Difference between revisions of "Modulation Methods/Influence of Noise on Systems with Angle Modulation"

From LNTwww
 
(42 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Winkelmodulation und WM–Demodulation
+
|Untermenü=Angle Modulation and Demodulation
|Vorherige Seite=Frequenzmodulation (FM)
+
|Vorherige Seite=Frequency Modulation (FM)
|Nächste Seite=Pulscodemodulation
+
|Nächste Seite=Pulse Code Modulation
 
}}
 
}}
==Signal–zu–Rausch–Leistungsverhältnis bei PM==
+
==Signal-to-noise power ratio in PM==
Zur Untersuchung des Rauschverhaltens gehen wir wieder vom so genannten AWGN–Kanal aus und berechnen das Sinken–SNR $ρ_υ$ in Abhängigkeit
+
<br>
 +
To investigate noise behavior,&nbsp; we will take the &nbsp;[[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model|$\text{AWGN channel}$]]&nbsp; as our starting point and calculate the sink SNR&nbsp; $ρ_v$&nbsp; as a function of
 +
[[File:EN_Mod_T_3_3_S1.png|right|frame|Signal-to-noise power ratio in phase modulation]]
 +
*the frequency&nbsp; ("bandwidth") &nbsp; $B_{\rm NF}$&nbsp; of the cosine source signal,
 +
 +
*the transmit power&nbsp;$P_{\rm S}$,
 +
 +
*the channel transmission factor&nbsp; $α_{\rm K}$,&nbsp; and
 +
 +
*the&nbsp; (one-sided)&nbsp; noise power density &nbsp;$N_0$.
  
  
*der Frequenz (Bandbreite) $B_{\rm NF}$ des cosinusförmigen Quellensignals,
+
The principle procedure is described in detail in the section&nbsp; [[Modulation_Methods/Quality_Criteria#Investigations_at_the_AWGN_channel|"Investigations at the AWGN channel"]]:
*der Sendeleistung $P_{\rm S}$,
 
*des Kanaldämpfungsfaktors $α_{\rm K}$, und
 
*der (einseitigen) Rauschleistungsdichte $N_0$.
 
  
 +
If the performance parameter
 +
:$$\xi  =  \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
 +
is sufficiently large,&nbsp; the following approximation is obtained for phase modulation&nbsp; $\rm (PM)$&nbsp;  with modulation index &nbsp;$η$&nbsp;:
 +
:$$\rho_{v  }  \approx {\eta^2}/{2}  \cdot\xi \hspace{0.05cm}.$$
  
Eine ausführliche Modellbeschreibung findet man im Kapitel 1.2.  
+
This means that for phase modulation,&nbsp; the sink SNR increases quadratically with increasing &nbsp;$η$.  
  
 +
The exact calculation of &nbsp;$ρ_v$&nbsp; is not very simple,&nbsp; and is also laborious.&nbsp; Here,&nbsp; we will only briefly describe the calculation steps:
 +
#Approximate the white noise &nbsp;$n(t)$&nbsp; for the high-frequency bandwidth &nbsp;$B_{\rm HF}$&nbsp; by a sum of sinusoidal disturbance sources  &nbsp;(German:&nbsp; "Störquellen" &nbsp; &rArr; &nbsp; subscript:&nbsp; "St")&nbsp; spaced by &nbsp;$f_{\rm St}$ (see second sketch in the following section).
 +
#Calculate the S/N ratio after demodulation for each sinusoidal disturbance source and sums the individual contributions,&nbsp; which are now all in the low-frequency&nbsp; (German:&nbsp; "Niederfrequenz" &nbsp; &rArr; &nbsp; subscript:&nbsp; "NF")&nbsp;  region &nbsp;$|f| < B_{\rm NF}$.
 +
#The above simple result is obtained after the boundary transition &nbsp;$f_{\rm St} → 0$.&nbsp; The sum then turns into an integral and this can be solved approximately.
  
[[File:P_ID1107__Mod_T_3_3_S1_neu.png | SNR bei Phasenmodulation]]
+
==Signal-to-noise power ratio in FM==
 +
<br>
 +
For calculation one uses the fact that the FM demodulator can be realized with a PM demodulator and a differentiator.
 +
[[File:EN_Mod_T_3_3_S2a.png|right|frame|FM demodulator: &nbsp; PM demodulator and differentiator]]
  
 +
*The block diagram on the right refers only to the noise signals &nbsp; ⇒ &nbsp; $s(t) = 0$.
 +
 +
*Thus the received signal &nbsp;$r(t) = n(t)$,&nbsp; where we assume for &nbsp;$n(t)$&nbsp; additive Gaussian white noise with center frequency &nbsp;$f_{\rm T}$&nbsp; and  high-frequency bandwidth &nbsp;$B_{\rm HF}$.
  
