Difference between revisions of "Linear and Time Invariant Systems/System Description in Time Domain"

From LNTwww
 
(79 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Systemtheoretische Grundlagen
+
|Untermenü=Basics of System Theory
|Vorherige Seite=Systembeschreibung im Frequenzbereich
+
|Vorherige Seite=System Description in Frequency Domain
|Nächste Seite=Einige systemtheoretische Tiefpassfunktionen
+
|Nächste Seite=Some Low-Pass Functions in System Theory
 
}}
 
}}
  
==Impulsantwort==
+
==Impulse response==
 
<br>
 
<br>
Auf der Seite&nbsp;  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|Das erste Fourierintegral]]&nbsp;  im Buch &bdquo;Signaldarstellung&rdquo; wurde dargelegt, dass für jedes deterministische Signal&nbsp; $x(t)$&nbsp; mit Hilfe der Fouriertransformation eine Spektralfunktion&nbsp; $X(f)$&nbsp; angegeben werden kann. Oft bezeichnet man&nbsp; $X(f)$&nbsp; kurz als das Spektrum.  
+
In the section&nbsp;  [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;The first Fourier integral&laquo;]]&nbsp;  in the book&nbsp; &raquo;Signal Representation&raquo;&nbsp; it was explained that for any deterministic signal&nbsp; $x(t)$&nbsp; a&nbsp; &raquo;spectral function&laquo;&nbsp; $X(f)$&nbsp; can be given with the help of the Fourier transform.&nbsp; Often &nbsp;$X(f)$&nbsp; is referred to as the&nbsp; &raquo;spectrum&laquo;&nbsp; for short.  
  
Alle Informationen über die Spektralfunktion sind aber auch bereits in der Zeitbereichsdarstellung enthalten, wenn auch nicht immer sofort erkennbar. Der gleiche Sachverhalt trifft für lineare zeitinvariante Systeme zu.  
+
However, all information about the spectral function is already contained in the time domain representation, even if not always immediately recognizable.&nbsp; The same facts apply to linear time-invariant systems.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Die wichtigste Beschreibungsgröße eines linearen zeitinvarianten Systems im Zeitbereich ist die Fourierrücktransformierte von&nbsp; $H(f)$, die man als die&nbsp; '''Impulsantwort'''&nbsp; bezeichnet:
+
The most important descriptive quantity of a linear time-invariant system in the time domain is the inverse Fourier transform of&nbsp; $H(f)$, which is called the&nbsp; &raquo;'''impulse response'''&laquo;:
 
:$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$}}
 
:$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$}}
  
  
Hierzu ist Folgendes anzumerken:  
+
The following should be noted in this regard:  
*Der Frequenzgang&nbsp; $H(f)$&nbsp; und die Impulsantwort&nbsp; $h(t)$&nbsp; sind äquivalente Beschreibungsgrößen, die genau die gleichen Informationen über das LZI–System beinhalten.  
+
*The frequency response&nbsp; $H(f)$&nbsp; and the impulse response&nbsp; $h(t)$&nbsp; are equivalent descriptive quantities that contain exactly the same information about the LTI system.  
*Verwendet man das diracförmige Eingangssignal&nbsp; $x(t) = δ(t)$, so ist&nbsp; $X(f) = 1$&nbsp; zu setzen und es gilt&nbsp; $Y(f) = H(f)$&nbsp; bzw.&nbsp; $y(t) = h(t)$.  
+
*If the Dirac-shaped input signal&nbsp; $x(t) = δ(t)$ is used, then&nbsp; $X(f) = 1$&nbsp; is to be set and&nbsp; $Y(f) = H(f)$&nbsp; resp.&nbsp; $y(t) = h(t)$ are valid.  
*Die Bezeichnung &bdquo;Impulsantwort&rdquo; spiegelt diese Aussage wieder: &nbsp; $h(t)$&nbsp; ist die Antwort des Systems auf einen (Dirac-)Impuls am Eingang.  
+
*The term&nbsp; &raquo;impulse response&laquo;&nbsp; reflects this statement: &nbsp; $h(t)$&nbsp; is the response of the system to a&nbsp; $($Dirac delta$)$&nbsp; function as the input signal.  
*Die obige Definition lässt erkennen, dass jede Impulsantwort die Einheit&nbsp; $\text{Hz = 1/s}$&nbsp; besitzen muss.  
+
*The above definition suggests that any impulse response must have the unit&nbsp; $\text{Hz = 1/s}$.  
  
