.5 mm) haben etwa ein um 10% größeres Dämpfungsmaß als die älteren Leitungen 0.4 mm und 0.6 mm.
 
*Dieser mit den Herstellungs– und Verlegungskosten begründete kleinere Leitungsdurchmesser $d$ vermindert allerdings die Reichweite der auf diesen Leitungen eingesetzten Übertragungssysteme signifikant, so dass im schlimmsten Fall teuere Zwischengeneratoren eingesetzt werden müssen, um die Kunden mit hochratigen Diensten versorgen zu können.
 
*Die heute üblichen Übertragungsverfahren für Kupferleitungen belegen allerdings nur ein relativ schmales Frequenzband, zum Beispiel sind dies bei ISDN 120 kHz und bei DSL ca. 1100 kHz. Für $f =$ 1 MHz beträgt das Dämpfungsmaß für ein 0.4 mm–Kabel etwa 20 dB/km, so dass selbst bei einer Kabellänge von 4 km der Dämpfungswert nicht über 80 dB liegt.
 
*Eine Ausnahme bildet VDSL, das z. B. die Deutsche Telekom in allen größeren Städten anbietet. Hier geht der Frequenzbereich bis 30 MHz. Deshalb wurden hierfür Glasfaserverbindungen bis zum Kabelverzweiger verlegt, um die noch mit Kupfer zu überbrückende Länge klein zu halten. Man spricht dann von ''Fibre–to–the–Cabinet'' (FttC).
 
  
==Umrechnung zwischen $k$– und $α$– Parametern (1)==
 
Zur Berechnung des Frequenzgangs $H_{\rm K}(f)$ sollte man stets vom gemessenen Dämpfungsmaß
 
$$\alpha (f) = k_1 + k_2  \cdot (f/f_0)^{k_3}= \alpha_{\rm I} (f) \hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz}$$
 
ausgehen. Will man dagegen die dazugehörige Zeitfunktion in Form der Impulsantwort $h_{\rm K}(t)$ ermitteln, so ist es günstiger (siehe übernächsten Abschnitt), wenn das Dämpfungsmaß in der Form
 
$$\alpha(f)  = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}= \alpha_{\rm II} (f)$$
 
dargestellt werden kann, wie es auch für die Koaxialkabel üblich ist.
 
  
 +
==Discussion of the approximate solution found==
 +
<br>
  
Als Kriterium dieser Umrechnung gehen wir davon aus, dass die quadratische Abweichung dieser beiden Funktionen im Bereich von $f =$ 0 bis $f = B$ minimal ist:
+
{{GraueBox|TEXT=
$$\int\limits_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
+
$\text{Example 4:}$&nbsp;
Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrundegelegten Bandbreite $B$ abhängig. Sie lauten entsprechend Aufgabe A4.6:
+
The following graph shows the (normalized) impulse responses &nbsp;$T · h_{\rm K}(t)$&nbsp; for two exemplary copper cables,&nbsp; namely for
$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
+
[[File:EN_LZI_T_4_3_S5.png|right|frame| Impulse response approximations of normal coaxial cable (top) <br>and&nbsp; 0.4 mm&nbsp; two-wire cable (bottom)]]
Für $k_3 =$ 1 (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig
+
$(1)$&nbsp; the&nbsp; &raquo;'''standard coaxial cable 2.6/9.5 mm'''&laquo;&nbsp; at&nbsp; $\text{10.1 km}$&nbsp; length&nbsp; $($above$)$,&nbsp; where:
$$\alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} ,$$
+
:$$a_0 = 0.016\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
während man für $k_3 =$ 0.5 die folgenden Koeffizienten erhält:
+
a_1 = 0.020\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
$$\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0}}\hspace{0.05cm}.$$
+
a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
 +
:$$\tau_{ {\rm P} }/T = 350\hspace{0.05cm}, \hspace{0.15cm}  
 +
b_2 = 6.177\,{\rm rad}\hspace{0.05cm};$$
 +
$(2)$&nbsp; the&nbsp; &nbsp; &raquo;'''0.4 mm two-wire line'''&laquo;&nbsp; with length&nbsp; $\text{1.8 km}$&nbsp; $($below$)$ with the parameters
 +
:$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 +
a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 +
a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
 +
:$$\tau_{ {\rm P} }/T = 94\hspace{0.05cm}, \hspace{0.15cm}  
 +
b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$
  
In diesem Fall würde das Dämpfungsmaß $α(f)$ mit der Wurzel aus der Frequenz ansteigen. Es ergäbe sich also der gleiche Verlauf wie bei einem Koaxialkabel entsprechend dem Skineffekt.
 
  
 +
$\rm Note:$
  
Nachfolgend wird an drei Beispielen verdeutlicht, wie die zugrundeliegende Bandbreite $B$ die Ergebnisse dieser Umrechnung beeinflussen.
+
*These values are valid for bit rate &nbsp;$R = 10 \ \rm Mbit/s$.
 +
* Thus,&nbsp;  the time normalization &nbsp;$T = 1/R= 0.1 \ \rm &micro; s$.  
  
==Umrechnung zwischen $k$– und $α$– Parametern (2)==
+
*The two cable lengths were chosen to give exactly equal &nbsp;$a_2$ parameters.
Bei allen nachfolgenden Grafiken gehen wir von der Leitungslänge $l =$ 1 km und vom Durchmesser 0.4 mm aus $⇒ k_1 =$ 5.1 dB/km, $k_2 =$ 14.3 dB/km, $k_3 =$ 0.59. Für diesen Fall zeigt die folgende Grafik die mit $α_0, α_1$ und $α_2$ approximierte Dämpfung (blaue Kurve) im Vergleich zum tatsächlichen Verlauf gemäß $k_1, k_2, k_3$ (rote Kurve). Die drei Diagramme gelten für die Bandbreiten $B =$ 10 MHz, $B =$ 20 MHz und $B =$ 30 MHz. Die ermittelten Koeffizienten $α_1$ und $α_2$ sind angegeben. Stets gilt $α_0 = k_1 =$ 5.1 dB/km.
+
 +
*For the two-wire cable,&nbsp; the phase value &nbsp;$b_2  ⇒  b_2\hspace{0.01cm}'$&nbsp; was adjusted to give equal values for &nbsp;$b_2\hspace{0.05cm}' = 6.177 \ \rm rad$&nbsp; and &nbsp;$a_2 = 6.177 \ \rm Np \ (≈ 53 \ dB)$&nbsp; as for the coaxial cable.
 +
<br clear=all>
 +
The blue curves show the approximations when the &nbsp;$a_0, \ a_1$ and &nbsp;$b_1$ terms are neglected.&nbsp; Due to the &nbsp;$b_2  ⇒  b_2\hspace{0.01cm}'$&nbsp; phase matching for the two-wire line,&nbsp; the curves are nearly the same.&nbsp; The maximum of about &nbsp;$3.8\%$&nbsp; is at about &nbsp;$t/T = 4$&nbsp; $($different time scales in both diagrams!$)$.  
  
 +
The red curves also take into account the &nbsp;$a_0, \ a_1$ and &nbsp;$b_1 $&nbsp; terms.&nbsp; The red curve of the coaxial cable is the actual&nbsp; $($normalized$)$&nbsp; impulse response &nbsp;$T · h_{\rm K}(t)$.
  