Ist die Leistungskenngröße
 
$$\xi  =  \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
 
  
Das bedeutet, dass das Sinken–SNR mit wachsendem $η$ quadratisch zunimmt.  
+
When calculating the noise power density after the FM demodulator,&nbsp; consider:
 +
*The noise power density &nbsp;${\it Φ}_{v,\hspace{0.1cm}{\rm PM}}(f)$&nbsp; after the PM demodulator is in the low-pass range,&nbsp; has the (one-sided) bandwidth &nbsp;$B_{\rm NF}$&nbsp; and is&nbsp; "white"&nbsp; (see left plot in the graph below).  
  
Die exakte Berechnung von $ρ_υ$ ist nicht ganz einfach und auch langwierig. Hier soll nur der Rechenweg kurz geschildert werden:
+
*The power density at the output of a linear system with frequency response &nbsp;$H(f)$&nbsp;  is generally when the noise power density &nbsp;${\it Φ}_{v,\hspace{0.1cm}{\rm PM}}(f)$&nbsp; is applied to the input:
*Man approximiert das weiße Rauschen $n(t)$ mit der Bandbreite $B_{\rm HF}$ durch eine Summe von Sinusstörern im Abstand $f_{\rm St}$ (siehe Skizze im nächsten Abschnitt).  
+
:$${ \it \Phi}_{v {\rm , \hspace{0.1cm}FM} } (f) = { \it \Phi}_{v {\rm , \hspace{0.1cm}PM} } (f) \cdot
*Man berechnet für jeden einzelnen Sinusstörer das S/N–Verhältnis nach der Demodulation und addiert die einzelnen Beiträge, die nun alle im Tiefpassbereich $|f| < B_{\rm NF}$ liegen.  
+
|H(f)|^2  \hspace{0.05cm}.$$
*Das obige einfache Ergebnis erhält man nach dem Grenzübergang $f_{\rm St} →$ 0. Die Summe geht dann in ein Integral über und dieses kann unter Ausnutzung einiger Näherungen gelöst werden.
 
  
==Signal–zu–Rausch–Leistungsverhältnis bei FM==
+
*The differentiator is just such a linear system.&nbsp; Its frequency response&nbsp;$H(f)$&nbsp; increases linearly with &nbsp;$f$,&nbsp; and it is applied to the noise power density at the output of the FM demodulator&nbsp; (see the right plot in the lower graph):
Zur Berechnung nutzt man hier die Tatsache, dass der FM–Demodulator mit einem PM–Demodulator und einem Differenzierer realisiert werden kann. Das nachfolgende Blockschaltbild bezieht sich allein auf die Rauschsignale  ⇒  $s(t) =$ 0. Damit ist das Empfangssignal $r(t)$ gleich $n(t)$, wobei für $n(t)$ additives weißes Gaußsches Rauschen mit der Mittenfrequenz $f_{\rm T}$ und der Bandbreite $B_{\rm HF}$ anzusetzen ist.
+
:$${ \it \Phi}_{v {\rm , \hspace{0.1cm}FM} } (f) = {\rm const. } \cdot
 +
f^2 \cdot { \it \Phi}_{v {\rm , \hspace{0.1cm}PM} }(f) \hspace{0.05cm}.$$
  
 +
{{BlaueBox|TEXT=
 +
$\rm Conclusion\text{:}$&nbsp;
 +
Taking this result into account,&nbsp; one arrives  after a longer calculation at the following&nbsp; &raquo;'''sink SNR'''&laquo;&nbsp; (if the performance parameter &nbsp;$ξ$&nbsp; is sufficiently large):
 +
[[File:P_ID1114__Mod_T_3_3_S2b_neu.png |right|frame| Noise power density spectra for PM (left) and FM (right)]]
 +
:$$\rho_{v  }  \approx  \frac{3\cdot \eta^2}{2} \cdot \frac{\alpha_{\rm K}^2 \cdot P_{\rm S} }{N_0 \cdot B_{\rm NF} } = 3/2 \cdot{\eta^2} \cdot\xi \hspace{0.05cm}.$$
  
[[File:P_ID1108__Mod_T_3_3_S2a_neu.png | FM–Demodulator]]
+
The graph illustrates:  
 
+
* The noise power density &nbsp;${\it Φ}_{v,\hspace{0.1cm}{\rm FM} }(f)$&nbsp; is not white, unlike &nbsp;${\it Φ}_{v,\hspace{0.1cm}{\rm PM} }(f)$.
 