  
[[File:P_ID837__LZI_T_1_2_S1_neu.png|right|frame|Rechteckförmige Impulsantwort und zugehöriges Betragsspektrum|class=fit]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;  
+
$\text{Example 1:}$&nbsp;  
Die Impulsantwort&nbsp; $h(t)$&nbsp; des so genannten ''Spalt–Tiefpasses''&nbsp; ist über eine Zeitdauer&nbsp; $T$&nbsp; hinweg konstant und außerhalb dieses Zeitintervalls gleich Null.  
+
The impulse response&nbsp; $h(t)$&nbsp; of the so-called&nbsp; &raquo;rectangular&ndash;in&ndash;time&laquo;&nbsp; filter is constant over a time interval&nbsp; $T$&nbsp; and is zero outside this time interval.  
*Der dazugehörige Amplitudengang als der Betrag des Frequenzgangs ist&nbsp;  
+
[[File:P_ID837__LZI_T_1_2_S1_neu.png|right|frame|Rectangular impulse response and associated magnitude spectrum|class=fit]]
:$$\vert H(f)\vert  = \vert {\rm si}(\pi fT)\vert .$$  
+
*The associated amplitude response as the magnitude of the frequency response is&nbsp;  
*Die Fläche über&nbsp; $h(t)$&nbsp; ist gleich&nbsp; $H(f = 0) = 1$. Daraus folgt: &nbsp; <br>&nbsp; &nbsp; Im Bereich&nbsp; $ 0 < t < T$&nbsp; muss die Impulsantwort gleich&nbsp; $1/T$&nbsp; sein.
+
:$$\vert H(f)\vert  = \vert {\rm si}(\pi fT)\vert \hspace{0.5cm}\text{with}\hspace{0.5cm}{\rm si}(x)=\sin(x)/x={\rm sinc}(x/\pi).$$  
*Der Phasenverlauf ergibt sich  zu
+
*The area over&nbsp; $h(t)$&nbsp; is equal to&nbsp; $H(f = 0) = 1$. It follows that: &nbsp; <br>&nbsp; &nbsp; In the range&nbsp; $ 0 < t < T$&nbsp; the impulse response must be constant and equal to&nbsp; $1/T$.
:$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T  \\  - \pi/T \\  \end{array} \right.\quad \quad\begin{array}{*{20}c}  \text{für} \\  \text{für}  \\ \end{array}\begin{array}{*{20}c}{\left \vert  \hspace{0.05cm} f\hspace{0.05cm} \right \vert  > 0,}  \\{\vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0.}  \\\end{array}$$
+
*The phase response is given by
*Bei symmetrischem&nbsp; $h(t)$&nbsp; um&nbsp; $t = 0$&nbsp; (also akausal) wäre&nbsp; $b(f)=0$. }}
+
:$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T  \\  - \pi/T \\  \end{array} \right.\quad \quad\begin{array}{*{20}c}  \text{for} \\  \text{for}  \\ \end{array}\begin{array}{*{20}c}{\left \vert  \hspace{0.05cm} f\hspace{0.05cm} \right \vert  > 0,}  \\{\vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0.}  \\\end{array}$$
 +
*With symmetrical&nbsp; $h(t)$&nbsp; around&nbsp; $t = 0$&nbsp; $($i.e. non-causal$)$ &nbsp; &rArr; &nbsp; $b(f)=0$. }}
  
==Einige Gesetze der Fouriertransformation==
+
==Some laws of the Fourier transform==
 
<br>
 
<br>
Die&nbsp; [[Signal_Representation/Fourier_Transform_Laws|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; wurden bereits im Buch &bdquo;Signaldarstellung&rdquo; ausführlich dargelegt.  
+
The&nbsp; [[Signal_Representation/Fourier_Transform_Theorems|'''&raquo;Fourier transform theorems&laquo;''']]&nbsp; have already been explained in detail in the book&nbsp; &raquo;Signal Representation&laquo;.  
  
Hier folgt nun eine kurze Zusammenfassung, wobei&nbsp; $H(f)$&nbsp; den Frequenzgang eines LZI–Systems beschreibt und dessen Fourierrücktransformierte&nbsp; $h(t)$&nbsp; die Impulsantwort ist. Diese Gesetzmäßigkeiten werden in den&nbsp; [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Zeitbereich#Aufgaben_zum_Kapitel|Aufgaben]]&nbsp; zu diesem Kapitel &bdquo;Systemtheoretische Grundlagen&rdquo; häufiger angewendet.  
+
The following is a short summary, where&nbsp; $H(f)$&nbsp; describes the frequency response of an LTI system and whose inverse Fourier transform&nbsp; $h(t)$&nbsp; is the impulse response.&nbsp; The laws and principles are applied more frequently in the&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Exercises_for_the_chapter|&raquo;$\text{exercises}$&laquo;]]&nbsp; for this chapter&nbsp; &raquo;System Description in Time Domain&laquo;.  
  
Wir verweisen hier auch auf das Lernvideo&nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]].
+
Here, we also refer to the (German language) didactic video&nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|"Gesetzmäßigkeiten der Fouriertransformation"]] &nbsp; &rArr; &nbsp; "Regularities to the Fourier transform".
  
Bei den folgenden Gleichungen wird das Kurzsymbol der Fouriertransformation benutzt. Der ausgefüllte Kreis kennzeichnet den Spektralbereich, der weiße den Zeitbereich.
+
In the following equations the short symbol of the Fourier transformation is used. The filled-out circle indicates the spectral domain, the white one the time domain.
*'''Multiplikation'''&nbsp; mit einem konstanten Faktor:
+
*&raquo;'''Multiplication'''&laquo;&nbsp; by a constant factor:
 
:$$k \cdot H(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,k \cdot h(t).$$
 
:$$k \cdot H(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,k \cdot h(t).$$
:Bei&nbsp; $k \lt 1$&nbsp; spricht man von einer Dämpfung, während&nbsp; $k \gt 1$&nbsp; für eine Verstärkung steht.
+
::For&nbsp; $k \lt 1$&nbsp; one deals with attenuation,&nbsp; while&nbsp; $k \gt 1$&nbsp; stands for amplification.
  
