Difference between revisions of "Signal Representation/Spectrum Analysis"

From LNTwww
Line 6: Line 6:
 
}}
 
}}
  
==Spectral Leak Effect==
+
==Spectral Leakage==
 
<br>   
 
<br>   
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Als&nbsp; '''spektralen Leckeffekt'''&nbsp;  bezeichnet man die Verfälschung des Spektrums eines periodischen und damit zeitlich unbegrenzten Signals aufgrund der impliziten Zeitbegrenzung der Diskreten Fouriertransformation (DFT). Dadurch werden zum Beispiel von einem Spektrumanalyzer
+
The term '''spectral leakage effect''' is used to describe the distortion of the spectrum of a periodic and thus temporally unlimited signal due to the implicit time limit of the Discrete Fourier Transform (DFT). This means that, for example, a spectrum analyser
*im Zeitsignal nicht vorhandene Frequenzanteile vorgetäuscht, und/oder
+
* fake frequency components that are not present in the time signal, and/or
*tatsächlich vorhandene Spektralkomponenten durch Seitenkeulen verdeckt.}}
+
*actually existing spectral components are hidden by side lobes}}.
  
  
Das folgende&nbsp; $\text{Beispiel 1}$&nbsp; wird zeigen, dass bei einem periodischen Signal die Anwendung der&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Diskreten Fouriertransformation]]&nbsp; (DFT) ohne Zusatzmaßnahmen nicht sinnvoll ist. Die Güte der Spektralanalyse – das heißt die Richtigkeit des gefundenen Spektrums – wird hier hauptsächlich durch die (mehr oder weniger geglückte) Anpassung der DFT-Parameter an die vorliegenden Signalparameter bestimmt.
+
The following&nbsp; $\text{example 1}$&nbsp;will show that for a periodic signal the application of the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|discrete  Fourier Transform]]&nbsp; &nbsp; (DFT) is not useful without additional measures. The quality of the spectral analysis - i.e. the correctness of the spectrum found - is mainly determined here by the (more or less successful) adaptation of the DFT parameters to the signal parameters at hand.
*Ist die Periodendauer&nbsp; $T_0$&nbsp; des Signals bekannt, so sollte die Dauer&nbsp; $T_{\rm P}$&nbsp; des für die DFT verwendeten Signalausschnittes ein ganzzahliges Vielfaches von&nbsp; $T_0$&nbsp; betragen. Aufgabe der Spektralanalyse ist aber gerade das Auffinden beliebiger Signalanteile, so dass die Kenntnis von&nbsp; $T_0$&nbsp; im allgemeinen nicht vorausgesetzt werden kann.
+
*If the period&nbsp; $T_0$&nbsp; of the signal is known, the duration&nbsp; $T_{\rm P}$&nbsp; of the signal section used for the DFT should be an integer multiple of&nbsp; $T_0$&nbsp;. However, the task of spectral analysis is precisely to find arbitrary signal components, so that knowledge of&nbsp; $T_0$&nbsp; cannot generally be assumed.
*Eine Maßnahme zur Verbesserung des Spektralanalyse ist die Fensterung mit einer „geeigneten” Zeitfunktion&nbsp; $w(t)$. Analysiert wird dann das Produktsignal&nbsp; $x(t) \cdot w(t)$.
+
*A measure to improve the spectral analysis is the windowing with a "suitable" time function&nbsp; $w(t)$. The product signal&nbsp; $x(t) \cdot w(t)$ is then analysed.
*Aus der Literatur sind eine Vielzahl solcher Fensterfunktionen&nbsp; $w(t)$&nbsp; bekannt, die je nach Aufgabenstellung zu guten oder weniger befriedigenden Ergebnissen führen.
+
*A large number of such window functions&nbsp; $w(t)$&nbsp; are known from the literature, which lead to good or less satisfactory results depending on the task.
  
  
Auf den nächsten Seiten wird der spektrale Leckeffekt an Beispielen verdeutlicht und es wird auf die Vorteile und Nachteile der verschiedenen Fensterfunktionen eingegangen. So viel vorneweg: &nbsp; '''Es gibt keine „beste” Fensterfunktion für alle Anwendungen'''.
+
On the next pages the spectral leakage effect will be illustrated by examples and the advantages and disadvantages of the different window functions will be discussed. So much up front: '''There is no "best" window function for all applications'''.
 +
{{GraueBox|TEXT=
  
{{GraueBox|TEXT=
+
$\text{Example 1:}$&nbsp;  
$\text{Beispiel 1:}$&nbsp;  
+
The upper graph&nbsp; '''(a)'''&nbsp; from [Söd93]<ref name='Söd93'>Söder, G.: ''Modellierung, Simulation und Optimierung von Nachrichtensystemen.'' In: Berlin – Heidelberg: Springer, 1993.</ref>.&nbsp; shows the time-discrete signal&nbsp; $d(\nu)$&nbsp; of a harmonic oscillation with frequency&nbsp; $f_0 = 125\,\text{ kHz}$ &nbsp; &rArr; &nbsp; period&nbsp; $T_0 = 8 \,{\rm &micro; s}$. The distance between two successive time samples in this example is chosen to be&nbsp; $T_{\rm A} = 1 \,{\rm &micro; s}$&nbsp;.
Die obere Grafik&nbsp; '''(a)'''&nbsp; aus&nbsp; [Söd93]<ref name='Söd93'>Söder, G.: ''Modellierung, Simulation und Optimierung von Nachrichtensystemen.'' In: Berlin – Heidelberg: Springer, 1993.</ref>&nbsp; zeigt das zeitdiskrete Signal&nbsp; $d(\nu)$&nbsp; einer harmonischen Schwingung mit der Frequenz&nbsp; $f_0 = 125\,\text{ kHz}$ &nbsp; &rArr; &nbsp; Periodendauer&nbsp; $T_0 = 8 \,{\rm &micro; s}$. Der Abstand zweier aufeinanderfolgender Zeitabtastwerte ist bei diesem Beispiel zu&nbsp; $T_{\rm A} = 1 \,{\rm &micro; s}$&nbsp; gewählt.
 