[[File:P_ID1810__LZI_T_4_3_S3_v2.png | Approximation der k– durch α–Parameter]]
+
From these representations,&nbsp; one can further see:
 +
#For the coaxial cable,&nbsp; the &nbsp;$a_0$ term and the &nbsp;$a_1 $&nbsp; term can be neglected.&nbsp; The resulting relative error is only &nbsp;$3.5\%$.
 +
#However, the phase delay time &nbsp;$τ_{\rm P}$, i.e. the &nbsp;$b_1$ term,&nbsp; cannot be neglected.&nbsp; For the coaxial cable this gives &nbsp;$τ_{\rm P}/T ≈ 350$,&nbsp; while for the two-wire line it is &nbsp;$τ_{\rm P}/T ≈ 94$&nbsp;&nbsp; $($note the different time scales$)$.
 +
#For the two-wire line $($below$)$,&nbsp; do not neglect DC signal attenuation &nbsp;$(a_0)$&nbsp; and transverse loss &nbsp;$(a_1)$&nbsp;: &nbsp; <br>The red approximation &nbsp;$T · h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; is &nbsp;$70\%$&nbsp; lower than the blue one and also slightly wider.}}
  
  
Man erkennt aus diesen Darstellungen:  
+
{{GraueBox|TEXT= 
*Selbst beim größten Approximationsbereich $(B =$ 30 MHz) nähert die blaue Kurve (mit $α_0, α_1, α_2$) den gemessenen Verlauf (rote Kurve, beschrieben durch $k_1, k_2, k_3$) sehr gut an.  
+
$\text{Example 5:}$&nbsp; This example shows approximations of the impulse response of a two-wire line&nbsp; $($length $\text{1.8 km}$,&nbsp; diameter $\text{0.4 mm)}$,&nbsp; so that according to&nbsp; [PW95]<ref name="PW95">Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im
*Bei kleinerer Bandbreite $(B =$ 20 MHz bzw. 10 MHz) ist die Approximation im Bereich 0 $≤ f ≤ B$ noch besser, doch kommt es dann für $f > B$ zu Verfälschungen.  
+
Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum
*Der Dämpfungswert $a_{\rm K}(f =$ 30 MHz) ≈ 112.2 dB setzt sich bei der betrachteten Zweidrahtleitung $(l =$ 1 km, $d =$ 0.4 mm) folgendermaßen zusammen: 4.5% geht auf den Gleichsignalkoeffizienten $α_0$ zurück, 23.5% auf den frequenzproportioanlen Anteil $α_1$ und 72% auf den Koeffizienten $α_2$.  
+
Darmstadt, 1995.</ref>.&nbsp; the following parameters can be assumed:
*Das Normalkoaxialkabel 2.6/9.5 mm weist im Vergleich dazu erst bei einer Länge von $l =$ 8.7 km eine vergleichbare Dämpfung $a_{\rm K}(f =$ 30 MHz) ≈ 112 dB auf, wobei $α_0$ nur für 0.1% und $α_1$ nur für ca. 1% verantwortlich ist, während der Großteil der Dämpfung vom Skineffekt $(α_2)$ herrührt.
+
[[File:EN_LZI_T_4_3_S5c.png|frame| For the impulse response of a&nbsp; $\text{0.4 mm}$&nbsp; two-wire cable]]
 +
:$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 +
a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 +
a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
 +
:$$\tau_{ {\rm P} }/T = 94\hspace{0.05cm}, \hspace{0.15cm}
 +
b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$
  
==Impulsantworten von Zweidrahtleitungen (1)==
+
The upper diagram – equal to the lower diagram in&nbsp; $\text{Example 4}$ – shows two approximations
Mit dieser Koeffizientenumrechnung $k_1, k_2, k_3  ⇒ α_0, α_1, α_2$ kann nun für den gesamten Frequenzgang einer Zweidrahtleitung geschrieben werden:
+
*with neglection of the &nbsp;$a_0, \ a_1$&nbsp; and &nbsp;$b_1$ terms&nbsp; $($blue curve$)$,
$$H_{\rm K}(f= H_{\alpha 0}(f) \cdot H_{\alpha 1}(f) \cdot H_{\beta 1}(f)\cdot H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \hspace{0.05cm}.$$
+
   
 +
*with consideration of the &nbsp;$a_0, \ a_1$&nbsp; and &nbsp;$b_1$ terms&nbsp; $($red curve$)$.  
  
Hierbei wurden folgende Abkürzungen verwendet:
 
$$\begin{align*} H_{\alpha 0}(f) & = {\rm e}^{-\alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}= {\rm e}^{-{\rm a}_0}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_0= \alpha_0\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l,\\ H_{\alpha 1}(f) & = {\rm e}^{-\alpha_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l}= {\rm  e}^{-{\rm a}_1 \cdot 2f/R}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_1 = \alpha_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l \cdot {R}/{2} \hspace{0.05cm},\\ H_{\beta 1}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l} = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}\tau_{\rm P}}  \hspace{0.05cm},\hspace{0.2cm} \tau_{\rm P} = \frac{\beta_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l }{2 \pi} \hspace{0.05cm},\\ H_{\alpha 2}(f) & = {\rm e}^{-\alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot  \hspace{0.05cm}l}= {\rm  e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_2 = \alpha_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm},\\ H_{\beta 2}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2 \hspace{0.05cm \cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm  e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} b_2 = \beta_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm}. \end{align*}$$
 
  
Auf die Bedeutung der hier implizit definierten Größen wird etwas später eingegangen.  
+
For this upper diagram,&nbsp; we further adopted the &nbsp;$a_2$&nbsp; coefficient given in&nbsp; [PW95]<ref name="PW95"/>&nbsp; and lowered the mentioned coefficient &nbsp;$b_2 = 8.260 \ \rm rad$&nbsp; to &nbsp;$b_2\hspace{0.01cm}' = 6.177 \ \rm rad$&nbsp;.  
  
 +
$\text{Note:}$ &nbsp; In contrast to the coaxial cable in &nbsp;[[Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs#Interpretation_and_manipulation_of_the_individual_impulse_responses|$\text{Example 3}$]],&nbsp; because of &nbsp;$b_2\hspace{0.01cm}' ≠ b_2$&nbsp; the red curve &nbsp;$T · h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; is also only an approximation,&nbsp; which is indicated in the graph by the apostrophe.
  
Wir gehen hier zunächst ganz formal vor. Nach dem Faltungssatz gilt für die resultierende Impulsantwort als die Fourierrücktransformierte von $H_{\rm K}(f)$:
+
Without the correction &nbsp;$b_2\hspace{0.01cm}' = a_2 ·  \text{rad/Np}$,&nbsp; the &nbsp;[[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Hilbert_transform|&raquo;Hilbert transform&laquo;]],&nbsp; which establishes the relationship between magnitude and phase in real and thus establishes &nbsp;[https://en.wikipedia.org/wiki/Minimum_phase &raquo;minimum-phase systems&laquo;],&nbsp; would not be satisfied.&nbsp; Therefore,&nbsp; it would result in a noncausal impulse response.  
$$h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\alpha 1}(t) \star h_{\beta 1}(t)\star h_{\alpha 2}(t) \star h_{\beta 2}(t) \hspace{0.05cm},$$
 
$$h_{\alpha 0}(t) \quad \circ\!\!-\!\!\!\!\!\!-\!\!\bullet\quad H_{\alpha 0}(f) \hspace{0.05cm},\hspace{0.2cm} h_{\alpha 1}(t) \circ\!\!-\!\!\!\!\!\!-\!\!\bullet\quad H_{\alpha 1}(f) \hspace{0.05cm},\hspace{0.2cm} {\rm usw.}$$
 
  
Diese fünf Anteile sollen nun separat betrachtet werden, wobei sich die numerischen Ergebnisse auf ein digitales Übertragungssystem mit der Bitrate $R =$ 30 Mbit/s und eine Zweidrahtleitung 0.4 mm der Länge $l =$ 1 km beziehen. Damit lauten die $α$–Koeffizienten in Neper:
+
We therefore believe that even for a two-wire line, the two parameters &nbsp;$a_2$&nbsp; and &nbsp;$b_2$&nbsp; should have equal numerical values.
$$\alpha_0  = 0.59\, \frac{ {\rm Np} }{ {\rm km} } \hspace{0.05cm}, \hspace{0.2cm} \alpha_1  = 0.10\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2  = 1.69\, \frac{ {\rm Np} }{ {\rm km \cdot MHz^{0.5} } } \hspace{0.05cm}.$$
 
