Difference between revisions of "Theory of Stochastic Signals/Digital Filters"

From LNTwww
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Filterung stochastischer Signale
+
|Untermenü=Filtering of Stochastic Signals
 
|Vorherige Seite=Stochastische Systemtheorie
 
|Vorherige Seite=Stochastische Systemtheorie
 
|Nächste Seite=Erzeugung vorgegebener AKF-Eigenschaften
 
|Nächste Seite=Erzeugung vorgegebener AKF-Eigenschaften
 
}}
 
}}
==Allgemeines Blockschaltbild==
+
==General block diagram==
 
<br>
 
<br>
Jedes Signal&nbsp; $x(t)$&nbsp; kann an einem Rechner nur durch die Folge&nbsp; $〈x_ν〉$&nbsp; seiner Abtastwerte dargestellt werden, wobei&nbsp; $x_ν$&nbsp; für&nbsp; $x(ν · T_{\rm A})$&nbsp; steht.
+
Each signal&nbsp; $x(t)$&nbsp; can be represented on a computer only by the sequence&nbsp; $〈x_ν〉$&nbsp; of its samples, where&nbsp; $x_ν$&nbsp; stands for&nbsp; $x(ν · T_{\rm A})$.&nbsp;
[[File:P_ID552__Sto_T_5_2_S1_neu.png |right|frame| Blockschaltbild eines digitalen Filters]]
+
[[File:P_ID552__Sto_T_5_2_S1_neu.png |right|frame| Block diagram of a digital filter]]
*Der zeitliche Abstand&nbsp; $T_{\rm A}$&nbsp; zwischen zwei Abtastwerten ist dabei durch das&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation#Das_Abtasttheorem|Abtasttheorem]]&nbsp; nach oben begrenzt.  
+
*The time interval&nbsp; $T_{\rm A}$&nbsp; between two samples is thereby upper bounded by the&nbsp; [[Signal_Representation/Discrete-Time_Signal_Representation#Sampling_theorem|sampling theorem]].&nbsp;   
  
*Um den Einfluss eines linearen Filters mit Frequenzgang&nbsp; $H(f)$&nbsp; auf das zeitdiskrete Signal&nbsp; $〈x_ν〉$&nbsp; zu erfassen, bietet es sich an, auch das Filter zeitdiskret zu beschreiben.  
+
*To capture the influence of a linear filter with frequency response&nbsp; $H(f)$&nbsp; on the discrete-time signal&nbsp; $〈x_ν〉$,&nbsp; it makes sense to also describe the filter in discrete time.
*Rechts sehen Sie das entsprechende Blockschaltbild.  
+
*On the right you can see the corresponding block diagram.
  
  
Für die Abtastwerte des Ausgangssignals gilt somit:  
+
Thus, for the samples of the output signal applies:
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  }  \cdot x_{\nu  - \mu }  + \sum\limits_{\mu  = 1}^M {b_\mu  }  \cdot y_{\nu  - \mu } .$$
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  }  \cdot x_{\nu  - \mu }  + \sum\limits_{\mu  = 1}^M {b_\mu  }  \cdot y_{\nu  - \mu } .$$
 
<br clear=all>
 
<br clear=all>
Hierzu ist Folgendes zu bemerken:  
+
The following should be noted here:
*Die erste Summe beschreibt die Abhängigkeit des aktuellen Ausgangs&nbsp; $y_ν$&nbsp; vom aktuellen Eingang&nbsp; $x_ν$&nbsp; und von den&nbsp; $M$&nbsp; vorherigen Eingangswerten&nbsp; $x_{ν–1}$, ... , $x_{ν–M}.$  
+
*The first sum describes the dependence of the current output&nbsp; $y_ν$&nbsp; on the current input&nbsp; $x_ν$&nbsp; and on the&nbsp; $M$&nbsp; previous input values&nbsp; $x_{ν–1}$, ... , $x_{ν–M}.$  
*Die zweite Summe kennzeichnet die Beeinflussung von&nbsp; $y_ν$&nbsp; durch die vorherigen Werte&nbsp; $y_{ν–1}$, ... , $y_{ν–M}$&nbsp; am Filterausgang.&nbsp; Sie gibt somit den rekursiven Teil des Filters an.  
+
*The second sum characterizes the influence of&nbsp; $y_ν$&nbsp; by the previous values&nbsp; $y_{ν–1}$, ... , $y_{ν–M}$&nbsp; at the filter output.&nbsp; Thus, it indicates the recursive part of the filter.
*Man bezeichnet den ganzzahligen Parameter&nbsp; $M$&nbsp; als die ''Ordnung''&nbsp; des digitalen Filters.  
+
*The integer parameter&nbsp; $M$&nbsp; is called the ''order''&nbsp; of the digital filter.
  