+
Bei der Berechnung der Rauschleistungsdichte nach dem FM–Demodulator ist zu berücksichtigen:  
+
*Rather, &nbsp;${\it Φ}_{v,\hspace{0.1cm}{\rm FM} }(f)$&nbsp; increases with&nbsp; $f^2$&nbsp; towards the limits &nbsp;$(\pm B_{\rm NF} )$.
*Die Rauschleistungsdichte ${\it Φ}_{\rm υ, PM}(f)$ nach dem PM–Demodulator liegt im Tiefpassbereich, besitzt die (einseitige) Bandbreite $B_{\rm NF}$ und ist ebenfalls „weiß” (siehe linke untere Skizze).
+
*Die Leistungsdichte am Ausgang eines linearen Systems mit Frequenzgang $H(f)$ lautet allgemein, wenn am Eingang die Rauschleistungsdichte ${\it Φ}_{\rm υ, PM}(f)$ anliegt:
+
*When &nbsp;$f = 0$,&nbsp;${\it Φ}_{v,\hspace{0.1cm}{\rm FM} }(f)$&nbsp; has no noise components.}}  
$${ \it \Phi}_{v {\rm , \hspace{0.05cm}FM} } (f) = { \it \Phi}_{v {\rm , \hspace{0.05cm}PM} } (f) \cdot
 
|H(f)|^2  \hspace{0.05cm}.$$
 
*Der Differenzierer ist ein solches lineares System. Sein Frequenzgang $H(f)$ steigt linear mit $f$ an, und es gilt für die Rauschleistungsdichte am Ausgang des FM-Demodulators (siehe rechte Skizze):
 
$${ \it \Phi}_{v {\rm , \hspace{0.05cm}FM} } (f) = {\rm const. } \cdot
 
f^2 \cdot { \it \Phi}_{v {\rm , \hspace{0.05cm}PM} }(f) \hspace{0.05cm}.$$
 
*Berücksichtigt man dieses Ergebnis, so kommt man nach längerer Rechnung zum folgenden Sinken–SNR, falls die Leistungskenngröße $ξ$ hinreichend groß ist:
 
$$\rho_{v  }  \approx  \frac{3\eta^2}{2} \cdot \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} = 3/2 \cdot{\eta^2} \cdot\xi \hspace{0.05cm}.$$
 
 
 
  
Die Grafik verdeutlicht, dass ${\it Φ}_{\rm υ, FM}(f)$ im Gegensatz zu ${\it Φ}_{\rm υ, PM}(f)$ nicht weiß ist, sondern zu den Grenzen hin quadratisch ansteigt. Bei der Frequenz $f =$ 0 besitzt ${\it Φ}_{\rm υ, FM}(f)$ dagegen keine Rauschanteile.
 
  
  
[[File:P_ID1114__Mod_T_3_3_S2b_neu.png | Rauschleistungsdichtespektren bei PM und FM]]
+
==System comparison of AM, PM and FM with respect to noise==
 +
<br>
 +
As explained in detail in the &nbsp;[[Modulation_Methods/Quality_Criteria#Investigations_at_the_AWGN_channel|"Investigations at the AWGN channel"]]&nbsp; section and applied to amplitude modulation in the &nbsp;[[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|"Sink SNR and the performance parameter"]]&nbsp; section,&nbsp; we again consider the double-logarithmic plot of the sink SNR &nbsp;$ρ_v$&nbsp; versus the performance parameter
 +
[[File:EN_Mod_T_3_3_S3_neu.png|right|frame|System comparison of AM, PM and FM concerning noise.<br>Note:&nbsp; All curves are quantitatively valid only for harmonic oscillations&nbsp; (i.e. for only a single frequency).&nbsp;  However,&nbsp; for a mix of frequencies &ndash; which is always present in practice &ndash; the curves apply at least qualitatively.]]
  