  
Rechts ist in logarithmierter Form (in dB) das frequenzdiskrete Spektrum&nbsp; $\vert D(\mu) \vert$&nbsp; nach einer DFT mit&nbsp; $N = 32$&nbsp; Abtastwerten dargestellt, woraus sich die weiteren DFT–Parameter wie folgt ergeben:
+
On the right is shown in logarithmic form (in dB) the frequency discrete spectrum&nbsp; $\vert D(\mu) \vert$&nbsp; after a DFT with&nbsp; $N = 32$&nbsp; samples, from which the further DFT parameters result as follows:
*Dauer des Zeitausschnitts: &nbsp; $T_{\rm P} = 32 \,{\rm &micro; s}$,
+
*Duration of the time segment: &nbsp; $T_{\rm P} = 32 \,{\rm &micro; s}$,
*Rasterung der Frequenzachse: &nbsp; $f_{\rm A} = 31.25 \,\text{ kHz}$.  
+
*gridding of the frequency axis: &nbsp; $f_{\rm A} = 31.25 \,\text{ kHz}$.  
  
  
Da hier durch die Intervallbreite&nbsp; $T_{\rm P}$&nbsp; ein ganzzahliges Vielfaches der Periodendauer&nbsp; $T_0$&nbsp; erfasst wird, liefert die DFT das richtige Ergebnis. Die beiden Diracfunktionen liegen genau bei&nbsp; $\pm4 \cdot f_{\rm A}$.
+
Since the interval width&nbsp; $T_{\rm P}$&nbsp; captures an integer multiple of the period duration&nbsp; $T_0$&nbsp;, the DFT delivers the correct result. The two Dirac functions lie exactly at&nbsp; $\pm4 \cdot f_{\rm A}$.
  
[[File:P_ID1160__Sig_T_5_4_S1_neu.png|center|frame|Beispiel für die Anwendung der Spektralanalyse]]
+
[[File:P_ID1160__Sig_T_5_4_S1_neu.png|center|frame|Example of Applying  Spectral Analysis]]
  
Vermisst man mit der gleichen Anordnung eine Schwingung der Frequenz&nbsp; $f_0 = 109.375\,\text{ kHz}$ &nbsp; &rArr; &nbsp; Periodendauer $T_0 = 9.14 \,{\rm &micro; s}$&nbsp; entsprechend der unteren Grafik&nbsp; '''(b)''', so kommt es zu signifikanten Verfälschungen des Spektrums.  
+
If one measures an oscillation of frequency&nbsp; $f_0 = 109.375\,\text{ kHz}$ &nbsp; &rArr; &nbsp; period $T_0 = 9.14 \,{\rm &micro; s}$&nbsp; corresponding to the graph below&nbsp; '''(b)''', significant distortions of the spectrum occur.  
  
*Da nun&nbsp; $T_{\rm P}/T_0 = 3.5$&nbsp; nicht mehr ganzzahlig ist, entstehen durch die periodische Fortsetzung des Zeitausschnittes Phasensprünge, in unserem Beispiel um&nbsp; $\pi$.
+
*Since now&nbsp; $T_{\rm P}/T_0 = 3.5$&nbsp; is no longer an integer, the periodic continuation of the time section causes phase jumps, in our example by&nbsp; $\pi$.
*Der Spektralbereich besteht nun nicht mehr aus zwei Diracfunktionen wie im Beispiel&nbsp; '''(a)''', sondern aus einer annähernd „kontinuierlichen” Frequenzfunktion mit dem Maximum in der Nähe der tatsächlichen Signalfrequenz und einer Reihe weiterer Anteile, die man&nbsp; '''Seitenkeulen'''&nbsp; (englisch:&nbsp; ''Side Lobes'') nennt.}}
+
*The spectral range now no longer consists of two Dirac functions as in the example&nbsp; '''(a)''', but of an approximately "continuous" frequency function with the maximum near the actual signal frequency and a series of further parts, which are called&nbsp; '''side lobes'''&nbsp;.}}
  
  
==Systemtheoretische Beschreibung der Fensterung==   
+
==Describing Windowing from a Control Theory Perspective==   
 
<br>
 
<br>
[[File:EN_Sig_T_5_4_S2.png|right|frame|Rechteck-Fenster und Bartlett-Fenster]]
+
[[File:EN_Sig_T_5_4_S2.png|right|frame|Rectangular Window and Bartlett Windows]]
Das Zustandekommen solcher unerwünschter Seitenkeulen soll nun anhand der folgenden Grafik systemtheoretisch erklärt werden. Auch diese Grafik wurde dem Buch&nbsp; [Söd93]<ref name='Söd93'>Söder, G.: ''Modellierung, Simulation und Optimierung von Nachrichtensystemen.'' In: Berlin – Heidelberg: Springer, 1993.</ref>&nbsp;  entnommen.
+
The occurrence of such unwanted side lobes is now to be explained in terms of systems theory using the following diagram. This graphic was also taken from the book&nbsp; [Söd93]<ref name='Söd93'>Söder, G.: ''Modellierung, Simulation und Optimierung von Nachrichtensystemen.'' In: Berlin – Heidelberg: Springer, 1993.</ref>.
  
Betrachten Sie zunächst die obere Grafik&nbsp; '''(a)'''&nbsp; für das&nbsp; '''Rechteckfenster'''.
+
First consider the upper graph&nbsp; '''(a)'''&nbsp; for the&nbsp; '''rectangular window'''.
*Die in der DFT implizit enthaltene Zeitbegrenzung entspricht der Multiplikation des Signals&nbsp; $x(t)$&nbsp; mit einer Rechteck&ndash;Fensterfunktion&nbsp; $w(t)$&nbsp; der Höhe&nbsp; $1$&nbsp; und der Dauer&nbsp; $T_{\rm P}$. Das linke obere Bild zeigt die zeitdiskrete Darstellung dieser Rechteckfunktion mit der normierten Zeitvariablen&nbsp; $\nu= t/T_{\rm A}$:
+
*The time limit implicit in the DFT corresponds to the multiplication of the signal&nbsp; $x(t)$&nbsp; by a rectangular&ndash;window function&nbsp; $w(t)$&nbsp; of height&nbsp; $1$&nbsp; and duration&nbsp; $T_{\rm P}$. The upper left image shows the discrete-time representation of this rectangular function with the normalised time variable&nbsp; $\nu= t/T_{\rm A}$:
 
   
 
   
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 1 \\
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 1 \\
Line 58: Line 58:
 