  
*'''Ähnlichkeitssatz''':
+
*&raquo;'''Similarity Theorem'''&laquo;:
 
:$$H({f}/{k})\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
 
:$$H({f}/{k})\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
:#&nbsp; Dieser besagt: &nbsp; Eine Stauchung&nbsp; $(k < 1)$&nbsp; des Frequenzgangs führt zu einer breiteren und niedrigeren Impulsantwort.  
+
:#&nbsp; This implies: &nbsp; Compression &nbsp; $(k < 1)$&nbsp; of the frequency response results in a wider and lower impulse response.  
:#&nbsp; Durch Streckung&nbsp; $(k > 1)$&nbsp; von&nbsp; $H(f)$&nbsp; wird&nbsp; $h(t)$&nbsp; schmaler und höher.
+
:#&nbsp; Stretching&nbsp; $(k > 1)$&nbsp; of&nbsp; $H(f)$&nbsp; makes&nbsp; $h(t)$&nbsp; narrower and higher.
  
  
*'''Verschiebungssatz'''&nbsp; im Frequenzbereich und im Zeitbereich:
+
*&raquo;'''Displacement Theorem'''&laquo;&nbsp; in the frequency and time domain:
:$$H(f - f_0) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},\hspace{0.9cm}
+
:$$H(f - f_0) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},$$
H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t- t_0 ).$$
+
:$$H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t- t_0 ).$$
:#&nbsp; Eine Verschiebung um&nbsp; $t_0$&nbsp; (Laufzeit) führt also im Frequenzbereich zu der Multiplikation mit einer komplexen Exponentialfunktion.  
+
:#&nbsp; A shift by&nbsp; $t_0$&nbsp; $($&raquo;transit time&raquo;$)$&nbsp; thus leads to multiplication by a complex exponential function in the frequency domain.  
:#&nbsp; Der Amplitudengang&nbsp; $|H(f)|$&nbsp; wird dadurch nicht verändert.
+
:#&nbsp; Thereby,&nbsp; the amplitude response&nbsp; $|H(f)|$&nbsp; does not change.
  
  
*'''Differentiationssatz'''&nbsp; im Frequenzbereich und im Zeitbereich:
+
*&raquo;'''Differentiation Theorem'''&laquo;&nbsp; in the frequency and time domain:
:$$\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}H( f )}}{{{\rm d}f}} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,- t \cdot h( t ),\hspace{0.9cm}
+
:$$\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}H( f )}}{{{\rm d}f}} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,- t \cdot h( t ),$$
{\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{{{\rm d}h( t )}}{{\rm d}t}.$$
+
:$${\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{{{\rm d}h( t )}}{{\rm d}t}.$$
:Ein differenzierendes Element im LZI–System führt im Frequenzbereich zu einer Multiplikation mit&nbsp; ${\rm j}\cdot 2πf$&nbsp; und damit unter Anderem zu einer Phasendrehung um&nbsp; $90^{\circ}$.
+
:#&nbsp; A differentiating element in the LTI system leads to a multiplication by&nbsp; ${\rm j}\cdot 2πf$&nbsp; in the frequency domain
 +
:#&nbsp; and thus among other things to a phase rotation by&nbsp; $90^{\circ}$.
  
  
==Kausale Systeme==
+
==Causal systems==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Ein LZI–System bezeichnet man dann als&nbsp;  '''kausal''', wenn die Impulsantwort&nbsp;  $h(t)$&nbsp; also die Fourierrücktransformierte des Frequenzgangs&nbsp;  $H(f)$&nbsp; folgende Bedingung erfüllt:  
+
An LTI system is said to be&nbsp;  $\text{causal}$&nbsp; if the impulse response&nbsp;  $h(t)$&nbsp; – that is the inverse Fourier transform of the frequency response&nbsp;  $H(f)$&nbsp; – satisfies the following condition:  
:$$h(t) = 0 \hspace{0.25cm}{\rm f\ddot{u}r}\hspace{0.25cm} t < 0.$$
+
:$$h(t) = 0 \hspace{0.25cm}{\rm for}\hspace{0.25cm} t < 0.$$
$\text{Bitte beachten Sie:}$&nbsp; Jedes realisierbare System ist kausal. }}
+
 
 +
If this condition is not met,&nbsp; the system is&nbsp; &raquo;'''non&ndash;causal'''&laquo;&nbsp; $($or &raquo;acausal&laquo;$)$.
 +
 