  
Das Phasenmaß dieser Leitung ist ebenfalls in [PW95] angegeben:
+
We now consider a second approach,&nbsp; shown in the diagram below:
$$b_{\rm K}(f)  = \beta_1 \cdot f +  \beta_2 \cdot \sqrt {f}\hspace{0.05cm}, \hspace{0.2cm} \beta_1  = 32.9\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2  = 2.26\, \frac{ {\rm rad} }{ {\rm km \cdot MHz^{0.5} } }\hspace{0.05cm}.$$
+
#Here,&nbsp; the phase coefficient &nbsp;$b_2 = 8.260 \ \rm rad$&nbsp; given in&nbsp; [PW95]<ref name="PW95"/>&nbsp; was kept.
Als Normierungsgröße der Zeit eignet sich die Symboldauer $T = 1/R ≈$ 33 ns.
+
#Instead,&nbsp; the attenuation coefficient &nbsp;$a_2 = 6.177 \ \rm Np$&nbsp; was adjusted to the phase coefficient&nbsp; $($i.e.,&nbsp; enlarged$)$: &nbsp; $a_2\hspace{0.01cm}' = 8.260 \ \rm Np$.
 +
#The lower&nbsp; $($red$)$&nbsp; impulse response &nbsp; ⇒ &nbsp;  &raquo;worst case&laquo;&nbsp; is less than half as high and much wider than the upper impulse response &nbsp;  ⇒ &nbsp;  &raquo;best case&laquo;.
 +
#The actual&nbsp; $($normalized$)$&nbsp; impulse response &nbsp;$T \cdot h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; will probably lie in between.&nbsp; We do not allow ourselves to make more precise statements.}}
  
==Impulsantworten von Zweidrahtleitungen (2)==
+
==Crosstalk on two-wire lines==
Nun sollen die fünf Impulsantwort–Anteile $h_{α0}(t), h_{α1}(t), h_{α2}(t), h_{β1}(t)$ und $h_{β2}(t)$ interpretiert werden:
+
<br>
 +
For transmission systems over two-wire lines,&nbsp; the same &nbsp;[[Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables#Special_features_of_coaxial_cable_systems|&raquo;block diagram&laquo;]]&nbsp; can be assumed as for the coaxial cable systems,&nbsp; where now
 +
*for the frequency response &nbsp;$H_{\rm K}(f)$&nbsp; and the impulse response &nbsp;$h_{\rm K}(t)$&nbsp; the equations given in this section are to be used,
 +
*white Gaussian noise &nbsp;$N_0$&nbsp; is no longer the dominant cause of stochastic impairments,&nbsp;
 +
*but&nbsp; &raquo;'''crosstalk'''&laquo;&nbsp; due to capacitive or inductive coupling of adjacent pairs now predominates.
  
  
'''1.'''  Der von den Ohmschen Verlusten herrührende erste Term (frequenzunabhängige Dämpfung) führt zu einer Diracfunktion mit dem Gewicht $K$, sodass die Faltung mit $h_{α0}(t)$ durch die Multiplikation mit $K = e^{–0.59} ≈$ 0.55 ersetzt werden kann:
+
By twisting the wire pairs of a star quad as well as the basic and main bundles according to the diagram at the end of the chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs#Access_network_of_a_telecommunications_system|&raquo;Access network of a telecommunications system&laquo;]]&nbsp; an attempt is made to achieve on average a mutual coupling as symmetrical as possible between all wire pairs.&nbsp; Due to unavoidable manufacturing tolerances,&nbsp; however,&nbsp; a slight asymmetry always remains.&nbsp; This causes:  
$$h_{\alpha 0}(t) =  K \cdot \delta(t) \hspace{0.25cm}{\rm mit}\hspace{0.25cm} K = {\rm  e}^{-{\rm a}_0}\hspace{0.45cm}\Rightarrow\hspace{0.45cm} h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\rm Rest}(t) = K \cdot  h_{\rm Rest}(t)\hspace{0.05cm}.$$
+
*In addition to its&nbsp; own&nbsp; useful signal,&nbsp; each receiver input also receives&nbsp; $($usually only small$)$&nbsp; signal components from neighboring wire pairs.
  
'''2.'''  $H_{α1}(f)$ ist eine reelle und gerade Funktion der Frequenz, so dass auch die Fourierrücktransformierte reell und symmetrisch um $t =$ 0 ist:
+
*The induced signal components represent an additional stochastic impairment for the useful signal,&nbsp; <br>which together with thermal noise results in the resulting interfering signal &nbsp;$n(t)$.
$$H_{\alpha 1}(f) = {\rm  e}^{-2\cdot{\rm a}_1 \cdot |f/R|} \quad \bullet\!\!-\!\!\!\!\!\!-\!\!\circ\quad  h_{\alpha 1}(t)= \frac{1}{T} \cdot  \frac{{\rm a}_1}{{\rm a}_1^2 + \pi \cdot (t/T)^2}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_1 \hspace{0.15cm}{\rm in \hspace{0.15cm}Np  } \hspace{0.05cm}.$$
 
Mit den beispielhaften Zahlenwerten $α_1 =$ 0.1 Np/(km · MHz), $l =$ 1 km, $R =$ 30 MHz  $⇒  a_1 =$ 1.5 (Np) ergibt sich für das Maximum dieses Anteils: $h_{α1}(t = 0) = 1/a_1 = 2/3 · 1/T.$
 
 
   
 
   
'''3.'''  Wie bei den Koaxialkabelsystemen führt $H_{β1}(f)$ zu keiner Signalverzerrung, sondern nur zu einer Zeitverzögerung um die Phasenlaufzeit $τ_P ≈$ 5.24 μs $⇒  τ_P/T ≈$ 157.  
+
*The transmission quality cannot be improved or can only be improved to a very limited extent by increasing the transmitted power,&nbsp; <br>since this measure also increases the crosstalk interference.
 +
 
 +
[[File:EN_LZI_T_4_3_S6_v2.png|right|frame|On the emergence of crosstalk]]
 +
<br>
 +
As the diagram illustrates,&nbsp; a distinction is made between
 +
*&raquo;'''Near-End Crosstalk'''&laquo;&nbsp; $\rm (NEXT)$: <br>The interfering transmitter feeds its signal at the same end of the cable where the receiver under consideration is placed.
 +
 
 +
*&raquo;'''Far–End Crosstalk'''&laquo;&nbsp; $\rm (FEXT)$: <br>Interfering transmitter and interfering receiver are located at opposite ends of the cable.
 +
 
 +
 
 +
In the case of&nbsp; &raquo;FEXT&laquo;,&nbsp; the interference accumulates over the entire cable length,&nbsp; but is also greatly attenuated by the cable attenuation.&nbsp; For bundled cables in the local loop area,&nbsp; &raquo;in quad crosstalk&laquo;&nbsp; thus results in orders of magnitude greater noise than&nbsp; &raquo;FEXT&laquo;,&nbsp;  and even&nbsp; &raquo;NEXT&laquo;&nbsp; from adjacent cores can usually be neglected.
 +
 
 +
We therefore consider only&nbsp; &raquo;Near-End Crosstalk&laquo;  $\text{(NEXT)}$&nbsp; in the following.&nbsp;
 +
<br clear=all>
 +
{{BlaueBox|TEXT= 
 +
$\text{Without derivation:}$&nbsp; 
 +
 