\end{array}$$
 
\end{array}$$
  
*Aus der Multiplikation&nbsp; $y(t) = x(t) \cdot w(t)$&nbsp; des zu analysierenden Signals&nbsp; $x(t)$&nbsp; und der Fensterfunktion&nbsp; $w(t)$&nbsp; folgt für die Spektralfunktion&nbsp; $Y(f) = X(f) \ast W(f)$, wobei bei rechteckförmiger Fensterfunktion mit&nbsp; $f_{\rm A} = 1/T_{\rm P}$&nbsp; gilt (die Funktion&nbsp; $W(f)$&nbsp; ist in der rechten oberen Grafik in logarithmierter Form dargestellt):
+
*From the multiplication&nbsp; $y(t) = x(t) \cdot w(t)$&nbsp; of the signal to be analysed&nbsp; $x(t)$&nbsp; and the window function&nbsp; $w(t)$&nbsp; follows for the spectral function&nbsp; $Y(f) = X(f) \ast W(f)$, where for rectangular window function with&nbsp; $f_{\rm A} = 1/T_{\rm P}$&nbsp; holds (the function&nbsp; $W(f)$&nbsp; is shown in logarithmic form in the upper right graph):
 
   
 
   
 
:$$W(f) = T_{\rm P} \cdot {\rm si}(\pi \cdot f \cdot T_{\rm P}) = {1}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot {f}/{f_{\rm A}})\hspace{0.05cm}.$$
 
:$$W(f) = T_{\rm P} \cdot {\rm si}(\pi \cdot f \cdot T_{\rm P}) = {1}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot {f}/{f_{\rm A}})\hspace{0.05cm}.$$
  
*Liegen alle Spektralanteile vons&nbsp; $x(t)$&nbsp; im Frequenzraster&nbsp; $\mu \cdot f_{\rm A}$, so bleiben die frequenzdiskreten Spektralwerte&nbsp; $D(\mu )$&nbsp; durch die Faltung mit&nbsp; $W(f)$&nbsp; unverändert.  
+
*If all spectral components ofs&nbsp; $x(t)$&nbsp; lie in the frequency grid&nbsp; $\mu \cdot f_{\rm A}$, the discrete frequency spectral values&nbsp; $D(\mu )$&nbsp; remain unchanged by the convolution with&nbsp; $W(f)$&nbsp;.  
*Andernfalls führt die Faltung mit&nbsp; $W(f)$&nbsp; zu Verfälschungen, da die Nullstellen der&nbsp; $\rm si$–Funktion nun nicht mehr zu den diskreten Werten des Eingangsspektrums passen.
+
*Otherwise, convolution with&nbsp; $W(f)$&nbsp; leads to distortions, since the zeros of the&nbsp; $\rm si$-function now no longer fit the discrete values of the input spectrum.
  
  
Die durch Begrenzung und periodische Fortsetzung entstehendenen Unstetigkeiten im Zeitbereich werden vermindert, wenn statt der konstanten Eins–Bewertung durch das Rechteck die beiden Randbereiche des Fensters schwächer gewichtet werden als die Mitte.
+
The discontinuities in the time domain caused by limitation and periodic continuation are reduced if, instead of the constant one weighting by the rectangle, the two edge areas of the window are weighted weaker than the centre.
  
Betrachten Sie dazu die untere Grafik&nbsp; '''(b)'''&nbsp; für das&nbsp; '''Bartlett–Fenster''' – auch Dreieckfenster genannt:
+
Consider the graph below&nbsp; '''(b)'''&nbsp; for the&nbsp; '''Bartlett window''' - also called triangular window:
*Die zeitdiskrete Beschreibung des Bartlett–Fensters lautet mit&nbsp; $\nu = t/T_{\rm A}$:
+
*The time-discrete description of the Bartlett window is with&nbsp; $\nu = t/T_{\rm A}$:
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 1 - {2  \hspace{0.05cm} \cdot  \hspace{0.05cm} |\nu|}/{N} \\
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 1 - {2  \hspace{0.05cm} \cdot  \hspace{0.05cm} |\nu|}/{N} \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
Line 77: Line 77:
 
{\rm sonst} \hspace{0.05cm}. \\
 
{\rm sonst} \hspace{0.05cm}. \\
 
\end{array}$$
 
\end{array}$$
*Daraus folgt für die zeitkontinuierliche Fensterfunktion&nbsp; $w(t)$&nbsp; und die Spektraldarstellung&nbsp; $W(f)$:
+
*From this follows for the time-continuous window function&nbsp; $w(t)$&nbsp; and the spectral representation&nbsp; $W(f)$:
 
:$${w} (t)  = \left\{ \begin{array}{c} 1 -{|t|}/{(T_{\rm P}/2)} \\
 
:$${w} (t)  = \left\{ \begin{array}{c} 1 -{|t|}/{(T_{\rm P}/2)} \\
 
   0 \\ \end{array} \right.\hspace{0.05cm}
 
   0 \\ \end{array} \right.\hspace{0.05cm}
Line 86: Line 86:
 
\hspace{0.2cm}W(f) ={1}/({2f_{\rm A}})\cdot {\rm si}^2(\pi \cdot
 
\hspace{0.2cm}W(f) ={1}/({2f_{\rm A}})\cdot {\rm si}^2(\pi \cdot
 
{f}/({2f_{\rm A}}))\hspace{0.05cm}.$$
 
{f}/({2f_{\rm A}}))\hspace{0.05cm}.$$
*Durch die geringere Bewertung der bei unbegrenzten Signalen besonders problematischen Randbereiche hat das (logarithmisch gezeichnete) Spektrum&nbsp; $W(f)$&nbsp; geringere Seitenschwinger als die&nbsp; $\rm si$–Funktion im oberen Bild, was zu geringeren Leckkomponenten führt.
+
*Due to the lower weighting of the edge regions, which are particularly problematic with unbounded signals, the (logarithmically drawn) spectrum&nbsp; $W(f)$&nbsp; has lower side lobes than the&nbsp; $\rm si$ function in the upper image, which leads to lower leakage components.
*Die bessere Unterdrückung der Seitenkeulen geht allerdings auf Kosten einer merkbaren Verkleinerung und Verbreiterung der Hauptkeule, wodurch das Auflösungsvermögen des Bartlett–Fensters gegenüber der Rechteck–Fensterung eingeschränkt wird.
+
*The better suppression of the side lobes, however, comes at the cost of a noticeable reduction and broadening of the main lobe, limiting the resolving power of the Bartlett window compared to the rectangular windowing.
 