 +
$\text{Please note:}$&nbsp; Any realizable system is causal. }}
  
  
[[File:P_ID806__LZI_T_1_2_S3_neu.png|right|frame|Akausales System&nbsp;  $\rm  A$&nbsp;  und kausales System&nbsp;  $\rm  B$|class=fit]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Die Grafik verdeutlicht den Unterschied zwischen dem akausalen System&nbsp;  $\rm A$&nbsp;  und dem kausalen System&nbsp;  $\rm  B$.
+
The diagram illustrates the differences between the non&ndash;causal system&nbsp;  $\rm A$&nbsp;  and the causal system&nbsp;  $\rm  B$.
*Beim System&nbsp; $\rm  A$&nbsp; beginnt die Wirkung früher&nbsp; $($bei &nbsp; $t =\hspace{0.05cm} –T)$&nbsp; als die Ursache&nbsp; $($Diracfunktion bei &nbsp; $t = 0)$, was natürlich in der Praxis nicht möglich ist.  
+
[[File:P_ID806__LZI_T_1_2_S3_neu.png|right|frame|Non&ndash;causal system&nbsp;  $\rm  A$&nbsp;  and causal system&nbsp;  $\rm  B$|class=fit]]
*Fast alle akausalen Systeme lassen sich unter Verwendung einer Laufzeit&nbsp; $\tau$&nbsp; in ein realisierbares kausales System überführen.  
+
*In system&nbsp; $\rm  A$&nbsp; the effect starts earlier&nbsp; $($at &nbsp; $t =\hspace{0.05cm} –T)$&nbsp; than the cause&nbsp; $($Dirac delta function at&nbsp; $t = 0)$, which of course is not possible in practice.
*Zum Beispiel gilt mit&nbsp; $\tau = T$:  
+
 
:$$h_{\rm B}(t) = h_{\rm A}(t - T).$$}}
+
*Almost all non&ndash;causal systems can be transformed into a feasible causal system using a transit time&nbsp; $\tau$.
 +
 +
*For example, with&nbsp; $\tau = T$&nbsp; the following holds: &nbsp; $h_{\rm B}(t) = h_{\rm A}(t - T).$
 +
 
  
 +
All statements made so far apply for causal as well as non&ndash;causal systems.
  
*Für kausale Systeme gelten alle bisher gemachten Aussagen ebenso wie für akausale Systeme.
+
*Zur Beschreibung kausaler Systeme lassen sich jedoch einige spezifische Eigenschaften nutzen, wie im dritten Hauptkapitel &bdquo;Beschreibung kausaler realisierbarer Systeme&rdquo;&nbsp;  [[Lineare_zeitinvariante_Systeme|dieses Buches]]&nbsp;  ausgeführt wird.
+
However,&nbsp; for the description of causal systems some specific properties can be used as explained in the third main chapter&nbsp; &raquo;Description of Causal Realizable Systems&laquo;&nbsp; of&nbsp;  [[Lineare_zeitinvariante_Systeme|$\text{this book}$]].}}
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
In diesem ersten und dem folgenden zweiten Hauptkapitel betrachten wir vorwiegend akausale Systeme, da deren mathematische Beschreibung meist einfacher ist.  
+
In this first and the following second main chapter we mainly consider non&ndash;causal systems since their mathematical description is usually simpler.  
*So ist der Frequenzgang&nbsp; $H_{\rm A}(f)$&nbsp; reell,  
+
*So in this example,&nbsp; the frequency response&nbsp; $H_{\rm A}(f)$&nbsp; is real,
*während für&nbsp; $H_{\rm B}(f)$&nbsp; der zusätzliche Term&nbsp; ${\rm e}^{–{\rm j2π}f\hspace{0.05cm}T}$&nbsp; zu berücksichtigen ist. }}
+
 +
*while for&nbsp; $H_{\rm B}(f)$&nbsp; the additional term&nbsp; ${\rm e}^{–{\rm j2π}f\hspace{0.05cm}T}$&nbsp; has to be considered. }}
  
  
  
==Berechnung des Ausgangssignals==
+
==Computation of the output signal==
 
<br>
 
<br>
Wir betrachten die folgende Aufgabenstellung: &nbsp; Bekannt sei das Eingangssignal&nbsp; $x(t)$&nbsp; und der Frequenzgang&nbsp; $H(f)$. Gesucht ist das Ausgangssignal&nbsp; $y(t)$.  
+
We consider the following problem: &nbsp; Let the input signal&nbsp; $x(t)$&nbsp; and the frequency response&nbsp; $H(f)$ be known.&nbsp; The output signal&nbsp; $y(t)$ is to be determined.  
  
[[File:EN_LZI_T_1_2_S4.png|right|frame|Zur Ermittlung der Ausgangsgrößen eines LZI–Systems|class=fit]]
+
[[File:EN_LZI_T_1_2_S4.png|right|frame|To determine the output quantities of an LTI system|class=fit]]
  
Soll die Lösung im Frequenzbereich erfolgen, so muss zunächst aus dem gegebenen Eingangssignal&nbsp; $x(t)$&nbsp; durch&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|Fouriertransformation]]&nbsp; das Spektrum $X(f)$ ermittelt und mit dem Frequenzgang&nbsp; $H(f)$&nbsp; multipliziert werden. Durch&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|Fourierrücktransformation]]  des Produkts kommt man dann zum Signal&nbsp; $y(t)$.
+
If the solution is to be determined in the frequency domain,&nbsp; first the spectrum&nbsp; $X(f)$&nbsp; must be determined from the given input signal $x(t)$ via&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|$\text{Fourier transform}$]]&nbsp; and multiplied by the frequency response&nbsp; $H(f)$.&nbsp; By the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|$\text{inverse Fourier transform}$]]&nbsp; of the product the signal&nbsp; $y(t)$&nbsp; is obtained.
  