==Systemvergleich von AM, PM und FM hinsichtlich Rauschen==
+
:$$\xi  = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}.$$
Wie schon in Kapitel 1.2 ausführlich erläutert und in Kapitel 2.2 angewandt, betrachten wir wieder die doppelt-logarithmische Darstellung des Sinken–SNR $ρ_υ$ über der Kenngröße $ξ = α_{\rm K}^2 · P_{\rm S}/(N_0 · B_{\rm NF})$.
 
  
 +
These curves, which are to be understood qualitatively, are to be interpreted as follows:
  
[[File:P_ID1110__Mod_T_3_3_S3_neu.png | Systemvergleich von AM, PM und FM hinsichtlich Rauschen]]
+
*The comparison curve shows&nbsp; &raquo;'''DSB–AM without a carrier'''&laquo; &nbsp; &rArr; &nbsp; modulation depth &nbsp;$m → ∞$.&nbsp; Here, &nbsp; $ρ_v = ξ$,&nbsp; and double-logarithmic representation also yields a &nbsp;$45^\circ$ straight line through the origin.
  
 +
*The&nbsp; &raquo;'''FM curve'''&laquo;&nbsp; with &nbsp;$η = 3$&nbsp; lies around &nbsp;$10 · \lg \ 13.5 ≈ 11.3  \ \rm dB$&nbsp; above the AM curve.&nbsp; Visibly,&nbsp; the superior noise performance of frequency modulation can be explained by the fact that an additive noise component affects the position of the zero crossings less than it changes the amplitude values.
  
Diese qualitativ zu verstehenden Kurven sind wie folgt zu interpretieren:
+
*When noise is strong and thus the performance parameter very small&nbsp; $(10 · \lg \ ξ ≤ 15  \ \rm dB)$,&nbsp; any kind of angle modulation&nbsp; $\rm (WM)$&nbsp; is not recommended.&nbsp;  Due to noise,&nbsp; zero crossings can then disappear completely and making their detection impossible.&nbsp; This is referred to as&nbsp; "WM threshold effect".
  
 +
*With regard to noise, the greatest possible modulation index should be aimed for with any type of angle modulation.&nbsp; Like this,&nbsp; the FM curve for&nbsp; $η = 10$&nbsp; is about &nbsp;$10.4 \ \rm dB$&nbsp; above the curve for &nbsp;$η = 3$.&nbsp;
  
*Die ''Vergleichskurve'' liefert die ZSB–AM ohne Träger, das heißt mit Modulationsgrad $m → ∞$. Hier gilt $ρ_υ = ξ$ und auch bei doppelt–logarithmischer Darstellung ergibt sich eine 45°–Gerade durch den Ursprung. Siehe auch Kapitel 2.2.
+
*However,&nbsp; it must be taken into account that a larger &nbsp;$η$&nbsp; also requires a larger bandwidth or&nbsp; &ndash; for given channel bandwidth &ndash;&nbsp; causes stronger non-linear distortions.
 
 
  
*Die ''FM–Kurve'' mit $η =$ 3 liegt um 10 · lg 13.5 11.3 dB oberhalb der AM–Kurve. Anschaulich kann man das bessere Rauschverhalten der FM dadurch erklären, dass ein additiver Rauschanteil die Lage der Nulldurchgänge weniger beeinflusst als er die Amplitudenwerte verändert.  
+
*For the same modulation index,&nbsp; phase modulation&nbsp; $\rm (PM)$&nbsp; is always &nbsp;$10 \cdot \lg \ 3 4.8 \ \rm dB$&nbsp; worse than frequency modulation&nbsp; $\rm (FM)$.&nbsp; This is one of the reasons why analog phase modulation is  in practice of little importance.&nbsp; In contrast,&nbsp; the&nbsp; "Phase Shift Keying"&nbsp; $\rm (PSK)$&nbsp; variant is used more frequently than "Frequency Shift Keying"&nbsp; $\rm (FSK)$&nbsp; in digital modulation because of other advantages.
  
 +
==Pre-emphasis and de-emphasis==
 +
<br>
 +
An important result of the last sections was that the sink SNR in frequency modulation&nbsp; $\rm (FM)$&nbsp; corresponding to &nbsp;$\rho_{v  }  \approx 1.5 \cdot{\eta^2} \cdot\xi \hspace{0.05cm}$&nbsp; depends quadratically on the modulation index by close approximation.&nbsp;
 +
*However,&nbsp; since in frequency modulation the modulation index &nbsp;$η$&nbsp; is inversely proportional to the frequency $f_{\rm N}$&nbsp; of the source signal,
 +
 +
*the sink SNR also depends on $f_{\rm N}$.
  