 +
In this case,&nbsp; the&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Wiener-Khintchine_Theorem|&raquo;power-spectral density&raquo;]]&nbsp; $\rm (PSD)$&nbsp; of the noise signal &nbsp;$n(t)$&nbsp; can be represented as follows,&nbsp; taking into account the unavoidable thermal noise &nbsp;$(N_0/2)$:
 +
:$${\it \Phi}_n(f)  =  {N_0}/{2}+{\it \Phi}_{\rm NEXT}(f) \hspace{0.05cm},\hspace{0.3cm}{\rm with} \hspace{0.3cm}{\it \Phi}_{\rm NEXT}(f)  = {\it \Phi}_{s}(f) \cdot\vert H_{\rm NEXT}(f)\vert ^2 \approx {\it \Phi}_{s}(f) \cdot [K_{\rm NEXT} \cdot f]^{3/2}\hspace{0.05cm}.$$}}
 +
 
 +
 
 +
It should be noted about this equation:
 +
#The equation is obtained by integrating the local couplings over the entire length of a short section,&nbsp; where the couplings between all copper lines are modeled by cross capacitances and inductances.
 +
# ${\it \Phi}_s(f)$&nbsp; is the power-spectral density of the interfering transmitter,&nbsp; from which the transmitted power &nbsp;$P_{\rm S}$&nbsp; is obtained by integration.&nbsp; Assuming that the interfered transmission uses the same transmitted signal and thus the same &nbsp;${\it \Phi}_s(f)$&nbsp;  as the interferer,&nbsp; it is clear that increasing &nbsp;$P_{\rm S}$&nbsp; only reduces the&nbsp; $($relative$)$&nbsp; influence of thermal noise &nbsp;$(N_0/2)$.
 +
#The factor &nbsp;$K_{\rm NEXT}$&nbsp; quantifying the near-end crosstalk depends strongly on the core spacing,&nbsp; as well as on the degree of unbalance along the cable.&nbsp; In contrast,&nbsp; this factor &nbsp;$K_{\rm NEXT}$&nbsp; is almost independent of the conductor diameter &nbsp;$d$&nbsp; and the cable length &nbsp;$l$.
 +
#The&nbsp; $($dimensionless$)$&nbsp; product &nbsp;$K_{\rm NEXT} · f$&nbsp;  over the entire operating range of the cable,&nbsp; e.g. for all frequencies &nbsp;$0 ≤ f ≤ 30 \ \rm MHz$,&nbsp; is always much smaller than&nbsp; $1$.&nbsp; The crosstalk noise increases sharply&nbsp; $($that is,&nbsp; with exponent $1.5)$&nbsp; with frequency.
 +
#In&nbsp; [PW95]<ref name="PW95"/>,&nbsp; the following values are given after a series of measurements over forty pairs for the frequency &nbsp;$f = 10 \ \rm MHz$&nbsp;&nbsp; <br>$($for &nbsp;$f = 30 \ \rm MHz$&nbsp; these values must still be multiplied by &nbsp;$3^{3/2} ≈ 5.2)$:<br>&nbsp; &nbsp; &nbsp; &rArr; &nbsp; Worst case: &nbsp; $|H_{\rm NEXT}(f = 10 \ \rm MHz)|^2 0.001$,<br>&nbsp; &nbsp; &nbsp; &rArr; &nbsp; Averaging over 40 cores: &nbsp; $|H_{\rm NEXT}(f = \ \rm 10 MHz)|^2 ≈ 0.0004$.
 +
#This values apply to&nbsp; &raquo;in-four near-end crosstalk&laquo;&nbsp; $($interfering transmitter and interfering receiver in the same star quad$)$.
 +
#Near-end crosstalk noise between more distant cores exhibits the same frequency dependence,&nbsp; but is smaller than&nbsp; &raquo;in-four near-end crosstalk&raquo;:<br>&nbsp; &nbsp; &nbsp; &rArr; &nbsp;  Near-end crosstalk between adjacent star quads by about &nbsp;$5 \ \rm dB$,<br>&nbsp; &nbsp; &nbsp; &rArr; &nbsp;  Near-end crosstalk between adjacent ground bundles by about &nbsp;$10 \ \rm dB$,<br>&nbsp; &nbsp; &nbsp; &rArr; &nbsp;  Near-end crosstalk between non-adjacent ground bundles by about &nbsp;$25 \ \rm dB$.  
 +
 
 +
 
 +
{{BlaueBox|TEXT=  
 +
$\text{Conclusion:}$&nbsp;
 +
*In order to avoid or at least to reduce such near-end crosstalk noise,&nbsp; adjacent pairs of wires are often occupied by completely different signals&nbsp; $($analog telephony, ISDN, DSL or other broadband services$)$&nbsp; which also use different frequency bands if possible.
  
'''4.'''  Wenden wir uns schließlich der gemeinsamen Betrachtung der Spektralanteile $H_{α2}(f)$ und $H_{β2}(f)$ zu, die durch die Teilimpulsantwort $h_2(t)$ beschrieben wird:
+
*By clever selection of the twisted pairs,&nbsp; adjacent cores can now be occupied with signals whose spectra overlap as little as possible,&nbsp; thus reducing crosstalk noise.}}  
$$H_{\alpha 2}(f) \cdot H_{\beta 2}(f)  \quad \bullet\!\!-\!\!\!\!\!\!-\!\!\circ\quad  h_{\alpha 2}(t) \hspace{0.05cm}.$$
 
Um die Ergebnisse von Kapitel 4.2 anwenden zu können, ersetzen wir $β_2$ durch $α_2$ · rad/Np und $b_2$ durch $a_2$ · rad/Np, so dass $a_2$ und $b_2$ den gleichen Zahlenwert besitzen. Beispielhaft ersetzt man hier:
 
$$ b_2 = 8.75\, {\rm rad}\hspace{0.2cm} \Rightarrow  \hspace{0.2cm} b_2 = 6.55 \,{\rm rad}\hspace{0.05cm}.$$
 
Man reduziert somit die Konstante $β_2 =$ 2.26 rad/(km · ${\rm MHz}^{0.5}$) auf $β_2 =$ 1.69 rad/(km · ${\rm MHz}^{0.5}$).
 
  
'''5.'''  Bevor wir den Leser unnötig zu Überlegungen verleiten, ob diese Näherung tatsächlich zulässig ist oder nicht, geben wir gleich freiwillig zu, dass diese Annahme die Schwachstelle unserer Überlegungen ist. Eine Diskussion dieser Fehlannahme folgt im übernächsten Abschnitt.
+
==Exercises for the chapter==
  
'''6.'''  Nachdem nun $a_2$ und $b_2$ die gleichen Zahlenwerte aufweisen, kann die in $\href{http://en.lntwww.de/Lineare_zeitinvariante_Systeme/Koaxialkabel}{Kapitel 4.2}$ angegebene Gleichung weiterverwendet werden, wobei $a_∗$ durch $a_2$ zu ersetzen ist:
+
[[Aufgaben:Exercise_4.6:_k-parameters_and_alpha-parameters| Exercise 4.6:&nbsp; $k$&nbsp; parameters&nbsp; and&nbsp; $\alpha$&nbsp; parameters]]
$$h_{\rm 2}(t )  = \frac {1/T \cdot {\rm a_2}}{\pi \cdot \sqrt{2 \cdot(t/T)^3}}\cdot {\rm exp} \left [ -\frac {{\rm a_2}^2}{ {2\pi \cdot t/T}} \right ] \hspace{0.05cm}, \hspace{0.2cm} {\rm a}_2\hspace{0.15cm}{\rm in \hspace{0.15cm}Np} \hspace{0.05cm}.$$
 
  
'''7.'''  Die gesamte Impulsantwort ohne Berücksichtigung der Phasenlaufzeit ergibt sich damit zu
+
[[Aufgaben:Exercise_4.6Z:_ISDN_Supply_Lines|Exercise 4.6Z:&nbsp; ISDN Supply Lines]]
$$h_{\rm K}(t + \tau_{\rm P})  = K \cdot h_{\alpha 1}(t) \star h_{2}(t)\hspace{0.05cm}.$$
 
Durch Verschiebung um $τ_{\rm P}$ nach rechts ergibt sich die gesuchte Funktion $h_{\rm K}(t)$. Im nächsten Abschnitt wird diese Vorgehensweise durch Grafiken verdeutlicht.
 