Hier nochmals der gesamte Rechengang zusammengefasst:  
+
Here is a summary of the entire solution process:  
:$${\rm 1.\,\, Schritt\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm Eingangsspektrum},$$
+
:$${\rm 1.\,\, step\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm input\:spectrum},$$
:$${\rm 2.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm Ausgangsspektrum},$$
+
:$${\rm 2.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm output\:spectrum},$$
:$${\rm 3.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm Ausgangssignal}.$$
+
:$${\rm 3.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm output\:signal}.$$
  
  
Zum gleichen Ergebnis kommt man nach der Berechnung im Zeitbereich, indem man zunächst aus dem Frequenzgang&nbsp; $H(f)$&nbsp; mittels Fourierrücktransformation die Impulsantwort&nbsp; $h(t)$&nbsp; berechnet und anschließend die Faltungsoperation anwendet:
+
The same result is obtained after the computation in the time domain by first determining the impulse response&nbsp; $h(t)$&nbsp; from the frequency response&nbsp; $H(f)$&nbsp; by means of the&nbsp; &raquo;inverse Forier transform&laquo;&nbsp; and then applying the convolution operation:
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
*Die Ergebnisse sind bei beiden Vorgehensweisen identisch.  
+
*The results are identical for both approaches.
*Zweckmäßigerweise sollte man dasjenige Verfahren auswählen, das mit weniger Rechenaufwand zum Ziel führt.
+
 +
*Purposefully,&nbsp; the procedure of solution with less computational effort should be chosen.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;  
+
$\text{Example 3:}$&nbsp;  
Am Eingang eines Spalt–Tiefpasses mit rechteckförmiger Impulsantwort der Breite&nbsp; $T$&nbsp; (siehe [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Zeitbereich#Impulsantwort|$\text{Beispiel 1}$]])&nbsp;  liegt ein Rechteckimpuls&nbsp; $x(t)$&nbsp; der Dauer&nbsp; $2T$&nbsp; an.  
+
At the input of a filter with rectangular impulse response&nbsp; $h(t)$&nbsp; of width&nbsp; $T$&nbsp; $($see&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Impulse_response|$\text{Example 1)}$]]&nbsp;  a rectangular pulse &nbsp; $x(t)$&nbsp; of duration&nbsp; $2T$&nbsp; is applied.  
[[File:P_ID812__LZI_T_1_2_S4b_neu.png|right|frame|Trapezförmiger Ausgangsimpuls, da&nbsp; $x(t)$&nbsp; und&nbsp; $h(t)$&nbsp; rechteckförmig sind|class=fit]]
+
[[File:P_ID812__LZI_T_1_2_S4b_neu.png|right|frame|Trapezoidal output signal since&nbsp; $x(t)$&nbsp; and&nbsp; $h(t)$&nbsp; are rectangular|class=fit]]
  
In diesem Fall ist die direkte Berechnung im Zeitbereich günstiger: &nbsp;  
+
In this case,&nbsp; direct computation in the time domain is more convenient: &nbsp;  
*Die Faltung zweier unterschiedlich breiter Rechtecke&nbsp; $x(t)$&nbsp; und&nbsp; $h(t)$&nbsp; führt zum trapezförmigen Ausgangsimpuls&nbsp; $y(t)$.
+
*The convolution of two rectangles &nbsp; $x(t)$&nbsp; and&nbsp; $h(t)$&nbsp; of different widths results in a trapezoidal output signal&nbsp; $y(t)$.
  
*Man erkennt die Tiefpasseigenschaft des Filters an der endlichen Flankensteilheit von&nbsp; $y(t)$.  
+
*The low-pass property of the filter can be seen from the finite edge steepness of&nbsp; $y(t)$.  
  
*Die Impulshöhe&nbsp; $3\text{ V}$&nbsp; bleibt in diesem Beispiel erhalten, wegen&nbsp;  
+
*The pulse height&nbsp; $(3\text{ V)}$&nbsp; is preserved in this example because of&nbsp;  
 
:$$H(f = 0) = 1/T · T = 1.$$ }}
 
:$$H(f = 0) = 1/T · T = 1.$$ }}
  
  
==Sprungantwort==
+
==Step response==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definitionen:}$&nbsp;  
+
$\text{Definition:}$&nbsp;  
Eine in der Praxis oft verwendete Eingangsfunktion&nbsp; $x(t)$&nbsp; zur Messung von&nbsp; $H(f)$&nbsp; ist die&nbsp; '''Sprungfunktion'''
+
In practice,&nbsp; one of the often used input functions&nbsp; $x(t)$&nbsp; in order to  measure&nbsp; $H(f)$&nbsp; is the&nbsp; &raquo;'''jump function'''&laquo;
:$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0  \\  0.5 \\ \hspace{0.25cm} 1 \\  \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{für}  \\  \text{für}\\  \text{für}  \\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.05cm} t\hspace{0.05cm} \vert < 0,}  \\ {\vert \hspace{0.05cm}t\hspace{0.05cm} \vert = 0,}  \\ {\vert \hspace{0.05cm} t \hspace{0.05cm} \vert > 0.}  \\ \end{array}$$
+
:$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0  \\  0.5 \\ \hspace{0.25cm} 1 \\  \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{for}  \\  \text{for}\\  \text{for}  \\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.05cm} t\hspace{0.05cm} \vert < 0,}  \\ {\vert \hspace{0.05cm}t\hspace{0.05cm} \vert = 0,}  \\ {\vert \hspace{0.05cm} t \hspace{0.05cm} \vert > 0.}  \\ \end{array}$$
  