   
 
   
  
  
==Spezielle Fensterfunktionen==
+
==Special Window Functions==
 
<br>   
 
<br>   
[[File:EN_Sig_T_5_4_S3.png|right|frame|Hanning-, Hamming- und Kaiser-Bessel-Fenster]]
+
[[File:EN_Sig_T_5_4_S3.png|right|frame|Hanning-, Hamming- and Kaiser-Bessel Windows]]
Nun werden einige häufig eingesetzte&nbsp; [https://de.m.wikipedia.org/wiki/Fensterfunktion Fensterfunktionen], nämlich
+
Now some frequently used&nbsp; [https://en.wikipedia.org/wiki/Window_function window functions], viz.
*das Hanning–Fenster,  
+
*the Hanning window,  
*das Hamming–Fenster und
+
*the Hamming window, and
*das Kaiser–Bessel–Fenster
+
*the Kaiser-Bessel window
 
   
 
   
  
anhand von Grafiken und darin enthaltenen Gleichungen beschrieben. Für die Laufvariable im Zeitbereich gilt stets&nbsp; $–N/2 ≤ \nu < N/2$.  
+
will be described by means of graphs and equations contained therein. For the running variable in the time domain, $-N/2 ≤ \nu < N/2$ always applies.  
  
  
''Hinweise:''
+
''Notes:''
*Beim Kaiser–Bessel–Fenster sind die Funktionen im Zeit– und Frequenzbereich jeweils für&nbsp; $\alpha = 3.5$&nbsp; dargestellt.
+
*In the Kaiser-Bessel window, the functions in the time and frequency domain are each shown for&nbsp; $\alpha = 3.5$&nbsp;.
* ${\rm I}_0(.)$&nbsp; bezeichnet die&nbsp; [https://de.wikipedia.org/wiki/Besselsche_Differentialgleichung Modifizierte Besselfunktion nullter Ordnung].
+
* ${\rm I}_0(.)$&nbsp; denotes the&nbsp; [https://en.wikipedia.org/wiki/Bessel_function modified zero-order Bessel function].
*Weitere Fensterfunktionen wie das Blackman–Harris–Fenster, das&nbsp; [https://de.wikipedia.org/wiki/Raised-Cosine-Filter Cosinus–Rolloff–Fenster]&nbsp; (auch Tukey–Fenster genannt) und noch viele andere mehr finden Sie im Buch&nbsp; [Söd93]<ref name='Söd93'>Söder, G.: ''Modellierung, Simulation und Optimierung von Nachrichtensystemen.'' In: Berlin – Heidelberg: Springer, 1993.</ref>.
+
*Further window functions such as the Blackman-Harris window, the&nbsp; [https://en.wikipedia.org/wiki/Raised-cosine_filter cosine rolloff window]&nbsp; (also called Tukey window) and many more can be found in the book&nbsp; [Söd93]<ref name='Söd93'>Söder, G.: ''Modellierung, Simulation und Optimierung von Nachrichtensystemen.'' In: Berlin – Heidelberg: Springer, 1993.</ref>.
  
  
Die Eignung dieser Fensterfunktionen für verschiedenartige Aufgaben der Spektralanalyse nennen wir auf der nächsten Seite.
+
The suitability of these window functions for various tasks of spectral analysis is mentioned on the next page.
 
<br clear=all>  
 
<br clear=all>  
==Gütekriterien von Fensterfunktionen==
+
==Goodness criteria of window functions==
 
<br> 
 
<br> 
[[File:EN_Sig_T_5_4_S4_neu.png|right|frame|Zusammenstellung wichtiger Gütekriterien von Fensterfunktionen]]
+
[[File:EN_Sig_T_5_4_S4_neu.png|right|frame|Compilation of Important Quality Criteria of Window Functions]]
Die Tabelle gibt Gütekriterien für die auf den letzten Seiten beschriebenen Fensterfunktionen wieder. Die Auswahl einer geeigneten Fensterfunktion sollte nach folgenden Gesichtspunkten erfolgen:
+
The table shows quality criteria for the window functions described on the last pages. The selection of a suitable window function should be made according to the following aspects:
*Der&nbsp; '''minimale Abstand zwischen Hauptkeule und Seitenkeulen'''&nbsp; sollte möglichst groß sein, um den Einfluss des Leckeffektes gering zu halten und die Amplitudenauflösung zu verbessern.
+
*The&nbsp; '''minimum distance between main lobe and side lobes'''&nbsp; should be as large as possible to keep the influence of the leakage effect low and to improve the amplitude resolution.
*Aus Gründen einer guten Frequenzselektivität sollte die&nbsp; '''6dB–Bandbreite'''&nbsp; gering sein. Ist diese zu groß, so überdeckt eine dominante Spektrallinie kleinere Anteile in der Umgebung.
+
*For reasons of good frequency selectivity, the&nbsp; '''6dB bandwidth'''&nbsp; should be small. If it is too large, a dominant spectral line will mask smaller components in the surrounding area.
*Der&nbsp; '''maximale Prozessverlust'''&nbsp; (in dB) beinhaltet den maximalen Skalierungsfehler und die äquivalente Rauschbandbreite. Diese Größe sollte auf keinen Fall&nbsp; $\text{3.7 dB}$&nbsp; überschreiten.
+
*The&nbsp; '''maximum process loss'''&nbsp; (in dB) includes the maximum scaling error and the equivalent noise bandwidth. This value should in no case exceed&nbsp; $\text{3.7 dB}$&nbsp;.
  
  
Diese wichtigsten Gütekriterien sind in nebenstehender Tabelle durch rote Schrift hervorgehoben.
+
These most important quality criteria are highlighted in red in the adjacent table.
*In jeder Zeile sind eher günstige Fensterfunktionen grün und eher ungünstigste grau hinterlegt.  
+
*In each row, rather favourable window functions are highlighted in green and rather unfavourable ones in grey.  
*Aus der Verteilung der grünen und grauen Flächen ist bereits ersichtlich, dass es die optimale Fensterfunktion nicht gibt.
+
*From the distribution of the green and grey areas it is already evident that the optimal window function does not exist.
 