  
 +
[[Aufgaben:Exercise_4.7:_Copper_Twin_Wire_0.5_mm| Exercise 4.7: Copper Twin Wire 0.5 mm]]
  
 +
[[Aufgaben:Exercise_4.8:_Near-end_and_Far-end_Crosstalk_Disorders| Exercise 4.8:&nbsp; Near-end and Far-end Crosstalk Disorders]]
  
  
 +
==References==
 +
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:52, 28 November 2023

Access network of a telecommunications system


In a telecommunications system,  a distinction is made between

Local loop area for ISDN
  • the long-distance and regional network,  and
  • the  »local loop area«,


which are separated from each other by the  »local exchange«. 

The graph shows the network infrastructure for  $\text{$\rm ISDN$}$  $($»Integrated Services Digital Network«$)$.  Originally,  the entire telephone network was based on copper lines.  In the mid-1980s,  however,  the  $($mainly coaxial$)$  copper cables were replaced by optical fiber for long-distance traffic,  as the steadily growing demand for bandwidth could only be met with optical transmission technology.

  • Due to the immensely high installation costs,  optical fibers in the local loop area are still not economically viable today  $($2009$)$,  although plans for  »Fiber–to–the–Building«  $\rm (FttB)$  and  »Fiber–to–the–Home«  $\rm (FttH)$  have long been in the pipeline.
  • Instead,  over the past twenty years,  the path has been taken to provide sufficient capacity via the conventional access network based on copper lines by developing high-rate transmission systems such as  $\text{$\rm DSL$}$  $($»Digital Subscriber Line«$)$.


$\text{Example 1:}$  In Germany,  the so-called  »last mile»   $($⇒   the local loop area$)$  is shorter than four kilometers on average in the country,  and in urban areas  $90\%$  are even shorter than  $\text{2.8 km}$. 

Bundling and twisting of copper wires

The local loop area is usually structured as follows:

  • The  »main cable«  with up to  $2000$  pairs as a connection between the local exchange and the cable branch,
  • the  »branch cable«  between the cable branch and the final branch,  with up to  $300$  pairs and significantly shorter than a main cable  $($maximum  $\text{500 m)}$,
  • the  »house connection cable«  between the terminal box and the network termination box at the subscriber with two pairs of wires.


To reduce crosstalk on neighboring line pairs due to inductive and capacitive couplings and to increase the packing density,  two double wires are twisted into a so-called  »star quad». 

The diagram below shows such a star quad and a bundled cable.

  • Here,  five such quads each are combined to form a basic bundle,  and five basic bundles each are combined to form a main bundle.
  • This thus contains  $50$  twin pairs with polyethylene  $\rm (PE)$  insulation.


Attenuation function of two-wire lines


The attenuation function  $α(f)$  $($per unit length$)$  and the wave impedance  $Z_{\rm W}(f)$  of twisted pairs in real laid cables deviate to a greater or lesser extent from the theory presented in the chapter   »Some Results from Line Transmission Theory«.  Reasons for this are:

Attenuation function of two-wire lines of different diameters
  1. non-consideration of complex processes of eddy current formation and current displacement,
  2. inhomogeneities in cable structure in spliced cable sections.


Various network operators have measured  $α(f)$  and  $Z_{\rm W}(f)$  and derived empirical equations from them.   We refer here to the work of M. Pollakowski and H.W. Wellhausen of the Fernmeldetechnisches Zentralamt der Deutschen Bundespost in Darmstadt documented in  [PW95][1].

They determined for different line diameters  $d$  among other things the empirical attenuation function from forty measurements each in the frequency range up to  $\text{30 MHz}$  according to the equation

$$\alpha (f) = k_1 + k_2 \cdot (f/{\rm MHz})^{k_3} \hspace{0.05cm}.$$

The graph shows the measurement results:

  • $d = 0.35 \ {\rm mm}$:   $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
  • $d = 0.40 \ {\rm mm}$:   $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
  • $d = 0.50 \ {\rm mm}$:   $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$,
  • $d = 0.60 \ {\rm mm}$:   $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$.


One can see from this representation:

  1. The attenuation function per unit length   ⇒   $α(f)$  and the attenuation function   ⇒  ${\rm a}_{\rm K}(f) = α(f) · l$  depend significantly on the cable diameter.  The cables laid since 1994 with  $d = 0.35 \ \rm (mm)$  and  $d = 0.5$  have about  $10\%$  larger attenuation than the older cables with  $d = 0.4$  and  $d= 0.6$.
  2. However,  this smaller diameter,  justified by the manufacturing and laying costs,  significantly reduces the range  $l_{\rm max}$  of the transmission systems used on these lines,  so that in the worst case expensive  »intermediate regenerators«  have to be used.
  3. However,  the transmission methods commonly used today for copper lines,  occupy only a relatively narrow frequency band,  e.g.   $120\ \rm kHz$  for  $\text{$\rm ISDN$}$  $($»Integrated Services Digital Network«$)$  and about  $1100 \ \rm kHz$  for $\text{$\rm DSL$}$  $($»Digital Subscriber Line«$)$. 
  4. For  $f = 1 \ \rm MHz$,  the attenuation function per unit length for a  $0.4 \ \rm mm$  cable is about  $20 \ \rm dB/km$,  so that even with a cable length of  $l = 4 \ \rm km$  the attenuation value with these systems does not exceed  $80 \ \rm dB$.
  5. One exception is  $\text{$\rm VDSL$}$  $($»Very High Data Rate Digital Subscriber Line«$)$,  which is offered in Germany by Deutsche Telekom in larger cities.  Here,  the frequency range goes up to  $30 \ \rm MHz$. 
  6. For this reason,  fiber optic connections were laid right up to the cable branch in order to keep the length short that still has to be bridged with copper.  This is known as  »Fibre–to–the–Cabinet«  $\rm (FttC)$.

Conversion between  $k$  and  $\alpha$  parameters

To calculate the frequency response  $H_{\rm K}(f)$,  one should always start from the measured attenuation function per unit length:

$$\alpha (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}= \alpha_{\rm I} (f) \hspace{0.05cm}, \hspace{0.2cm}{\rm with} \hspace{0.15cm} f_0 = 1\,{\rm MHz}.$$
  • If,  on the other hand,  one wishes to determine the associated time function in terms of the impulse response  $h_{\rm K}(t)$,  it is more convenient as shown in the  »section after the next«,  if the attenuation function per unit length can be represented in the form that is also common for coaxial cables:
$$\alpha(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}= \alpha_{\rm II} (f).$$
  • As a criterion of this conversion we use that the squared deviation between both functions is minimal in the range from  $f = 0$  to  $f = B$ :
$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
  • It is obvious that  $α_0 = k_1$  will hold.  The parameters  $α_1$  and  $α_2$  depend on the desired bandwidth  $B$.  According to  $\text{Exercise 4.6}$,  they are:
$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$

$(1)$  For  $k_3 = 1$  $($frequency-proportional attenuation function per unit length$)$,  the $\alpha$–parameters logically result in

$$\alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} ,$$

$(2)$  For  $k_3 = 0.5$  the following coefficients are obtained:

$$\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$$
In this case,  $α(f)$  increases with the square root of the frequency.  This results in the same curve as for a coaxial cable,  where the well-known skin effect dominates.


In the following,  three examples will illustrate how the underlying bandwidth  $B$  influences the results of this conversion.