==Nichtrekursives Filter==
+
==Nonrecursive filter==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Sind alle Rückführungskoeffizienten&nbsp; $b_{\mu} = 0$, so spricht von einem&nbsp; '''nichtrekursiven Filter'''.}}  
+
$\text{Definition:}$&nbsp; If all feedback coefficients are&nbsp; $b_{\mu} = 0$, we speak of a&nbsp; '''nonrecursive filter'''.}}  
  
  
Ein solches nichtrekursives Filter&nbsp; $M$&ndash;ter Ordnung besitzt folgende Eigenschaften:  
+
Such a&nbsp; $M$&ndash;th order non-recursive filter has the following properties:
[[File:P_ID553__Sto_T_5_2_S2_neu.png|right |frame| Nichtrekursives digitales Filter]]
+
[[File:P_ID553__Sto_T_5_2_S2_neu.png|right |frame| Nonrecursive digital filter]]
*Der Ausgangswert&nbsp; $y_ν$&nbsp; hängt nur vom aktuellen und den&nbsp; $M$&nbsp; vorherigen Eingangswerten ab:  
+
*The output value&nbsp; $y_ν$&nbsp; depends only on the current and the&nbsp; $M$&nbsp; previous input values:
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot x_{\mu  - \nu } } .$$
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot x_{\mu  - \nu } } .$$
*Die Filterimpulsantwort erhält man daraus mit&nbsp; $x(t) = δ(t)$:
+
*The filter impulse response is obtained from this with&nbsp; $x(t) = δ(t)$:
 
:$$h(t) = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot \delta ( {t - \mu  \cdot T_{\rm A} } )} .$$
 
:$$h(t) = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot \delta ( {t - \mu  \cdot T_{\rm A} } )} .$$
*Das entsprechende Eingangssignal in zeitdiskreter Schreibweise lautet: &nbsp;  $x_ν ≡0$&nbsp; mit Ausnahme von&nbsp; $x_0 =1$.
+
*The corresponding input signal in discrete-time notation is: &nbsp;  $x_ν ≡0$&nbsp; except for&nbsp; $x_0 =1$.
*Durch Anwendung des Verschiebungssatzes folgt daraus für den Filterfrequenzgang:  
+
*By applying the shifting theorem, it follows for the filter frequency response:
 
:$$H(f) = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm} \cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm} \cdot \hspace{0.05cm}f \hspace{0.05cm} \cdot \hspace{0.05cm} \mu \hspace{0.05cm} \cdot \hspace{0.05cm} T_{\rm A} } } .$$
 
:$$H(f) = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm} \cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm} \cdot \hspace{0.05cm}f \hspace{0.05cm} \cdot \hspace{0.05cm} \mu \hspace{0.05cm} \cdot \hspace{0.05cm} T_{\rm A} } } .$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Ein Zweiwegekanal, bei dem
+
$\text{Example 1:}$&nbsp; A two-way channel, where
*das Signal auf dem Hauptpfad gegenüber dem Eingangssignal ungedämpft, aber um&nbsp; $2\ \rm &micro; s$&nbsp; verzögert ankommt, und
+
*the signal arrives on the main path unattenuated with respect to the input signal, but delayed by&nbsp; $2\ \rm &micro; s$,&nbsp; and
*in&nbsp; $4\ \rm &micro;  s$&nbsp; Abstand also absolut zur Zeit&nbsp; $t = 6\ \rm &micro; s$&nbsp; – ein Echo mit halber Amplitude nachfolgt,  
+
*is followed at a distance of&nbsp; $4\ \rm &micro;  s$&nbsp; – i.e. absolutely at time&nbsp; $t = 6\ \rm &micro; s$&nbsp; – by an echo with half amplitude,
  
  
kann durch ein nichtrekursives Filter entsprechend obiger Skizze nachgebildet werden, wobei folgende Parameterwerte einzustellen sind:  
+
can be simulated by a non-recursive filter according to the above diagram, where the following parameter values are to be set:
 
