Difference between revisions of "Theory of Stochastic Signals/Two-Dimensional Random Variables"

From LNTwww
 
(90 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Zufallsgrößen mit statistischen Bindungen
+
|Untermenü=Random Variables with Statistical Dependence
|Vorherige Seite=Weitere Verteilungen
+
|Vorherige Seite=Further Distributions
|Nächste Seite=Zweidimensionale Gaußsche Zufallsgrößen
+
|Nächste Seite=Two-Dimensional Gaussian Random Variables
 
}}
 
}}
==Eigenschaften und Beispiele==
 
Als Überleitung zu den Korrelationsfunktionen betrachten wir nun zwei Zufallsgrößen $x$ und $y$, zwischen denen statistische Abhängigkeiten bestehen. Jede der beiden Zufallsgrößen kann für sich alleine mit den in Kapitel 2  bzw. Kapitel 3  eingeführten Kenngrößen beschrieben werden, je nachdem, ob es sich um eine diskrete oder um eine kontinuierliche Zufallsgröße handelt.
 
  
Zur Beschreibung der Wechselbeziehungen zwischen zwei Größen $x$ und $y$ ist es zweckmäßig, die beiden Komponenten zu einer zweidimensionalen Zufallsgröße $(x, y)$ zusammenzufassen. Die Einzelkomponenten können Signale sein wie der Real- und Imaginärteil eines phasenmodulierten Signals. Aber es gibt auch in anderen Bereichen eine Vielzahl von 2D-Zufallsgrößen.  
+
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 +
<br>
 +
Now random variables with statistical bindings are treated and illustrated by typical examples.&nbsp;
  
 +
After the general description of two-dimensional random variables,&nbsp; we turn to
 +
#the&nbsp; "auto-correlation function",&nbsp;
 +
#the&nbsp;  "cross-correlation function"
 +
#and the associated spectral functions&nbsp; $($"power-spectral density",&nbsp; "cross power-spectral density"$)$.
  
{{Beispiel}}
 
Das folgende linke Diagramm stammt von dem Zufallsexperiment ''Werfen mit zwei Würfeln.'' Nach rechts aufgetragen ist die Augenzahl des ersten Würfels $(W_1)$, nach oben die Summe $S$ beider Würfel. Die beiden Komponenten sind hier jeweils diskrete Zufallsgrößen, zwischen denen statistische Bindungen bestehen. Ist $W_1 =$ 1, so kann $S$ nur Werte zwischen 2 und 7 annehmen und zwar mit jeweils gleicher Warscheinlichkeit, bei $W_1 =$ 6 dagegen die Werte zwischen 7 und 12.
 
  
[[File: P_ID162__Sto_T_4_1_S1_neu.png | Beispiele korrelierter Zufallsgrößen]]
+
Specifically,&nbsp; this chapter covers:
  
Rechts sind die Maximaltemperaturen der 31 Tage im Mai 2002 von München (nach oben) und der Zugspitze (nach rechts) gegenübergestellt. Beide Zufallsgrößen sind wertkontinuierlich. Obwohl die Messpunkte etwa 100 km auseinander liegen und es auf der Zugspitze aufgrund der unterschiedlichen Höhenlagen (knapp 3000 gegenüber 520 Meter) im Mittel um etwa 20 Grad kälter ist als in München, erkennt man doch eine gewisse statistische Abhängigkeit zwischen den beiden Größen $Θ_{\rm M}$ und $Θ_{\rm Z}$: Ist es in München warm, dann sind auch auf der Zugspitze eher angenehme Temperaturen zu erwarten. Der Zusammenhang ist aber nicht deterministisch: Der kälteste Tag im Mai 2002 war in München ein anderer als der kälteste Tag auf der Zugspitze.  
+
*the statistical description of&nbsp; &raquo;two-dimensional random variables&laquo;&nbsp; using the&nbsp; &raquo;joint PDF&laquo;,
{{end}}
+
*the difference between&nbsp; &raquo;statistical dependence&laquo;&nbsp; and&nbsp; &raquo;correlation&laquo;,
 +
*the classification features&nbsp; &raquo;stationarity&laquo;&nbsp; and&nbsp; &raquo;ergodicity&laquo;&nbsp; of stochastic processes,
 +
*the definitions of&nbsp; &raquo;auto-correlation function&laquo;&nbsp;  $\rm (ACF)$&nbsp; and&nbsp; &raquo;power-spectral density&laquo;&nbsp;  $\rm (PSD)$,
 +
*the definitions of&nbsp; &raquo;cross-correlation function&laquo;&nbsp;  $\rm (CCF)$&nbsp;&nbsp; and&nbsp; &raquo;cross power-spectral density&laquo;&nbsp;  $\rm (C&ndash;PSD)$,&nbsp;
 +
*the numerical determination of all these variables in the two- and multi-dimensional case.
  
==Verbundwahrscheinlichkeitsdichtefunktion==
 
Wir beschränken uns hier meist auf kontinuierliche Zufallsgrößen. Manchmal wird jedoch auch auf die Besonderheiten zweidimensionaler diskreter Zufallsgrößen genauer eingegangen.
 