<br clear=all>
 
<br clear=all>
Nun werden die in der Tabelle angegebenen Gütekriterien etwas genauer beschrieben:
+
Now the quality criteria given in the table are described in more detail:
*Je größer der ''minimale Haupt–zu–Seitenkeulen–Abstand'' &nbsp; ⇒ &nbsp; Verhältnis der Hauptkeule zur höchsten Seitenkeule, desto besser ist die Amplitudenauflösung einer Fensterfunktion. Beim Rechteck ist dieser Abstand erwartungsgemäß am kleinsten&nbsp; $\text{(13 dB)}$. Das beste Ergebnis liefert mit&nbsp; $\text{92 dB}$&nbsp; das Blackman–Harris–Fenster vierter Ordnung.
+
*The larger the ''minimum main-to-side lobe distance'' &nbsp; ⇒ &nbsp; ratio of the main lobe to the highest side lobe, the better the amplitude resolution of a window function. For the rectangle this distance is, as expected, smallest&nbsp; $\text{(13 dB)}$. The best result is achieved with&nbsp; $\text{92 dB}$&nbsp; the fourth-order Blackman-Harris window.
*Da jedoch nicht nur die höchste, sondern auch alle weiteren Seitenkeulen zum Leckeffekt beitragen, ist der&nbsp; '''Seitenkeulenabfall'''&nbsp; ein weiteres Maß für das Auflösungsvermögen. Von den angegebenen Fensterfunktionen weisen diesbezüglich das Hanning–Fenster sowie das Cosinus–Rolloff–Fenster mit Rolloff&nbsp; $r = 0.5$&nbsp; die günstigsten Werte auf&nbsp; $\text{(18 dB/Oktave)}$.
+
*However, since not only the highest but also all other side lobes contribute to the leakage effect, the&nbsp; '''side lobe drop'''&nbsp; is another measure for the resolving power. Of the given window functions, the Hanning window and the cosine rolloff window with rolloff&nbsp; $r = 0.5$&nbsp; have the most favourable values in this respect&nbsp; $\text{(18 dB/octave)}$.
*Die&nbsp; '''6 dB–Bandbreite''', die aus der logarithmierten Spektralfunktion abgelesen werden kann, ist ein wichtiges Maß für das Frequenzauflösungsvermögen. Zwei im Signal vorhandene Spektralanteile bei&nbsp; $f_1$&nbsp; und&nbsp; $f_2$&nbsp; können nur dann aufgelöst werden, wenn die Differenz&nbsp; $f_2 - f_1$&nbsp; größer als die&nbsp; $\text{6 dB}$–Bandbreite der verwendeten Fensterfunktion ist (siehe nachfolgende rechte Grafik).
+
*The&nbsp; '''6 dB bandwidth''', which can be read from the logarithmised spectral function, is an important measure of the frequency resolving power. Two spectral components present in the signal at&nbsp; $f_1$&nbsp; and&nbsp; $f_2$&nbsp; can only be resolved if the difference&nbsp; $f_2 - f_1$&nbsp; is greater than the&nbsp; $\text{6 dB}$-bandwidth of the window function used (see following right graph).
  
  
 
[[File:EN_Sig_T_5_4_S4b.png|center|frame|Zur Verdeutlichung der&nbsp; $\text{6 dB}$-Bandbreite]]
 
[[File:EN_Sig_T_5_4_S4b.png|center|frame|Zur Verdeutlichung der&nbsp; $\text{6 dB}$-Bandbreite]]
*Die&nbsp; '''Fensterfläche'''&nbsp; der Funktion&nbsp; $w(t)$&nbsp; gibt zugleich die Höhe&nbsp; $W(0)$&nbsp; im Spektralbereich an. Bei allen Fenstern mit Ausnahme des Rechtecks ergibt sich aufgrund der Unterdrückung der äußeren Abtastwerte eine Fensterfläche kleiner&nbsp; $1$&nbsp; und damit ein Fehler in der Amplitude des DFT–Ergebnisses, der jedoch bei Kenntnis von&nbsp; $w(t)$&nbsp; vollständig korrigierbar ist.
+
*The&nbsp; '''window area'''&nbsp; of the function&nbsp; $w(t)$&nbsp; at the same time gives the height&nbsp; $W(0)$&nbsp; in the spectral domain. For all windows except the rectangle, a window area smaller than&nbsp; $1$&nbsp; and thus an error in the amplitude of the DFT result results due to the suppression of the outer samples, which, however, can be completely corrected if&nbsp; $w(t)$&nbsp; is known.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
*Ein guter Kompromiss ist das&nbsp; '''Hanning–Fenster'''&nbsp; (in der Tabelle blau hervorgehoben), das bezüglich der drei Hauptkriterien (rote Markierungen) nie mit „Grau” abschneidet.
+
*A good compromise is the&nbsp; '''Hanning window'''&nbsp; (highlighted in blue in the table), which never scores "grey" with respect to the three main criteria (red markings).
*Das&nbsp; '''Hamming–Fenster'''&nbsp; unterscheidet sich hiervon im Zeitbereich nur geringfügig, aber im Spektralbereich beträchtlich. So beträgt der Seitenkeulenabfall pro Oktave nur mehr&nbsp; $\text{6 dB}$&nbsp; $($statt&nbsp; $\text{18 dB})$.}}
+
*The&nbsp; '''Hamming window'''&nbsp; differs from this only slightly in the time domain, but considerably in the spectral domain. Thus, the side lobe drop per octave is only more&nbsp; $\text{6 dB}$&nbsp; $($instead of&nbsp; $\text{18 dB})$.}}
  
 
   
 
   
==Maximaler Prozessverlust==
+
==Maximum process loss==
 
<br> 
 
<br> 
Dieses kombinierte Gütekriterium berücksichtigt den&nbsp; '''maximalen Skalierungsfehler'''&nbsp; ebenso wie die (normierte)&nbsp; '''äquivalente Rauschbandbreite'''. Der maximale Prozessverlust wird meist in&nbsp; $\text{dB}$&nbsp; angegeben und sollte entsprechend seines Namens eher klein sein:
+
This combined quality criterion considers the&nbsp; '''maximum scaling error'''&nbsp; as well as the (normalised)&nbsp; '''equivalent noise bandwidth'''. The maximum process loss is usually given in&nbsp; $\text{dB}$&nbsp; and should be rather small according to its name:
 
   
 
   
 
:$$10 \cdot {\rm lg}\hspace{0.15cm}V_{\rm P}\hspace{0.15cm}{\rm (in}\hspace{0.15cm}{\rm dB)}= 20 \cdot {\rm lg}\hspace{0.15cm}
 
:$$10 \cdot {\rm lg}\hspace{0.15cm}V_{\rm P}\hspace{0.15cm}{\rm (in}\hspace{0.15cm}{\rm dB)}= 20 \cdot {\rm lg}\hspace{0.15cm}
Line 148: Line 148:
 
  \frac{\int_{-\infty}^{\infty}|W(f)|^2\hspace{0.05cm}{\rm d}f}{f_{\rm A} \cdot |W(f=0)|^2} \hspace{0.05cm}.$$
 