:$$M = 3,\quad T_{\rm A}  = 2\;{\rm{&micro;  s} },\quad a_{\rm 0}    = 0,\quad a_{\rm 1}  = 1, \quad a_{\rm 2}  = 0, \quad a_{\rm 3}  = 0.5.$$}}
 
:$$M = 3,\quad T_{\rm A}  = 2\;{\rm{&micro;  s} },\quad a_{\rm 0}    = 0,\quad a_{\rm 1}  = 1, \quad a_{\rm 2}  = 0, \quad a_{\rm 3}  = 0.5.$$}}
  
==Rekursives Filter==
+
==Recursive filter==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Sind alle Vorwärtskoeffizienten identisch&nbsp; $a_\nu = 0$&nbsp; mit Ausnahme von&nbsp; $a_0$, &nbsp; so liegt ein&nbsp; '''(rein) rekursives Filter'''&nbsp; vor.}}
+
$\text{Definition:}$&nbsp; If all forward coefficients are identical&nbsp; $a_\nu = 0$&nbsp; with the exception of&nbsp; $a_0$, &nbsp; then a&nbsp; '''(purely) recursive filter'''&nbsp; is present.}}
  
  
[[File:P_ID554__Sto_T_5_2_S3_neu.png|right|frame| Rekursives digitales Filter erster Ordnung]]  
+
[[File:P_ID554__Sto_T_5_2_S3_neu.png|right|frame| First-order recursive digital filter]]  
Im Folgenden beschränken wir uns auf den Sonderfall&nbsp; $M = 1$&nbsp; (Blockschaltbild entsprechend der Grafik).&nbsp; Dieses Filter weist folgende Eigenschaften auf:  
+
In the following, we restrict ourselves to the special case&nbsp; $M = 1$&nbsp; (block diagram corresponding to the diagram).&nbsp; This filter has the following properties:
*Der Ausgangswert&nbsp; $y_ν$&nbsp; hängt (indirekt) von unendlich vielen Eingangswerten ab:
+
*The output value&nbsp; $y_ν$&nbsp; depends (indirectly) on an infinite number of input values:
 
:$$y_\nu = \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot x_{\nu  - \mu } .}$$
 
:$$y_\nu = \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot x_{\nu  - \mu } .}$$
*Dies zeigt die folgende Rechung:  
+
*This is shown by the following calculation:
 
:$$y_\nu  = a_0  \cdot x_\nu  + b_1  \cdot y_{\nu  - 1}  = a_0  \cdot x_\nu  + a_0  \cdot b_1  \cdot x_{\nu  - 1}  + {b_1} ^2  \cdot y_{\nu  - 2}.  $$
 
:$$y_\nu  = a_0  \cdot x_\nu  + b_1  \cdot y_{\nu  - 1}  = a_0  \cdot x_\nu  + a_0  \cdot b_1  \cdot x_{\nu  - 1}  + {b_1} ^2  \cdot y_{\nu  - 2}.  $$
  
Line 64: Line 64:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
*Die&nbsp; '''zeitdiskrete Impulsantwort'''&nbsp; $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$&nbsp; ist definitionsgemäß der Ausgangsfolge, wenn am Eingang eine einzelne „Eins” bei&nbsp; $t =0$&nbsp; anliegt.
+
*The&nbsp; '''discrete-time impulse response'''&nbsp; $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$&nbsp; is by definition the output sequence when a single "one" is present at the input at&nbsp; $t =0$.&nbsp;  
*Bei einem rekursiven Filter reicht die (zeitdiskrete) Impulsantwort schon  mit&nbsp; $M = 1$&nbsp; bis ins Unendliche:
+
*For a recursive filter, the (discrete-time) impulse response already extends to infinity with&nbsp; $M = 1$:&nbsp;  
 
:$$h(t)= \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot \delta ( {t - \mu  \cdot T_{\rm A} } )}\hspace{0.3cm}
 
:$$h(t)= \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot \delta ( {t - \mu  \cdot T_{\rm A} } )}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0,  \ a_0\cdot {b_1},  \ a_0\cdot {b_1}^2 \ \text{...}  \hspace{0.05cm}〉.$$}}
 
\Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0,  \ a_0\cdot {b_1},  \ a_0\cdot {b_1}^2 \ \text{...}  \hspace{0.05cm}〉.$$}}
  