$\text{Example 2:}$  For this graph we assume the line length  $l = 1 \ \rm km$  and the diameter  $d = 0.4 \ \rm mm$,  so that the following applies:

$$k_1 = 5.1 \ \rm dB/km, \ k_2 = 14.3 \ \rm dB/km, \ k_3 = \ 0.59.$$

For this case the following graph shows

  • the attenuation  ${\rm a_K}(f)$  approximated by  $α_0,  α_1$,  $α_2$  $($blue curve$)$
  • compared to the   ${\rm a_K}(f)$  curve according to  $k_1,  k_2,  k_3$  $($red curve$)$.
Approximation of  $k$–parameters  by  $\alpha$–parameters

The three diagrams are valid for the bandwidths  $B = 10 \ \rm MHz$,  $B = 20 \ \rm MHz$  and  $B = \ \rm 30 \ MHz$.

  • The determined coefficients  $α_1$  and  $α_2$  are indicated.
  •  $α_0 = k_1 = 5.1 \ \rm dB/km$  is always valid.


One recognizes from these representations:

  1. Even with the largest approximation range  $(B = 30 \ \rm MHz)$,  the blue curve  $($with  $α_0, \ α_1, \ α_2)$  approximates the red curve  $($described by  $k_1, \ k_2, \ k_3)$  very well.
  2. For smaller bandwidth  $(B = 20 \ \rm MHz$  or  $B = 10 \ \rm MHz)$  the approximation in the range  $0≤ f ≤ B$  is even better,  but now distortions occur for  $f > B$ .
  3. The attenuation value  $a_{\rm K}(f = 30 \ \rm MHz) ≈ 112.2 \ \rm dB$  is composed as follows for the considered two-wire cable:
        $4.5\%$  is due to the coefficient  $α_0$  $($ohmic losses$)$,
        $23.5\%$  to the  $f$–proportional component  $α_1$  and
        $72\%$  to the coefficient  $α_2$.
  4. In comparison, the standard coaxial cable  $\text{2.6/9.5 mm}$  exhibits comparable attenuation  $(≈ 112 \ \rm dB)$  only at a length of  $l = 8.7 \ \rm km$,  with most of the attenuation  $(98.9\%)$  coming from the skin effect  $(α_2)$.


In the opposite direction  $(α_1, \ α_2 ⇒ k_2, \ k_3)$  the conversion rule for the exponent is:

$$k_3 = \frac{H + 0.5} {H +1}, \hspace{0.4cm}\text{with auxiliary: }H = \frac{2} {3} \cdot \frac{\alpha_1 \cdot \sqrt{f_0} }{\alpha_2} \cdot \sqrt{B/f_0}.$$

With this result,  $k_2$  can be calculated using either of the two equations given above.


Impulse response of a two-wire line


With this coefficient conversion  $(k_1, \ k_2, \ k_3) \ \ ⇒ \ \ (α_0, \ α_1, \ α_2)$  we can now write for the  »total frequency response«  of a two-wire line:

$$H_{\rm K}(f) = H_{\alpha 0}(f) \cdot H_{\alpha 1}(f) \cdot H_{\beta 1}(f)\cdot H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \hspace{0.05cm}.$$

Here,  the following abbreviations are used:

$$\begin{align*} H_{\alpha 0}(f) & = {\rm e}^{-\alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}= {\rm e}^{-{\rm a}_0}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_0= \alpha_0\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np) }\cdot l,\\ H_{\alpha 1}(f) & = {\rm e}^{-\alpha_1 \cdot f \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm e}^{-{\rm a}_1 \cdot 2f/R}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_1 = \alpha_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np) }\cdot l \cdot {R}/{2} \hspace{0.05cm}, \\ H_{\beta 1}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1 \cdot f \hspace{0.05cm} \cdot \hspace{0.05cm}l} = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau_{\rm P}} \hspace{0.05cm},\hspace{0.2cm} \tau_{\rm P} = {\beta_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad) }\cdot l }/({2 \pi}) \hspace{0.05cm}, \\ H_{\alpha 2}(f) & = {\rm e}^{-\alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_2 = \alpha_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np) }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm}, \\ H_{\beta 2}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2 \hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} b_2 = \beta_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad) }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm} \end{align*}$$

The meaning of the quantities implicitly defined here will be discussed a little later.

⇒   We proceed here first quite formally.  According to the  »convolution theorem«,  the resulting impulse response is the  »Fourier retransform«  of  $H_{\rm K}(f)$:

$$h_{\rm K}(t) = h_{\alpha 0}(t) \star h_{\alpha 1}(t) \star h_{\beta 1}(t)\star h_{\alpha 2}(t) \star h_{\beta 2}(t) \hspace{0.05cm},$$
$$h_{\alpha 0}(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 0}(f) \hspace{0.05cm},\hspace{0.2cm} h_{\alpha 1}(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 1}(f) \hspace{0.05cm},\hspace{0.2cm} {\rm etc.}$$

These five components are now to be considered separately,  with the numerical results referring to

  • a digital transmission system with bit rate  $R = 30 \ \rm Mbit/s$  and
  • a two-wire line with dimensions  $d = 0.4 \ \rm mm$  and  $l = 1 \ \rm km$. 


Thus,  the  $α$–coefficients in Neper  $\rm (Np)$  are:

$$\alpha_0 = 0.59\, \frac{ {\rm Np} }{ {\rm km} } \hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.10\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 1.69\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.$$

The phase function per unit length of this line is also given in  [PW95][1]:

$$b_{\rm K}(f) = \beta_1 \cdot f + \beta_2 \cdot \sqrt {f}\hspace{0.05cm}, \hspace{0.2cm} \beta_1 = 32.9\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 2.26\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$

The symbol duration  $T = 1/R ≈ 33 \ \rm ns$  is suitable as a normalization quantity of time.

Interpretation and manipulation of the individual impulse responses


Now the five impulse response components  $h_{α0}(t), \ h_{α1}(t), \ h_{α2}(t), \ h_{β1}(t)$  and  $h_{β2}(t)$  are interpreted:

(1)   The first term resulting from the ohmic losses  $($frequency-independent attenuation$)$  leads to a Dirac delta function with weight  $K$,  so that the convolution with  $h_{α0}(t)$  can be replaced by the multiplication with  $K = {\rm e}^{–0.59} ≈ 0.55$:

$$h_{\alpha 0}(t) = K \cdot \delta(t) \hspace{0.25cm}{\rm with}\hspace{0.25cm} K = {\rm e}^{-{\rm a}_0}\hspace{0.45cm}\Rightarrow\hspace{0.45cm} h_{\rm K}(t) = h_{\alpha 0}(t) \star h_{\rm Rest}(t) = K \cdot h_{\rm Rest}(t)\hspace{0.05cm}.$$

(2)   $H_{α1}(f)$  is a real and even function of frequency,  so the Fourier retransform is also real and symmetric at  $t =0$:

$$H_{\alpha 1}(f) = {\rm e}^{-2\cdot{\rm a}_1 \cdot |f/R|} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{\alpha 1}(t)= \frac{1}{T} \cdot \frac{{\rm a}_1}{{\rm a}_1^2 + \pi \cdot (t/T)^2}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_1 \hspace{0.15cm}{\rm in \hspace{0.15cm}Np } \hspace{0.05cm}.$$
With the exemplary numerical values  $α_1 = 0.1 \ \rm Np/(km · MHz)$,   $l = 1 \ \rm km$,   $R = 30 \ \rm MHz$   ⇒   ${\rm a}_1 = 1.5 \ \rm (Np)$,  we obtain for the maximum of this fraction:
$$h_{α1}(t = 0) = 1/{\rm a}_1 = 2/3 · 1/T.$$

(3)   As for the coaxial cable systems,  $H_{β1}(f)$  does not lead to any signal distortion,  but only to a time delay by the  »phase delay time«:

$$τ_{\rm P} ≈ 5.24 \ \rm µs \hspace{0.2cm} ⇒ \hspace{0.2cm} τ_{\rm P}/T ≈ 157.$$

(4)   Let us turn to the combined consideration of the  $H_{α2}(f)$  and  $H_{β2}(f)$  components,  which is described in the time domain by the common impulse response  $h_2(t)$:

$$H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{2}(t) \hspace{0.05cm}.$$

(5)   To apply the results of the chapter  »Properties of Coaxial Cables«,  we replace  $β_2$  by  $α_2 · \rm rad/Np$  and  $b_2$  by  ${\rm a}_2 · \text{rad/Np}$,  so that  ${\rm a}_2$  and  $b_2$  have the same numerical value.  As an example, we substitute here:

$$ b_2 = 8.75\, {\rm rad}\hspace{0.2cm} \Rightarrow \hspace{0.2cm} b_2 = 6.55 \,{\rm rad}\hspace{0.05cm}.$$
One thus reduces the constant  $β_2 = 2.26 \ \rm rad/(km · \sqrt{MHz})$  to  $β_2 = 1.69 \ \rm rad/(km · \sqrt{MHz})$ .