Die&nbsp; '''Sprungantwort'''&nbsp; $\sigma(t)$&nbsp; ist die Antwort des Systems, wenn man an den Eingang die Sprungfunktion&nbsp; $\gamma(t)$&nbsp; anlegt:  
+
The&nbsp; &raquo;'''step response'''&laquo;&nbsp; $\sigma(t)$&nbsp; is the response of the system if the jump function&nbsp; $\gamma(t)$&nbsp; is applied to the input:  
 
:$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t)  = {\rm \sigma}(t).$$}}
 
:$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t)  = {\rm \sigma}(t).$$}}
  
  
Die Berechnung im Frequenzbereich wäre hier etwas umständlich, denn man müsste dann folgende Gleichung anwenden:  
+
The computation in the frequency domain would be a bit laborious here because the following equation would have to be applied:  
 
:$${\rm \sigma}(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) \cdot H(f) =\left({1}/{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$
 
:$${\rm \sigma}(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) \cdot H(f) =\left({1}/{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$
  
Die Berechnung im Zeitbereich führt dagegen direkt zum Ergebnis:
+
In contrast to this,&nbsp; the computation in the time domain leads directly to the result:
 
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
 
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
  
Bei kausalen Systemen gilt&nbsp; $h(\tau) = 0$&nbsp;  für&nbsp; $\tau \lt 0$, so dass die untere Integrationsgrenze in obiger Gleichung zu&nbsp; $\tau = 0$&nbsp; gesetzt werden kann.  
+
For causal sytems&nbsp; $h(\tau) = 0$&nbsp;  holds for&nbsp; $\tau \lt 0$,&nbsp; such that the lower limit of integration in the above equation can be set to&nbsp; $\tau = 0$.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Beweis:}$&nbsp;  
+
$\text{Proof:}$&nbsp;  
Das genannte Ergebnis ist auch aus folgendem Grunde einsichtig:  
+
The above result is also insightful for the following reason:  
*Die Sprungfunktion&nbsp; $\gamma(t)$&nbsp; hängt mit der Diracfunktion&nbsp; $\delta(t)$&nbsp; wie folgt zusammen:  
+
*The jump function&nbsp; $\gamma(t)$&nbsp; is related to the Dirac delta function&nbsp; $\delta(t)$&nbsp; as follows:  
 
:$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
 
:$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
*Da wir Linearität vorausgesetzt haben und die Integration eine lineare Operation darstellt, gilt auch für das Ausgangssignal der entsprechende Zusammenhang:  
+
*Since we have assumed linearity and integration is a linear operation the corresponding relationship also applies to the output signal:  
 
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
 
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
 
<div align="right">q.e.d.</div>}}  
 
<div align="right">q.e.d.</div>}}  
  
  
[[File:EN_LZI_T_1_2_S5.png|right|frame|Berechnung der Sprungantwort bei rechteckförmiger Impulsantwort|class=fit]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT= 
+
[[File:EN_LZI_T_1_2_S5.png|right|frame|Computation of the step response for rectangular impulse response|class=fit]]
$\text{Beispiel 4:}$&nbsp;  
+
 
Die Grafik verdeutlicht den Sachverhalt für die Rechteck&ndash;Impulsantwort&nbsp; $h(\tau)$.
+
$\text{Example 4:}$&nbsp;  
* Die Abszisse wurde in&nbsp; $\tau$&nbsp; umbenannt.  
+
The graph illustrates the facts for the rectangular impulse response&nbsp; $h(\tau)$.
*Blau eingezeichnet ist die Sprungfunktion&nbsp; $\gamma(\tau)$.
+
 
*Durch Spiegelung und Verschiebung erhält man&nbsp; $\gamma(t - \tau)$ &nbsp; &rArr; &nbsp; violett gestrichelte Kurve.  
+
 
*Die rot hinterlegte Fläche gibt somit die Sprungantwort&nbsp; $\sigma(\tau)$&nbsp; zum Zeitpunkt&nbsp; $\tau = t$&nbsp; an.}}
+
$\text{Note:}$
 +
 
 +
*The abscissa has been renamed to&nbsp; $\tau$.
 +
 
 +
*The jump function&nbsp; $\gamma(\tau)$ is drawn in blue.
 +
 
 +
*&nbsp; $\gamma(t - \tau)$ &nbsp; is obtained by mirroring and shifting &rArr; &nbsp; curve dashed in violet.
 +
 +
*The red shaded area thus gives the step response&nbsp; $\sigma(\tau)$&nbsp; at time&nbsp; $\tau = t$&nbsp;.}}
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.3 Gemessene Sprungantwort|Aufgabe 1.3: Gemessene Sprungantwort]]
+
[[Aufgaben:Exercise_1.3:_Measured_Step_Response|Exercise 1.3: Measured Step Response]]
  
[[Aufgaben:Aufgabe_1.3Z:_Exponentiell_abfallende_Impulsantwort|Aufgabe 1.3Z: Exponentiell abfallende Impulsantwort]]
+
[[Aufgaben:Exercise_1.3Z:_Exponentially_Decreasing_Impulse_Response|Exercise 1.3Z: Exponentially Decreasing Impulse Response]]
  