*Ist das wirksame Rauschen sehr groß und damit die Leistungskenngröße klein (10 · lg $ξ$ ≤ 15 dB), so ist Winkelmodulation nicht zu empfehlen. Aufgrund des Rauschens können Nulldurchgänge völlig verschwinden und so deren Detektion unmöglich machen. Man spricht vom ''FM–Knick''.
 
  
 +
This leads to the following consequences:
  
*Hinsichtlich Rauschen ist ein ''möglichst großer Modulationsindex'' anzustreben. So liegt die Kurve für $η =$ 10 um etwa 10.4 dB über der Kurve für $η =$ 3. Zu berücksichtigen ist allerdings, dass ein größeres $η$ auch eine größere Bandbreite erfordert oder – bei gegebener Kanalbandbreite – stärkere nichtlineare Verzerrungen hervorruft.  
+
*If the source signal consists of several frequencies,&nbsp; the higher frequencies have a smaller modulation index &nbsp;$η$&nbsp; after FM modulation than lower frequencies.
  
 +
*This also means: &nbsp; The higher frequency components &nbsp; $($with smaller &nbsp;$η)$&nbsp; are therefore noisier than lower frequencies,&nbsp; unless special measures are taken.
  
*Bei gleichem Modulationsindex ist die Phasenmodulation stets um 10 lg 3 ≈ 4.8 dB schlechter als die Frequenzmodulation. Dies ist einer der Gründe, warum die analoge Phasenmodulation in der Praxis nur wenig Bedeutung hat. Dagegen wird bei digitaler Modulation die Variante ''Phase Shift Keying'' (PSK) aufgrund anderer Vorteile häufiger eingesetzt als ''Frequency Shift Keying'' (FSK).
+
[[File:EN_Mod_T_3_3_S4_neu.png|right|frame|Magnitude frequency responses for <br>pre-emphasis&nbsp; $\rm (PE)$&nbsp; and de-emphasis&nbsp; $\rm (DE)$]]
  
  
*Alle angegebenen Kurven gelten quantitativ nur für eine harmonische Schwingung (eine Frequenz). Bei einem Frequenzgemisch – das in der Praxis stets vorliegt – gelten die Kurven nur qualitativ.  
+
One such measure is a&nbsp; &raquo;'''pre-emphasis'''&laquo;.&nbsp;
 +
#Here,&nbsp; higher frequencies are boosted by a high-pass filter network&nbsp;$H_{\rm PE}(f)$&nbsp; which increases only their modulation index &nbsp;$η$.
 +
#The transmit-side&nbsp; "pre-emphasis"&nbsp; must be reversed at the receiver by a &nbsp;$H_{\rm DE}(f) = 1/H_{\rm PE}(f)$&nbsp; network.&nbsp; This lowering of the higher frequencies is called&nbsp; &raquo;'''de-emphasis'''&laquo;.  
  
  
 +
The diagram shows a possible example of the filter functions for
 +
*pre-emphasis (blue) &nbsp; &rArr; &nbsp;  $|H_{{\rm PE} } (f)| = \sqrt{1 + \left({f}/{f_{\rm G}}\right)^2}\hspace{0.05cm},$
  
 +
*de-emphasis (red) &nbsp; &nbsp; &nbsp;&nbsp; &rArr; &nbsp;  $|H_{{\rm DE} } (f)| = |H_{{\rm PE} } (f)|^{-1} \hspace{0.05cm}.$
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_3.10:_Noise_Power_Calculation|Exercise 3.10: Noise Power Calculation]]
  
 +
[[Aufgaben:Exercise_3.10Z:_Amplitude_and_Angle_Modulation_in_Comparison|Exercise 3.10Z: Amplitude and Angle Modulation in Comparison]]
  
 +
[[Aufgaben:Exercise_3.11:_Pre-Emphase_and_De-Emphase|Exercise 3.11: Pre-Emphasis and De-Emphasis]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:29, 13 January 2023

Signal-to-noise power ratio in PM


To investigate noise behavior,  we will take the  $\text{AWGN channel}$  as our starting point and calculate the sink SNR  $ρ_v$  as a function of

Signal-to-noise power ratio in phase modulation
  • the frequency  ("bandwidth")   $B_{\rm NF}$  of the cosine source signal,
  • the transmit power $P_{\rm S}$,
  • the channel transmission factor  $α_{\rm K}$,  and
  • the  (one-sided)  noise power density  $N_0$.