  
Weiter ist anzumerken:
+
Further, it should be noted:
*Aus Stabilitätsgründen muss&nbsp; $b_1 < 1$&nbsp; gelten.  
+
*For stability reasons, &nbsp; $b_1 < 1$&nbsp; must hold.
*Bei&nbsp; $b_1 = 1$&nbsp; würde sich die Impulsantwort&nbsp; $h(t)$&nbsp; bis ins Unendliche erstrecken und bei&nbsp; $b_1 > 1$&nbsp; würde&nbsp; $h(t)$&nbsp; sogar bis ins Unendliche anklingen.  
+
*If&nbsp; $b_1 = 1$,&nbsp; the impulse response&nbsp; $h(t)$&nbsp; would extend to infinity and if&nbsp; $b_1 > 1$,&nbsp; &nbsp; $h(t)$&nbsp; would even resonate to infinity.
*Bei einem solchen rekursiven Filter erster Ordnung ist jede einzelne Diraclinie genau um den Faktor&nbsp; $b_1$&nbsp; kleiner als die vorherige Diraclinie:
+
*In such a first-order recursive filter, each individual diracline is smaller than the previous diracline by exactly the factor&nbsp; $b_1$:&nbsp;  
 
:$$h_{\mu} = h(\mu  \cdot T_{\rm A}) =  {b_1} \cdot h_{\mu -1}.$$
 
:$$h_{\mu} = h(\mu  \cdot T_{\rm A}) =  {b_1} \cdot h_{\mu -1}.$$
  
[[File:Sto_T_5_2_S3_version2.png |frame| Zeitdiskrete Impulsantwort eines rekursiven Filters | rechts]]
+
[[File:Sto_T_5_2_S3_version2.png |frame| Discrete-time impulse response of a recursive filter | right]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Die nebenstehende Grafik zeigt die zeitdiskrete Impulsantwort&nbsp; $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$&nbsp; eines rekursiven Filters erster Ordnung mit den Parametern&nbsp; $a_0 = 1$&nbsp; und&nbsp; $b_1 = 0.6$.  
+
$\text{Example 2:}$&nbsp; The diagram on the right shows the discrete-time impulse response&nbsp; $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$&nbsp; of a first-order recursive filter with the parameters&nbsp; $a_0 = 1$&nbsp; and&nbsp; $b_1 = 0.6$.  
*Der Verlauf ist exponentiell abfallend und erstreckt sich bis ins Unendliche.  
+
*The progression is exponentially decreasing and extends to infinity.  
*Das Verhältnis der Gewichte zweier aufeinander folgender Diracs ist jeweils&nbsp; $b_1 = 0.6$.}}  
+
*The ratio of the weights of two successive diracs is&nbsp; $b_1 = 0.6$ in each case.}}  
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:5.3 Digitales Filter 1. Ordnung|Aufgabe 5.3: Digitales Filter 1. Ordnung]]
+
[[Aufgaben:Exercise_5.3:_1st_order_Digital_Filter|Exercise 5.3: 1st order Digital Filter]]
  
[[Aufgaben:5.3Z Nichtrekursives Filter|Aufgabe 5.3Z: Nichtrekursives Filter]]
+
[[Aufgaben:Exercise_5.3Z:_Non-Recursive_Filter|Exercise 5.3Z: Non-Recursive Filter]]
  
[[Aufgaben:5.4 Sinusgenerator|Aufgabe 5.4: Sinusgenerator]]
+
[[Aufgaben:Exercise_5.4:_Sine_Wave_Generator|Exercise 5.4: Sine Wave Generator]]
  
  
 
{{Display}}
 
{{Display}}

Revision as of 11:01, 17 January 2022

General block diagram


Each signal  $x(t)$  can be represented on a computer only by the sequence  $〈x_ν〉$  of its samples, where  $x_ν$  stands for  $x(ν · T_{\rm A})$. 

Block diagram of a digital filter
  • The time interval  $T_{\rm A}$  between two samples is thereby upper bounded by the  sampling theorem
  • To capture the influence of a linear filter with frequency response  $H(f)$  on the discrete-time signal  $〈x_ν〉$,  it makes sense to also describe the filter in discrete time.
  • On the right you can see the corresponding block diagram.


Thus, for the samples of the output signal applies:

$$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu } \cdot x_{\nu - \mu } + \sum\limits_{\mu = 1}^M {b_\mu } \cdot y_{\nu - \mu } .$$


The following should be noted here:

  • The first sum describes the dependence of the current output  $y_ν$  on the current input  $x_ν$  and on the  $M$  previous input values  $x_{ν–1}$, ... , $x_{ν–M}.$
  • The second sum characterizes the influence of  $y_ν$  by the previous values  $y_{ν–1}$, ... , $y_{ν–M}$  at the filter output.  Thus, it indicates the recursive part of the filter.
  • The integer parameter  $M$  is called the order  of the digital filter.