  \frac{\int_{-\infty}^{\infty}|W(f)|^2\hspace{0.05cm}{\rm d}f}{f_{\rm A} \cdot |W(f=0)|^2} \hspace{0.05cm}.$$
  
Aus der&nbsp; [[Signal_Representation/Spectrum_Analysis#G.C3.BCtekriterien_von_Fensterfunktionen|Tabelle]]&nbsp; erkennt man, dass&nbsp; $V_{\rm P}$&nbsp; für die betrachteten Fensterfunktionen Werte zwischen&nbsp; $\text{3 dB}$&nbsp; und&nbsp; $\text{4 dB}$&nbsp; annimmt, wobei Fensterfunktionen mit&nbsp; $V_{\rm P} > 3.7 \,\text{dB}$&nbsp; (Rechteck, Blackman–Harris, Kaiser–Bessel)&nbsp; nicht verwendet werden sollten. Gerade diese sind aber bezüglich des Haupt–zu–Seitenkeulen–Abstands am besten.
+
From the&nbsp; &nbsp; [[Signal_Representation/Spectrum_Analysis#G.C3.BCtekriterien_von_Fensterfunktionen|table]]&nbsp; it can be seen that&nbsp; $V_{\rm P}$&nbsp; takes values between&nbsp; $\text{3 dB}$&nbsp; and&nbsp; $\text{4 dB}$&nbsp; for the window functions considered, where window functions with&nbsp; $V_{\rm P} > 3. 7 \,\text{dB}$&nbsp; (rectangle, Blackman-Harris, Kaiser-Bessel)&nbsp; should not be used. However, it is precisely these that are best with regard to the main-to-side lobe distance.
  
Die beiden Anteile sind wie folgt zu interpretieren:
+
The two proportions are to be interpreted as follows:
*Der ''maximale Skalierungsfehler''&nbsp; ist das Verhältnis, um das sich die mit der DFT ermittelte Amplitude von der tatsächlichen Signalamplitude unterscheidet. Der Amplitudenfehler aufgrund einer Fensterfläche kleiner als&nbsp; $1$&nbsp; wird dabei als korrigiert vorausgesetzt.
+
*The ''maximum scaling error''&nbsp; is the ratio by which the amplitude determined with the DFT differs from the actual signal amplitude. The amplitude error due to a window area smaller than&nbsp; $1$&nbsp; is assumed to be corrected.
*Je breiter die Hauptkeule der Fensterfunktion ist, um so kleiner ist dieser Skalierungsfehler. Der Fehler ist am größten, wenn die Frequenz&nbsp; $f_0$&nbsp; einer harmonischen Schwingung in der Mitte zwischen zwei DFT–Stützstellen liegt &nbsp; ⇒ &nbsp; Quotient $|W(f = 0)| / |W(f = f_{\rm A}/2)|$.  
+
*The wider the main lobe of the window function, the smaller this scaling error. The error is largest when the frequency&nbsp; $f_0$&nbsp; of a harmonic oscillation lies midway between two DFT support points &nbsp; ⇒ &nbsp; quotient $|W(f = 0)| / |W(f = f_{\rm A}/2)|$.  
  
*Die ''äquivalente Rauschbandbreite''&nbsp; der verwendeten Fensterfunktion – berechenbar als Breite des flächengleichen Rechtecks bezüglich dem Betragsquadrat&nbsp; $|W(f)|^2$&nbsp; der Spektralfunktion – erfasst den störenden Einfluss von weißem Rauschen und sollte möglichst gering sein.
+
*The ''equivalent noise bandwidth''&nbsp; of the window function used - calculable as the width of the equal-area rectangle with respect to the magnitude square&nbsp; $|W(f)|^2$&nbsp; of the spectral function - captures the disturbing influence of white noise and should be as small as possible.
*Die kleinste Rauschbandbreite ergibt sich für das Rechteck. Alle anderen Fensterfunktionen besitzen eine größere Rauschbandbreite und damit bei Vorhandensein von Rauschstörungen auch ein (deutlich) ungünstigeres Signal–zu–Rausch–Leistungsverhältnis.
+
*The smallest noise bandwidth results for the rectangle. All other window functions have a larger noise bandwidth and thus, in the presence of noise interference, also a (significantly) less favourable signal-to-noise power ratio.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
Die Ergebnisse dieses Abschnitts können wie folgt zusammengefasst werden:
+
The results of this section can be summarised as follows:
*Eine ideale Fensterfunktion gibt es nicht. Je nach Aufgabenstellung&nbsp; (gute Amplituden– bzw. Frequenzauflösung)&nbsp; liefern unterschiedliche Fenster das jeweils beste Ergebnis. Zu empfehlen ist deshalb, dass man zur Spektralanalyse stets mehrere Fensterfunktionen heranzieht oder zumindest eine Fensterfunktion mit verschiedenen Parametern verwendet.
+
*An ideal window function does not exist. Depending on the task&nbsp; (good amplitude or frequency resolution)&nbsp; different windows provide the best result in each case. It is therefore recommended that one always uses several window functions for spectral analysis or at least one window function with different parameters.
*Ein tragbarer Kompromiss hinsichtlich aller Kriterien ist das&nbsp; '''Hamming–Fenster''', das lediglich beim Seitenkeulenabfall&nbsp; $($nur&nbsp; $\text{6 dB pro Oktave})$&nbsp; einen ungünstigen Wert liefert. Obwohl sich das&nbsp; '''Hanning–Fenster'''&nbsp; im Zeitbereich vom Hamming-Fenster nur mariginal unterscheidet, ist im Spektralbereich&nbsp; (minimaler Abstand zwischen Hauptkeule und Seitenkeulen)&nbsp; der Unterschied zwischen beiden beträchtlich.}}
+
*A workable compromise with regard to all criteria is the&nbsp; '''Hamming window''', which only gives an unfavourable value for the side lobe drop&nbsp; $($only&nbsp; $\text{6 dB per octave})$&nbsp;. Although the&nbsp; '''Hanning window'''&nbsp; differs only marginally from the Hamming window in the time domain, in the spectral domain&nbsp; (minimum distance between main lobe and side lobes)&nbsp; the difference between the two is considerable.}}
  
 
   
 
   
  
==Aufgaben zum Kapitel==  
+
==Exercises for The Chapter==  
 
<br>
 
<br>
 
[[Aufgaben:Exercise 5.4: Comparison of Rectangular And Hanning Window |Exercise 5.4: Comparison of Rectangular And Hanning Window ]]
 
[[Aufgaben:Exercise 5.4: Comparison of Rectangular And Hanning Window |Exercise 5.4: Comparison of Rectangular And Hanning Window ]]

Revision as of 18:46, 2 January 2021

Spectral Leakage


$\text{Definition:}$  The term spectral leakage effect is used to describe the distortion of the spectrum of a periodic and thus temporally unlimited signal due to the implicit time limit of the Discrete Fourier Transform (DFT). This means that, for example, a spectrum analyser

  • fake frequency components that are not present in the time signal, and/or
  • actually existing spectral components are hidden by side lobes

.