The principle procedure is described in detail in the section  "Investigations at the AWGN channel":

If the performance parameter

$$\xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$

is sufficiently large,  the following approximation is obtained for phase modulation  $\rm (PM)$  with modulation index  $η$ :

$$\rho_{v } \approx {\eta^2}/{2} \cdot\xi \hspace{0.05cm}.$$

This means that for phase modulation,  the sink SNR increases quadratically with increasing  $η$.

The exact calculation of  $ρ_v$  is not very simple,  and is also laborious.  Here,  we will only briefly describe the calculation steps:

  1. Approximate the white noise  $n(t)$  for the high-frequency bandwidth  $B_{\rm HF}$  by a sum of sinusoidal disturbance sources  (German:  "Störquellen"   ⇒   subscript:  "St")  spaced by  $f_{\rm St}$ (see second sketch in the following section).
  2. Calculate the S/N ratio after demodulation for each sinusoidal disturbance source and sums the individual contributions,  which are now all in the low-frequency  (German:  "Niederfrequenz"   ⇒   subscript:  "NF")  region  $|f| < B_{\rm NF}$.
  3. The above simple result is obtained after the boundary transition  $f_{\rm St} → 0$.  The sum then turns into an integral and this can be solved approximately.

Signal-to-noise power ratio in FM


For calculation one uses the fact that the FM demodulator can be realized with a PM demodulator and a differentiator.

FM demodulator:   PM demodulator and differentiator
  • The block diagram on the right refers only to the noise signals   ⇒   $s(t) = 0$.
  • Thus the received signal  $r(t) = n(t)$,  where we assume for  $n(t)$  additive Gaussian white noise with center frequency  $f_{\rm T}$  and high-frequency bandwidth  $B_{\rm HF}$.


When calculating the noise power density after the FM demodulator,  consider:

  • The noise power density  ${\it Φ}_{v,\hspace{0.1cm}{\rm PM}}(f)$  after the PM demodulator is in the low-pass range,  has the (one-sided) bandwidth  $B_{\rm NF}$  and is  "white"  (see left plot in the graph below).
  • The power density at the output of a linear system with frequency response  $H(f)$  is generally when the noise power density  ${\it Φ}_{v,\hspace{0.1cm}{\rm PM}}(f)$  is applied to the input:
$${ \it \Phi}_{v {\rm , \hspace{0.1cm}FM} } (f) = { \it \Phi}_{v {\rm , \hspace{0.1cm}PM} } (f) \cdot |H(f)|^2 \hspace{0.05cm}.$$
  • The differentiator is just such a linear system.  Its frequency response $H(f)$  increases linearly with  $f$,  and it is applied to the noise power density at the output of the FM demodulator  (see the right plot in the lower graph):
$${ \it \Phi}_{v {\rm , \hspace{0.1cm}FM} } (f) = {\rm const. } \cdot f^2 \cdot { \it \Phi}_{v {\rm , \hspace{0.1cm}PM} }(f) \hspace{0.05cm}.$$

$\rm Conclusion\text{:}$  Taking this result into account,  one arrives after a longer calculation at the following  »sink SNR«  (if the performance parameter  $ξ$  is sufficiently large):

Noise power density spectra for PM (left) and FM (right)
$$\rho_{v } \approx \frac{3\cdot \eta^2}{2} \cdot \frac{\alpha_{\rm K}^2 \cdot P_{\rm S} }{N_0 \cdot B_{\rm NF} } = 3/2 \cdot{\eta^2} \cdot\xi \hspace{0.05cm}.$$

The graph illustrates:

  • The noise power density  ${\it Φ}_{v,\hspace{0.1cm}{\rm FM} }(f)$  is not white, unlike  ${\it Φ}_{v,\hspace{0.1cm}{\rm PM} }(f)$.
  • Rather,  ${\it Φ}_{v,\hspace{0.1cm}{\rm FM} }(f)$  increases with  $f^2$  towards the limits  $(\pm B_{\rm NF} )$.
  • When  $f = 0$, ${\it Φ}_{v,\hspace{0.1cm}{\rm FM} }(f)$  has no noise components.