[[Aufgaben:1.4 Zum Tiefpass 2. Ordnung|Aufgabe 1.4: Zum Tiefpass 2. Ordnung]]
+
[[Aufgaben:Exercise_1.4:_Low-Pass_Filter_of_2nd_Order|Exercise 1.4: Low-Pass Filter of 2nd Order]]
  
[[Aufgaben:1.4Z Alles rechteckförmig|Aufgabe 1.4Z: Alles rechteckförmig]]
+
[[Aufgaben:Exercise_1.4Z:_Everything_Rectangular|Exercise 1.4Z: Everything Rectangular]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 18:21, 2 November 2023

Impulse response


In the section  »The first Fourier integral«  in the book  »Signal Representation»  it was explained that for any deterministic signal  $x(t)$  a  »spectral function«  $X(f)$  can be given with the help of the Fourier transform.  Often  $X(f)$  is referred to as the  »spectrum«  for short.

However, all information about the spectral function is already contained in the time domain representation, even if not always immediately recognizable.  The same facts apply to linear time-invariant systems.

$\text{Definition:}$  The most important descriptive quantity of a linear time-invariant system in the time domain is the inverse Fourier transform of  $H(f)$, which is called the  »impulse response«:

$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$


The following should be noted in this regard:

  • The frequency response  $H(f)$  and the impulse response  $h(t)$  are equivalent descriptive quantities that contain exactly the same information about the LTI system.
  • If the Dirac-shaped input signal  $x(t) = δ(t)$ is used, then  $X(f) = 1$  is to be set and  $Y(f) = H(f)$  resp.  $y(t) = h(t)$ are valid.
  • The term  »impulse response«  reflects this statement:   $h(t)$  is the response of the system to a  $($Dirac delta$)$  function as the input signal.
  • The above definition suggests that any impulse response must have the unit  $\text{Hz = 1/s}$.


$\text{Example 1:}$  The impulse response  $h(t)$  of the so-called  »rectangular–in–time«  filter is constant over a time interval  $T$  and is zero outside this time interval.

Rectangular impulse response and associated magnitude spectrum
  • The associated amplitude response as the magnitude of the frequency response is 
$$\vert H(f)\vert = \vert {\rm si}(\pi fT)\vert \hspace{0.5cm}\text{with}\hspace{0.5cm}{\rm si}(x)=\sin(x)/x={\rm sinc}(x/\pi).$$
  • The area over  $h(t)$  is equal to  $H(f = 0) = 1$. It follows that:  
        In the range  $ 0 < t < T$  the impulse response must be constant and equal to  $1/T$.
  • The phase response is given by
$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T \\ - \pi/T \\ \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{for} \\ \text{for} \\ \end{array}\begin{array}{*{20}c}{\left \vert \hspace{0.05cm} f\hspace{0.05cm} \right \vert > 0,} \\{\vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0.} \\\end{array}$$
  • With symmetrical  $h(t)$  around  $t = 0$  $($i.e. non-causal$)$   ⇒   $b(f)=0$.

Some laws of the Fourier transform


The  »Fourier transform theorems«  have already been explained in detail in the book  »Signal Representation«.

The following is a short summary, where  $H(f)$  describes the frequency response of an LTI system and whose inverse Fourier transform  $h(t)$  is the impulse response.  The laws and principles are applied more frequently in the  »$\text{exercises}$«  for this chapter  »System Description in Time Domain«.

Here, we also refer to the (German language) didactic video  "Gesetzmäßigkeiten der Fouriertransformation"   ⇒   "Regularities to the Fourier transform".

In the following equations the short symbol of the Fourier transformation is used. The filled-out circle indicates the spectral domain, the white one the time domain.

  • »Multiplication«  by a constant factor:
$$k \cdot H(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,k \cdot h(t).$$
For  $k \lt 1$  one deals with attenuation,  while  $k \gt 1$  stands for amplification.


  • »Similarity Theorem«:
$$H({f}/{k})\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
  1.   This implies:   Compression   $(k < 1)$  of the frequency response results in a wider and lower impulse response.
  2.   Stretching  $(k > 1)$  of  $H(f)$  makes  $h(t)$  narrower and higher.


  • »Displacement Theorem«  in the frequency and time domain:
$$H(f - f_0) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},$$
$$H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t- t_0 ).$$
  1.   A shift by  $t_0$  $($»transit time»$)$  thus leads to multiplication by a complex exponential function in the frequency domain.
  2.   Thereby,  the amplitude response  $|H(f)|$  does not change.


  • »Differentiation Theorem«  in the frequency and time domain:
$$\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}H( f )}}{{{\rm d}f}} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,- t \cdot h( t ),$$
$${\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{{{\rm d}h( t )}}{{\rm d}t}.$$
  1.   A differentiating element in the LTI system leads to a multiplication by  ${\rm j}\cdot 2πf$  in the frequency domain
  2.   and thus among other things to a phase rotation by  $90^{\circ}$.


Causal systems


$\text{Definition:}$  An LTI system is said to be  $\text{causal}$  if the impulse response  $h(t)$  – that is the inverse Fourier transform of the frequency response  $H(f)$  – satisfies the following condition:

$$h(t) = 0 \hspace{0.25cm}{\rm for}\hspace{0.25cm} t < 0.$$

If this condition is not met,  the system is  »non–causal«  $($or »acausal«$)$.