The following  $\text{example 1}$ will show that for a periodic signal the application of the  discrete Fourier Transform    (DFT) is not useful without additional measures. The quality of the spectral analysis - i.e. the correctness of the spectrum found - is mainly determined here by the (more or less successful) adaptation of the DFT parameters to the signal parameters at hand.

  • If the period  $T_0$  of the signal is known, the duration  $T_{\rm P}$  of the signal section used for the DFT should be an integer multiple of  $T_0$ . However, the task of spectral analysis is precisely to find arbitrary signal components, so that knowledge of  $T_0$  cannot generally be assumed.
  • A measure to improve the spectral analysis is the windowing with a "suitable" time function  $w(t)$. The product signal  $x(t) \cdot w(t)$ is then analysed.
  • A large number of such window functions  $w(t)$  are known from the literature, which lead to good or less satisfactory results depending on the task.


On the next pages the spectral leakage effect will be illustrated by examples and the advantages and disadvantages of the different window functions will be discussed. So much up front: There is no "best" window function for all applications.

$\text{Example 1:}$  The upper graph  (a)  from [Söd93][1].  shows the time-discrete signal  $d(\nu)$  of a harmonic oscillation with frequency  $f_0 = 125\,\text{ kHz}$   ⇒   period  $T_0 = 8 \,{\rm µ s}$. The distance between two successive time samples in this example is chosen to be  $T_{\rm A} = 1 \,{\rm µ s}$ .

On the right is shown in logarithmic form (in dB) the frequency discrete spectrum  $\vert D(\mu) \vert$  after a DFT with  $N = 32$  samples, from which the further DFT parameters result as follows:

  • Duration of the time segment:   $T_{\rm P} = 32 \,{\rm µ s}$,
  • gridding of the frequency axis:   $f_{\rm A} = 31.25 \,\text{ kHz}$.


Since the interval width  $T_{\rm P}$  captures an integer multiple of the period duration  $T_0$ , the DFT delivers the correct result. The two Dirac functions lie exactly at  $\pm4 \cdot f_{\rm A}$.

Example of Applying Spectral Analysis

If one measures an oscillation of frequency  $f_0 = 109.375\,\text{ kHz}$   ⇒   period $T_0 = 9.14 \,{\rm µ s}$  corresponding to the graph below  (b), significant distortions of the spectrum occur.

  • Since now  $T_{\rm P}/T_0 = 3.5$  is no longer an integer, the periodic continuation of the time section causes phase jumps, in our example by  $\pi$.
  • The spectral range now no longer consists of two Dirac functions as in the example  (a), but of an approximately "continuous" frequency function with the maximum near the actual signal frequency and a series of further parts, which are called  side lobes .


Describing Windowing from a Control Theory Perspective


Rectangular Window and Bartlett Windows

The occurrence of such unwanted side lobes is now to be explained in terms of systems theory using the following diagram. This graphic was also taken from the book  [Söd93][1].

First consider the upper graph  (a)  for the  rectangular window.

  • The time limit implicit in the DFT corresponds to the multiplication of the signal  $x(t)$  by a rectangular–window function  $w(t)$  of height  $1$  and duration  $T_{\rm P}$. The upper left image shows the discrete-time representation of this rectangular function with the normalised time variable  $\nu= t/T_{\rm A}$:
$${w} (\nu) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}. \\ \end{array}$$
  • From the multiplication  $y(t) = x(t) \cdot w(t)$  of the signal to be analysed  $x(t)$  and the window function  $w(t)$  follows for the spectral function  $Y(f) = X(f) \ast W(f)$, where for rectangular window function with  $f_{\rm A} = 1/T_{\rm P}$  holds (the function  $W(f)$  is shown in logarithmic form in the upper right graph):
$$W(f) = T_{\rm P} \cdot {\rm si}(\pi \cdot f \cdot T_{\rm P}) = {1}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot {f}/{f_{\rm A}})\hspace{0.05cm}.$$
  • If all spectral components ofs  $x(t)$  lie in the frequency grid  $\mu \cdot f_{\rm A}$, the discrete frequency spectral values  $D(\mu )$  remain unchanged by the convolution with  $W(f)$ .
  • Otherwise, convolution with  $W(f)$  leads to distortions, since the zeros of the  $\rm si$-function now no longer fit the discrete values of the input spectrum.


The discontinuities in the time domain caused by limitation and periodic continuation are reduced if, instead of the constant one weighting by the rectangle, the two edge areas of the window are weighted weaker than the centre.

Consider the graph below  (b)  for the  Bartlett window - also called triangular window:

  • The time-discrete description of the Bartlett window is with  $\nu = t/T_{\rm A}$:
$${w} (\nu) = \left\{ \begin{array}{c} 1 - {2 \hspace{0.05cm} \cdot \hspace{0.05cm} |\nu|}/{N} \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}. \\ \end{array}$$
  • From this follows for the time-continuous window function  $w(t)$  and the spectral representation  $W(f)$:
$${w} (t) = \left\{ \begin{array}{c} 1 -{|t|}/{(T_{\rm P}/2)} \\ 0 \\ \end{array} \right.\hspace{0.05cm} \begin{array}{*{20}c} |t| \le T_{\rm P}/2\\ {\rm sonst} \\ \end{array}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}W(f) ={1}/({2f_{\rm A}})\cdot {\rm si}^2(\pi \cdot {f}/({2f_{\rm A}}))\hspace{0.05cm}.$$
  • Due to the lower weighting of the edge regions, which are particularly problematic with unbounded signals, the (logarithmically drawn) spectrum  $W(f)$  has lower side lobes than the  $\rm si$ function in the upper image, which leads to lower leakage components.
  • The better suppression of the side lobes, however, comes at the cost of a noticeable reduction and broadening of the main lobe, limiting the resolving power of the Bartlett window compared to the rectangular windowing.