System comparison of AM, PM and FM with respect to noise


As explained in detail in the  "Investigations at the AWGN channel"  section and applied to amplitude modulation in the  "Sink SNR and the performance parameter"  section,  we again consider the double-logarithmic plot of the sink SNR  $ρ_v$  versus the performance parameter

System comparison of AM, PM and FM concerning noise.
Note:  All curves are quantitatively valid only for harmonic oscillations  (i.e. for only a single frequency).  However,  for a mix of frequencies – which is always present in practice – the curves apply at least qualitatively.
$$\xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}.$$

These curves, which are to be understood qualitatively, are to be interpreted as follows:

  • The comparison curve shows  »DSB–AM without a carrier«   ⇒   modulation depth  $m → ∞$.  Here,   $ρ_v = ξ$,  and double-logarithmic representation also yields a  $45^\circ$ straight line through the origin.
  • The  »FM curve«  with  $η = 3$  lies around  $10 · \lg \ 13.5 ≈ 11.3 \ \rm dB$  above the AM curve.  Visibly,  the superior noise performance of frequency modulation can be explained by the fact that an additive noise component affects the position of the zero crossings less than it changes the amplitude values.
  • When noise is strong and thus the performance parameter very small  $(10 · \lg \ ξ ≤ 15 \ \rm dB)$,  any kind of angle modulation  $\rm (WM)$  is not recommended.  Due to noise,  zero crossings can then disappear completely and making their detection impossible.  This is referred to as  "WM threshold effect".
  • With regard to noise, the greatest possible modulation index should be aimed for with any type of angle modulation.  Like this,  the FM curve for  $η = 10$  is about  $10.4 \ \rm dB$  above the curve for  $η = 3$. 
  • However,  it must be taken into account that a larger  $η$  also requires a larger bandwidth or  – for given channel bandwidth –  causes stronger non-linear distortions.
  • For the same modulation index,  phase modulation  $\rm (PM)$  is always  $10 \cdot \lg \ 3 ≈ 4.8 \ \rm dB$  worse than frequency modulation  $\rm (FM)$.  This is one of the reasons why analog phase modulation is in practice of little importance.  In contrast,  the  "Phase Shift Keying"  $\rm (PSK)$  variant is used more frequently than "Frequency Shift Keying"  $\rm (FSK)$  in digital modulation because of other advantages.

Pre-emphasis and de-emphasis


An important result of the last sections was that the sink SNR in frequency modulation  $\rm (FM)$  corresponding to  $\rho_{v } \approx 1.5 \cdot{\eta^2} \cdot\xi \hspace{0.05cm}$  depends quadratically on the modulation index by close approximation. 

  • However,  since in frequency modulation the modulation index  $η$  is inversely proportional to the frequency $f_{\rm N}$  of the source signal,
  • the sink SNR also depends on $f_{\rm N}$.


This leads to the following consequences:

  • If the source signal consists of several frequencies,  the higher frequencies have a smaller modulation index  $η$  after FM modulation than lower frequencies.
  • This also means:   The higher frequency components   $($with smaller  $η)$  are therefore noisier than lower frequencies,  unless special measures are taken.
Magnitude frequency responses for
pre-emphasis  $\rm (PE)$  and de-emphasis  $\rm (DE)$


One such measure is a  »pre-emphasis«. 

  1. Here,  higher frequencies are boosted by a high-pass filter network $H_{\rm PE}(f)$  which increases only their modulation index  $η$.
  2. The transmit-side  "pre-emphasis"  must be reversed at the receiver by a  $H_{\rm DE}(f) = 1/H_{\rm PE}(f)$  network.  This lowering of the higher frequencies is called  »de-emphasis«.


The diagram shows a possible example of the filter functions for

  • pre-emphasis (blue)   ⇒   $|H_{{\rm PE} } (f)| = \sqrt{1 + \left({f}/{f_{\rm G}}\right)^2}\hspace{0.05cm},$
  • de-emphasis (red)        ⇒   $|H_{{\rm DE} } (f)| = |H_{{\rm PE} } (f)|^{-1} \hspace{0.05cm}.$

Exercises for the chapter


Exercise 3.10: Noise Power Calculation

Exercise 3.10Z: Amplitude and Angle Modulation in Comparison

Exercise 3.11: Pre-Emphasis and De-Emphasis