$\text{Please note:}$  Any realizable system is causal.


$\text{Example 2:}$  The diagram illustrates the differences between the non–causal system  $\rm A$  and the causal system  $\rm B$.

Non–causal system  $\rm A$  and causal system  $\rm B$
  • In system  $\rm A$  the effect starts earlier  $($at   $t =\hspace{0.05cm} –T)$  than the cause  $($Dirac delta function at  $t = 0)$, which of course is not possible in practice.
  • Almost all non–causal systems can be transformed into a feasible causal system using a transit time  $\tau$.
  • For example, with  $\tau = T$  the following holds:   $h_{\rm B}(t) = h_{\rm A}(t - T).$


All statements made so far apply for causal as well as non–causal systems.


However,  for the description of causal systems some specific properties can be used as explained in the third main chapter  »Description of Causal Realizable Systems«  of  $\text{this book}$.


In this first and the following second main chapter we mainly consider non–causal systems since their mathematical description is usually simpler.

  • So in this example,  the frequency response  $H_{\rm A}(f)$  is real,
  • while for  $H_{\rm B}(f)$  the additional term  ${\rm e}^{–{\rm j2π}f\hspace{0.05cm}T}$  has to be considered.


Computation of the output signal


We consider the following problem:   Let the input signal  $x(t)$  and the frequency response  $H(f)$ be known.  The output signal  $y(t)$ is to be determined.

To determine the output quantities of an LTI system

If the solution is to be determined in the frequency domain,  first the spectrum  $X(f)$  must be determined from the given input signal $x(t)$ via  $\text{Fourier transform}$  and multiplied by the frequency response  $H(f)$.  By the  $\text{inverse Fourier transform}$  of the product the signal  $y(t)$  is obtained.

Here is a summary of the entire solution process:

$${\rm 1.\,\, step\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm input\:spectrum},$$
$${\rm 2.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm output\:spectrum},$$
$${\rm 3.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm output\:signal}.$$


The same result is obtained after the computation in the time domain by first determining the impulse response  $h(t)$  from the frequency response  $H(f)$  by means of the  »inverse Forier transform«  and then applying the convolution operation:

$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )} \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • The results are identical for both approaches.
  • Purposefully,  the procedure of solution with less computational effort should be chosen.


$\text{Example 3:}$  At the input of a filter with rectangular impulse response  $h(t)$  of width  $T$  $($see  $\text{Example 1)}$  a rectangular pulse   $x(t)$  of duration  $2T$  is applied.

Trapezoidal output signal since  $x(t)$  and  $h(t)$  are rectangular

In this case,  direct computation in the time domain is more convenient:  

  • The convolution of two rectangles   $x(t)$  and  $h(t)$  of different widths results in a trapezoidal output signal  $y(t)$.
  • The low-pass property of the filter can be seen from the finite edge steepness of  $y(t)$.
  • The pulse height  $(3\text{ V)}$  is preserved in this example because of 
$$H(f = 0) = 1/T · T = 1.$$


Step response


$\text{Definition:}$  In practice,  one of the often used input functions  $x(t)$  in order to measure  $H(f)$  is the  »jump function«

$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0 \\ 0.5 \\ \hspace{0.25cm} 1 \\ \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{for} \\ \text{for}\\ \text{for} \\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.05cm} t\hspace{0.05cm} \vert < 0,} \\ {\vert \hspace{0.05cm}t\hspace{0.05cm} \vert = 0,} \\ {\vert \hspace{0.05cm} t \hspace{0.05cm} \vert > 0.} \\ \end{array}$$

The  »step response«  $\sigma(t)$  is the response of the system if the jump function  $\gamma(t)$  is applied to the input:

$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t) = {\rm \sigma}(t).$$


The computation in the frequency domain would be a bit laborious here because the following equation would have to be applied:

$${\rm \sigma}(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) \cdot H(f) =\left({1}/{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$

In contrast to this,  the computation in the time domain leads directly to the result:

$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$

For causal sytems  $h(\tau) = 0$  holds for  $\tau \lt 0$,  such that the lower limit of integration in the above equation can be set to  $\tau = 0$.

$\text{Proof:}$  The above result is also insightful for the following reason:

  • The jump function  $\gamma(t)$  is related to the Dirac delta function  $\delta(t)$  as follows:
$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$
  • Since we have assumed linearity and integration is a linear operation the corresponding relationship also applies to the output signal:
$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$
q.e.d.


Computation of the step response for rectangular impulse response

$\text{Example 4:}$  The graph illustrates the facts for the rectangular impulse response  $h(\tau)$.


$\text{Note:}$

  • The abscissa has been renamed to  $\tau$.
  • The jump function  $\gamma(\tau)$ is drawn in blue.
  •   $\gamma(t - \tau)$   is obtained by mirroring and shifting ⇒   curve dashed in violet.
  • The red shaded area thus gives the step response  $\sigma(\tau)$  at time  $\tau = t$ .


Exercises for the chapter


Exercise 1.3: Measured Step Response

Exercise 1.3Z: Exponentially Decreasing Impulse Response

Exercise 1.4: Low-Pass Filter of 2nd Order

Exercise 1.4Z: Everything Rectangular