Special Window Functions


Hanning-, Hamming- and Kaiser-Bessel Windows

Now some frequently used  window functions, viz.

  • the Hanning window,
  • the Hamming window, and
  • the Kaiser-Bessel window


will be described by means of graphs and equations contained therein. For the running variable in the time domain, $-N/2 ≤ \nu < N/2$ always applies.


Notes:

  • In the Kaiser-Bessel window, the functions in the time and frequency domain are each shown for  $\alpha = 3.5$ .
  • ${\rm I}_0(.)$  denotes the  modified zero-order Bessel function.
  • Further window functions such as the Blackman-Harris window, the  cosine rolloff window  (also called Tukey window) and many more can be found in the book  [Söd93][1].


The suitability of these window functions for various tasks of spectral analysis is mentioned on the next page.

Goodness criteria of window functions


Compilation of Important Quality Criteria of Window Functions

The table shows quality criteria for the window functions described on the last pages. The selection of a suitable window function should be made according to the following aspects:

  • The  minimum distance between main lobe and side lobes  should be as large as possible to keep the influence of the leakage effect low and to improve the amplitude resolution.
  • For reasons of good frequency selectivity, the  6dB bandwidth  should be small. If it is too large, a dominant spectral line will mask smaller components in the surrounding area.
  • The  maximum process loss  (in dB) includes the maximum scaling error and the equivalent noise bandwidth. This value should in no case exceed  $\text{3.7 dB}$ .


These most important quality criteria are highlighted in red in the adjacent table.

  • In each row, rather favourable window functions are highlighted in green and rather unfavourable ones in grey.
  • From the distribution of the green and grey areas it is already evident that the optimal window function does not exist.


Now the quality criteria given in the table are described in more detail:

  • The larger the minimum main-to-side lobe distance   ⇒   ratio of the main lobe to the highest side lobe, the better the amplitude resolution of a window function. For the rectangle this distance is, as expected, smallest  $\text{(13 dB)}$. The best result is achieved with  $\text{92 dB}$  the fourth-order Blackman-Harris window.
  • However, since not only the highest but also all other side lobes contribute to the leakage effect, the  side lobe drop  is another measure for the resolving power. Of the given window functions, the Hanning window and the cosine rolloff window with rolloff  $r = 0.5$  have the most favourable values in this respect  $\text{(18 dB/octave)}$.
  • The  6 dB bandwidth, which can be read from the logarithmised spectral function, is an important measure of the frequency resolving power. Two spectral components present in the signal at  $f_1$  and  $f_2$  can only be resolved if the difference  $f_2 - f_1$  is greater than the  $\text{6 dB}$-bandwidth of the window function used (see following right graph).


Zur Verdeutlichung der  $\text{6 dB}$-Bandbreite
  • The  window area  of the function  $w(t)$  at the same time gives the height  $W(0)$  in the spectral domain. For all windows except the rectangle, a window area smaller than  $1$  and thus an error in the amplitude of the DFT result results due to the suppression of the outer samples, which, however, can be completely corrected if  $w(t)$  is known.


$\text{Conclusion:}$ 

  • A good compromise is the  Hanning window  (highlighted in blue in the table), which never scores "grey" with respect to the three main criteria (red markings).
  • The  Hamming window  differs from this only slightly in the time domain, but considerably in the spectral domain. Thus, the side lobe drop per octave is only more  $\text{6 dB}$  $($instead of  $\text{18 dB})$.


Maximum process loss


This combined quality criterion considers the  maximum scaling error  as well as the (normalised)  equivalent noise bandwidth. The maximum process loss is usually given in  $\text{dB}$  and should be rather small according to its name:

$$10 \cdot {\rm lg}\hspace{0.15cm}V_{\rm P}\hspace{0.15cm}{\rm (in}\hspace{0.15cm}{\rm dB)}= 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(f=0)|}{|W(f=f_{\rm A}/2)|} + 10 \cdot {\rm lg}\hspace{0.15cm} \frac{\int_{-\infty}^{\infty}|W(f)|^2\hspace{0.05cm}{\rm d}f}{f_{\rm A} \cdot |W(f=0)|^2} \hspace{0.05cm}.$$

From the    table  it can be seen that  $V_{\rm P}$  takes values between  $\text{3 dB}$  and  $\text{4 dB}$  for the window functions considered, where window functions with  $V_{\rm P} > 3. 7 \,\text{dB}$  (rectangle, Blackman-Harris, Kaiser-Bessel)  should not be used. However, it is precisely these that are best with regard to the main-to-side lobe distance.

The two proportions are to be interpreted as follows:

  • The maximum scaling error  is the ratio by which the amplitude determined with the DFT differs from the actual signal amplitude. The amplitude error due to a window area smaller than  $1$  is assumed to be corrected.
  • The wider the main lobe of the window function, the smaller this scaling error. The error is largest when the frequency  $f_0$  of a harmonic oscillation lies midway between two DFT support points   ⇒   quotient $|W(f = 0)| / |W(f = f_{\rm A}/2)|$.
  • The equivalent noise bandwidth  of the window function used - calculable as the width of the equal-area rectangle with respect to the magnitude square  $|W(f)|^2$  of the spectral function - captures the disturbing influence of white noise and should be as small as possible.
  • The smallest noise bandwidth results for the rectangle. All other window functions have a larger noise bandwidth and thus, in the presence of noise interference, also a (significantly) less favourable signal-to-noise power ratio.


$\text{Conclusion:}$  The results of this section can be summarised as follows:

  • An ideal window function does not exist. Depending on the task  (good amplitude or frequency resolution)  different windows provide the best result in each case. It is therefore recommended that one always uses several window functions for spectral analysis or at least one window function with different parameters.
  • A workable compromise with regard to all criteria is the  Hamming window, which only gives an unfavourable value for the side lobe drop  $($only  $\text{6 dB per octave})$ . Although the  Hanning window  differs only marginally from the Hamming window in the time domain, in the spectral domain  (minimum distance between main lobe and side lobes)  the difference between the two is considerable.


Exercises for The Chapter


Exercise 5.4: Comparison of Rectangular And Hanning Window

Exercise 5.4Z: On The Hanning Window


References

  1. 1.0 1.1 1.2 Söder, G.: Modellierung, Simulation und Optimierung von Nachrichtensystemen. In: Berlin – Heidelberg: Springer, 1993.