(6)   Before we unnecessarily lead the reader to consider whether this approximation is indeed valid or not,  we freely admit right away that this assumption is the weak point of our reasoning.  A discussion of this faulty assumption follows in the  »next secction«.

(7)   Now that  ${\rm a}_2$  and  $b_2$  have the same numerical values,  we can further use the equation given in the chapter  »Properties of Coaxial Cables«,  substituting  $\rm a_∗$  for  $\rm a_2$ :

$$h_{\rm 2}(t ) = \frac {1/T \cdot {\rm a_2}}{\pi \cdot \sqrt{2 \cdot(t/T)^3}}\cdot {\rm e}^{ - {{\rm a_2}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} t/T})} \hspace{0.05cm}, \hspace{0.2cm} {\rm a}_2\hspace{0.15cm}{\rm in \hspace{0.15cm}Np} \hspace{0.05cm}.$$

(8)   The total impulse response without consideration of the phase delay time is thus given by

$$h_{\rm K}(t + \tau_{\rm P}) = K \cdot h_{\alpha 1}(t) \star h_{2}(t)\hspace{0.05cm}.$$
By shifting  $τ_{\rm P}$  to the right, the searched function  $h_{\rm K}(t)$  is obtained.  In the following example,  this procedure is illustrated by graphs.


$\text{Example 3:}$  For the following graphs,  a two-wire line with dimensions  $d = 0.4 \ \rm mm$,  and  $l = 1 \ \rm km$  is still assumed.  Please note the different ordinate scaling of the three diagrams in the graph.

  1. The bit rate is  $R = 30 \ \rm Mbit/s$   ⇒   symbol duration  $T ≈ 33\ \rm ns$.
  2. We assume the quantities given in the yellow box,  calculated in the last section.
  3. For this purpose,  the  $b_2$ value is changed from  $8.75 \ \rm rad$  to  $6.55 \ \rm rad$  to match the  ${\rm a}_2$ value.
  4. The effects of this measure are interpreted in the next section.
For calculating the impulse response of a two-wire line
  • On the top right  $h_1(t) = h_{\rm α1}(t + τ_{\rm P})$  is shown. This component is due to the  $α_1$  and  $β_1$  coefficients. $h_1(t)$  is a symmetric function with respect to the phase delay time  $τ_{\rm P}$  with the maximum value  $(1.5T)^{–1}$, where the  $1/(1 + t^2$) decay is rapidly decreased at  $ \pm 5T$  $($right and left of  $τ_{\rm P})$.
  • The lower left diagram shows the signal component  $h_2(t)$,  due to the coefficients  $α_2$  and  $β_2$.  $h_2(t)$  is identical to the  »coaxial cable impulse response«  $($ignoring the delay time$)$.  Characteristic cable attenuation is  ${\rm a}_*=6.55 \ \rm Np$  $(56.9 \ \rm dB)$.
  • The red curve represents the convolution product  $h_1(t) ∗ h_2(t)$.  It can be seen that the waveform is essentially fixed by  $h_2(t)$.  However,  convolution with  $h_1(t)$  leads to a  (slight)  distortion of the waveform in addition to an amplitude loss of about  $10\%$.
  • The resulting impulse response  $h_{\rm K}(t)$  of the 0.4mm two-wire line is shown as a blue curve in the lower right diagram.  The difference to the convolution product  $h_1(t) ∗ h_2(t)$  drawn in red results from the influence of the DC signal attenuation $($coefficient  $α_0)$.



Discussion of the approximate solution found


$\text{Example 4:}$  The following graph shows the (normalized) impulse responses  $T · h_{\rm K}(t)$  for two exemplary copper cables,  namely for

Impulse response approximations of normal coaxial cable (top)
and  0.4 mm  two-wire cable (bottom)

$(1)$  the  »standard coaxial cable 2.6/9.5 mm«  at  $\text{10.1 km}$  length  $($above$)$,  where:

$$a_0 = 0.016\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_1 = 0.020\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
$$\tau_{ {\rm P} }/T = 350\hspace{0.05cm}, \hspace{0.15cm} b_2 = 6.177\,{\rm rad}\hspace{0.05cm};$$

$(2)$  the    »0.4 mm two-wire line«  with length  $\text{1.8 km}$  $($below$)$ with the parameters

$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
$$\tau_{ {\rm P} }/T = 94\hspace{0.05cm}, \hspace{0.15cm} b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$


$\rm Note:$

  • These values are valid for bit rate  $R = 10 \ \rm Mbit/s$.
  • Thus,  the time normalization  $T = 1/R= 0.1 \ \rm µ s$.
  • The two cable lengths were chosen to give exactly equal  $a_2$ parameters.
  • For the two-wire cable,  the phase value  $b_2 ⇒ b_2\hspace{0.01cm}'$  was adjusted to give equal values for  $b_2\hspace{0.05cm}' = 6.177 \ \rm rad$  and  $a_2 = 6.177 \ \rm Np \ (≈ 53 \ dB)$  as for the coaxial cable.


The blue curves show the approximations when the  $a_0, \ a_1$ and  $b_1$ terms are neglected.  Due to the  $b_2 ⇒ b_2\hspace{0.01cm}'$  phase matching for the two-wire line,  the curves are nearly the same.  The maximum of about  $3.8\%$  is at about  $t/T = 4$  $($different time scales in both diagrams!$)$.

The red curves also take into account the  $a_0, \ a_1$ and  $b_1 $  terms.  The red curve of the coaxial cable is the actual  $($normalized$)$  impulse response  $T · h_{\rm K}(t)$.

From these representations,  one can further see:

  1. For the coaxial cable,  the  $a_0$ term and the  $a_1 $  term can be neglected.  The resulting relative error is only  $3.5\%$.
  2. However, the phase delay time  $τ_{\rm P}$, i.e. the  $b_1$ term,  cannot be neglected.  For the coaxial cable this gives  $τ_{\rm P}/T ≈ 350$,  while for the two-wire line it is  $τ_{\rm P}/T ≈ 94$   $($note the different time scales$)$.
  3. For the two-wire line $($below$)$,  do not neglect DC signal attenuation  $(a_0)$  and transverse loss  $(a_1)$ :  
    The red approximation  $T · h_{\rm K}\hspace{0.01cm}'(t)$  is  $70\%$  lower than the blue one and also slightly wider.


$\text{Example 5:}$  This example shows approximations of the impulse response of a two-wire line  $($length $\text{1.8 km}$,  diameter $\text{0.4 mm)}$,  so that according to  [PW95][1].  the following parameters can be assumed:

For the impulse response of a  $\text{0.4 mm}$  two-wire cable
$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
$$\tau_{ {\rm P} }/T = 94\hspace{0.05cm}, \hspace{0.15cm} b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$

The upper diagram – equal to the lower diagram in  $\text{Example 4}$ – shows two approximations

  • with neglection of the  $a_0, \ a_1$  and  $b_1$ terms  $($blue curve$)$,
  • with consideration of the  $a_0, \ a_1$  and  $b_1$ terms  $($red curve$)$.