Nonrecursive filter


$\text{Definition:}$  If all feedback coefficients are  $b_{\mu} = 0$, we speak of a  nonrecursive filter.


Such a  $M$–th order non-recursive filter has the following properties:

Nonrecursive digital filter
  • The output value  $y_ν$  depends only on the current and the  $M$  previous input values:
$$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu \cdot x_{\mu - \nu } } .$$
  • The filter impulse response is obtained from this with  $x(t) = δ(t)$:
$$h(t) = \sum\limits_{\mu = 0}^M {a_\mu \cdot \delta ( {t - \mu \cdot T_{\rm A} } )} .$$
  • The corresponding input signal in discrete-time notation is:   $x_ν ≡0$  except for  $x_0 =1$.
  • By applying the shifting theorem, it follows for the filter frequency response:
$$H(f) = \sum\limits_{\mu = 0}^M {a_\mu \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm} \cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm} \cdot \hspace{0.05cm}f \hspace{0.05cm} \cdot \hspace{0.05cm} \mu \hspace{0.05cm} \cdot \hspace{0.05cm} T_{\rm A} } } .$$

$\text{Example 1:}$  A two-way channel, where

  • the signal arrives on the main path unattenuated with respect to the input signal, but delayed by  $2\ \rm µ s$,  and
  • is followed at a distance of  $4\ \rm µ s$  – i.e. absolutely at time  $t = 6\ \rm µ s$  – by an echo with half amplitude,


can be simulated by a non-recursive filter according to the above diagram, where the following parameter values are to be set:

$$M = 3,\quad T_{\rm A} = 2\;{\rm{µ s} },\quad a_{\rm 0} = 0,\quad a_{\rm 1} = 1, \quad a_{\rm 2} = 0, \quad a_{\rm 3} = 0.5.$$

Recursive filter


$\text{Definition:}$  If all forward coefficients are identical  $a_\nu = 0$  with the exception of  $a_0$,   then a  (purely) recursive filter  is present.


First-order recursive digital filter

In the following, we restrict ourselves to the special case  $M = 1$  (block diagram corresponding to the diagram).  This filter has the following properties:

  • The output value  $y_ν$  depends (indirectly) on an infinite number of input values:
$$y_\nu = \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot x_{\nu - \mu } .}$$
  • This is shown by the following calculation:
$$y_\nu = a_0 \cdot x_\nu + b_1 \cdot y_{\nu - 1} = a_0 \cdot x_\nu + a_0 \cdot b_1 \cdot x_{\nu - 1} + {b_1} ^2 \cdot y_{\nu - 2}. $$


$\text{Definition:}$ 

  • The  discrete-time impulse response  $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$  is by definition the output sequence when a single "one" is present at the input at  $t =0$. 
  • For a recursive filter, the (discrete-time) impulse response already extends to infinity with  $M = 1$: 
$$h(t)= \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot \delta ( {t - \mu \cdot T_{\rm A} } )}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0, \ a_0\cdot {b_1}, \ a_0\cdot {b_1}^2 \ \text{...} \hspace{0.05cm}〉.$$


Further, it should be noted:

  • For stability reasons,   $b_1 < 1$  must hold.
  • If  $b_1 = 1$,  the impulse response  $h(t)$  would extend to infinity and if  $b_1 > 1$,    $h(t)$  would even resonate to infinity.
  • In such a first-order recursive filter, each individual diracline is smaller than the previous diracline by exactly the factor  $b_1$: 
$$h_{\mu} = h(\mu \cdot T_{\rm A}) = {b_1} \cdot h_{\mu -1}.$$
Discrete-time impulse response of a recursive filter

$\text{Example 2:}$  The diagram on the right shows the discrete-time impulse response  $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$  of a first-order recursive filter with the parameters  $a_0 = 1$  and  $b_1 = 0.6$.

  • The progression is exponentially decreasing and extends to infinity.
  • The ratio of the weights of two successive diracs is  $b_1 = 0.6$ in each case.


Exercises for the chapter


Exercise 5.3: 1st order Digital Filter

Exercise 5.3Z: Non-Recursive Filter

Exercise 5.4: Sine Wave Generator