For this upper diagram,  we further adopted the  $a_2$  coefficient given in  [PW95][1]  and lowered the mentioned coefficient  $b_2 = 8.260 \ \rm rad$  to  $b_2\hspace{0.01cm}' = 6.177 \ \rm rad$ .

$\text{Note:}$   In contrast to the coaxial cable in  $\text{Example 3}$,  because of  $b_2\hspace{0.01cm}' ≠ b_2$  the red curve  $T · h_{\rm K}\hspace{0.01cm}'(t)$  is also only an approximation,  which is indicated in the graph by the apostrophe.

Without the correction  $b_2\hspace{0.01cm}' = a_2 · \text{rad/Np}$,  the  »Hilbert transform«,  which establishes the relationship between magnitude and phase in real and thus establishes  »minimum-phase systems«,  would not be satisfied.  Therefore,  it would result in a noncausal impulse response.

We therefore believe that even for a two-wire line, the two parameters  $a_2$  and  $b_2$  should have equal numerical values.

We now consider a second approach,  shown in the diagram below:

  1. Here,  the phase coefficient  $b_2 = 8.260 \ \rm rad$  given in  [PW95][1]  was kept.
  2. Instead,  the attenuation coefficient  $a_2 = 6.177 \ \rm Np$  was adjusted to the phase coefficient  $($i.e.,  enlarged$)$:   $a_2\hspace{0.01cm}' = 8.260 \ \rm Np$.
  3. The lower  $($red$)$  impulse response   ⇒   »worst case«  is less than half as high and much wider than the upper impulse response   ⇒   »best case«.
  4. The actual  $($normalized$)$  impulse response  $T \cdot h_{\rm K}\hspace{0.01cm}'(t)$  will probably lie in between.  We do not allow ourselves to make more precise statements.

Crosstalk on two-wire lines


For transmission systems over two-wire lines,  the same  »block diagram«  can be assumed as for the coaxial cable systems,  where now

  • for the frequency response  $H_{\rm K}(f)$  and the impulse response  $h_{\rm K}(t)$  the equations given in this section are to be used,
  • white Gaussian noise  $N_0$  is no longer the dominant cause of stochastic impairments, 
  • but  »crosstalk«  due to capacitive or inductive coupling of adjacent pairs now predominates.


By twisting the wire pairs of a star quad as well as the basic and main bundles according to the diagram at the end of the chapter  »Access network of a telecommunications system«  an attempt is made to achieve on average a mutual coupling as symmetrical as possible between all wire pairs.  Due to unavoidable manufacturing tolerances,  however,  a slight asymmetry always remains.  This causes:

  • In addition to its  own  useful signal,  each receiver input also receives  $($usually only small$)$  signal components from neighboring wire pairs.
  • The induced signal components represent an additional stochastic impairment for the useful signal, 
    which together with thermal noise results in the resulting interfering signal  $n(t)$.
  • The transmission quality cannot be improved or can only be improved to a very limited extent by increasing the transmitted power, 
    since this measure also increases the crosstalk interference.
On the emergence of crosstalk


As the diagram illustrates,  a distinction is made between

  • »Near-End Crosstalk«  $\rm (NEXT)$:
    The interfering transmitter feeds its signal at the same end of the cable where the receiver under consideration is placed.
  • »Far–End Crosstalk«  $\rm (FEXT)$:
    Interfering transmitter and interfering receiver are located at opposite ends of the cable.


In the case of  »FEXT«,  the interference accumulates over the entire cable length,  but is also greatly attenuated by the cable attenuation.  For bundled cables in the local loop area,  »in quad crosstalk«  thus results in orders of magnitude greater noise than  »FEXT«,  and even  »NEXT«  from adjacent cores can usually be neglected.

We therefore consider only  »Near-End Crosstalk« $\text{(NEXT)}$  in the following. 

$\text{Without derivation:}$ 

In this case,  the  »power-spectral density»  $\rm (PSD)$  of the noise signal  $n(t)$  can be represented as follows,  taking into account the unavoidable thermal noise  $(N_0/2)$:

$${\it \Phi}_n(f) = {N_0}/{2}+{\it \Phi}_{\rm NEXT}(f) \hspace{0.05cm},\hspace{0.3cm}{\rm with} \hspace{0.3cm}{\it \Phi}_{\rm NEXT}(f) = {\it \Phi}_{s}(f) \cdot\vert H_{\rm NEXT}(f)\vert ^2 \approx {\it \Phi}_{s}(f) \cdot [K_{\rm NEXT} \cdot f]^{3/2}\hspace{0.05cm}.$$


It should be noted about this equation:

  1. The equation is obtained by integrating the local couplings over the entire length of a short section,  where the couplings between all copper lines are modeled by cross capacitances and inductances.
  2. ${\it \Phi}_s(f)$  is the power-spectral density of the interfering transmitter,  from which the transmitted power  $P_{\rm S}$  is obtained by integration.  Assuming that the interfered transmission uses the same transmitted signal and thus the same  ${\it \Phi}_s(f)$  as the interferer,  it is clear that increasing  $P_{\rm S}$  only reduces the  $($relative$)$  influence of thermal noise  $(N_0/2)$.
  3. The factor  $K_{\rm NEXT}$  quantifying the near-end crosstalk depends strongly on the core spacing,  as well as on the degree of unbalance along the cable.  In contrast,  this factor  $K_{\rm NEXT}$  is almost independent of the conductor diameter  $d$  and the cable length  $l$.
  4. The  $($dimensionless$)$  product  $K_{\rm NEXT} · f$  over the entire operating range of the cable,  e.g. for all frequencies  $0 ≤ f ≤ 30 \ \rm MHz$,  is always much smaller than  $1$.  The crosstalk noise increases sharply  $($that is,  with exponent $1.5)$  with frequency.
  5. In  [PW95][1],  the following values are given after a series of measurements over forty pairs for the frequency  $f = 10 \ \rm MHz$  
    $($for  $f = 30 \ \rm MHz$  these values must still be multiplied by  $3^{3/2} ≈ 5.2)$:
          ⇒   Worst case:   $|H_{\rm NEXT}(f = 10 \ \rm MHz)|^2 ≈ 0.001$,
          ⇒   Averaging over 40 cores:   $|H_{\rm NEXT}(f = \ \rm 10 MHz)|^2 ≈ 0.0004$.
  6. This values apply to  »in-four near-end crosstalk«  $($interfering transmitter and interfering receiver in the same star quad$)$.
  7. Near-end crosstalk noise between more distant cores exhibits the same frequency dependence,  but is smaller than  »in-four near-end crosstalk»:
          ⇒   Near-end crosstalk between adjacent star quads by about  $5 \ \rm dB$,
          ⇒   Near-end crosstalk between adjacent ground bundles by about  $10 \ \rm dB$,
          ⇒   Near-end crosstalk between non-adjacent ground bundles by about  $25 \ \rm dB$.


$\text{Conclusion:}$ 

  • In order to avoid or at least to reduce such near-end crosstalk noise,  adjacent pairs of wires are often occupied by completely different signals  $($analog telephony, ISDN, DSL or other broadband services$)$  which also use different frequency bands if possible.
  • By clever selection of the twisted pairs,  adjacent cores can now be occupied with signals whose spectra overlap as little as possible,  thus reducing crosstalk noise.

Exercises for the chapter

Exercise 4.6:  $k$  parameters  and  $\alpha$  parameters

Exercise 4.6Z:  ISDN Supply Lines

Exercise 4.7: Copper Twin Wire 0.5 mm

Exercise 4.8:  Near-end and Far-end Crosstalk Disorders


References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.