  
Die meisten der bisherigen, für eindimensionale Zufallsgrößen definierten Kenngrößen können problemlos auf zweidimensionale Größen erweitert werden:
 
*Die Wahrscheinlichkeitsdichtefunktion der zweidimensionalen Zufallsgröße an der Stelle $(x_\mu, y_\mu)$, die man auch als Verbundwahrscheinlichkeitsdichtefunktion bezeichnet, ist eine Erweiterung der eindimensionalen WDF $(∩$ kennzeichnet die logische UND-Verknüpfung):
 
$$f_{\rm xy}(x_\mu, \hspace{0.1cm}y_\mu) = \hspace{12.0cm}\\ ...\hspace{0.1cm}= \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0}}\right.} \frac{{\rm Pr}[(x_\mu-{\rm \Delta} x/{\rm 2 \le} x {\rm \le} x_\mu +{\rm \Delta} x/{\rm 2}) \cap (y_\mu-{\rm \Delta} y/{\rm 2} \le y \le y_\mu +{\rm \Delta}y/{\rm 2})]}{{\rm \Delta} \ x\cdot{\rm \Delta} y}.$$
 
:Bei diskreten Zufallsgrößen ist die Definition geringfügig zu modifizieren: Bei den jeweils unteren Bereichsgrenzen ist gemäß Kapitel 3.2  das „≤”–Zeichen durch das „<”–Zeichen zu ersetzen.
 
*Anhand dieser (Verbund)–WDF $f_{\rm xy}(x, y)$ werden auch statistische Abhängigkeiten innerhalb der zweidimensionalen Zufallsgröße $(x, y)$ vollständig erfasst im Gegensatz zu den beiden eindimensionalen Dichtefunktionen  ⇒  Randwahrscheinlichkeitsdichtefunktionen:
 
$$f_{\rm x}(x) = \int _{-\infty}^{+\infty} f_{\rm xy}(x,y) \,\,{\rm d}y  ,$$
 
$$f_{\rm y}(y) = \int_{-\infty}^{+\infty} f_{\rm xy}(x,y) \,\,{\rm d}x  .$$
 
:Die beiden Randdichtefunktionen $f_x(x)$ und $f_y(y)$ liefern lediglich statistische Aussagen über die Einzelkomponenten $x$ bzw. $y$, nicht jedoch über die Bindungen zwischen diesen.
 
  
==Zweidimensionale Verteilungsfunktion==
 
Auch die 2D-Verteilungsfunktion ist lediglich eine sinnvolle Erweiterung der eindimensionalen Verteilungsfunktion  (VTF):
 
$$F_{\rm xy}(r_{\rm x},r_{\rm y}) = {\rm Pr}\left [(x \le r_{\rm x}) \cap (y \le r_{\rm y}) \right ]  .$$
 
Der Funktionalzusammenhang zwischen zweidimensionaler WDF und zweidimensionaler VTF ist wie im eindimensionalen Fall durch die Integration gegeben, aber nun in zwei Dimensionen. Bei kontinuierlichen Zufallsgrößen gilt:
 
$$F_{\rm xy}(r_{\rm x},r_{\rm y})=\int_{-\infty}^{r_{\rm y}} \int_{-\infty}^{r_{\rm x}} f_{\rm xy}(x,y) \,\,{\rm d}x \,\, {\rm d}y  .$$
 
Umgekehrt kann auch die Wahrscheinlichkeitsdichtefunktion aus der Verteilungsfunktion durch partielle Differentiation nach $r_{\rm x}$ und $r_{\rm y}$ berechnet werden:
 
$$f_{\rm xy}(x,y)=\frac{{\rm d}^{\rm 2} F_{\rm xy}(r_{\rm x},r_{\rm y})}{{\rm d} r_{\rm x} \,\, {\rm d} r_{\rm y}}\Bigg|_{\left.{r_{\rm x}=x \atop {r_{\rm y}=y}}\right.}.$$
 
Bezüglich der Verteilungsfunktion $F_{\rm xy}(r_{\rm x}, r_{\rm y})$ gelten folgende Grenzwerte:
 
$$F_{\rm xy}(-\infty,-\infty) = 0,$$
 
$$F_{\rm xy}(r_{\rm x},\infty)=F_{\rm x}(r_{\rm x} ),$$
 
$$F_{\rm xy}(\infty,r_{\rm y})=F_{\rm y}(r_{\rm y} ) ,$$
 
$$F_{\rm xy}(\infty,\infty) = 1.$$
 
Im Grenzfall (unendlich große $r_{\rm x}$ und $r_{\rm y}$) ergibt sich demnach für die 2D-VTF der Wert 1. Daraus erhält man die Normierungsbedingung für die 2D-Wahrscheinlichkeitsdichtefunktion:
 
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{\rm xy}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1  .  $$
 
  
Beachten Sie den Unterschied zwischen eindimensionalen und zweidimensionalen Zufallsgrößen:  
+
 
*Bei eindimensionalen Zufallsgrößen ergibt die Fläche unter der WDF stets den Wert 1.  
+
==Properties and examples==
*Bei zweidimensionalen Zufallsgrößen ist das WDF-Volumen immer gleich 1.  
+
<br>
 +
As a transition to the&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)|$\text{correlation functions}$]]&nbsp; we now consider two random variables&nbsp; $x$&nbsp; and&nbsp; $y$,&nbsp; between which statistical dependences exist.&nbsp;
 +
 
 +
Each of these two random variables can be described on its own with the introduced characteristic variables corresponding
 +
*to the second main chapter &nbsp; &rArr; &nbsp;[[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable#.23_OVERVIEW_OF_THE_SECOND_MAIN_CHAPTER_.23|"Discrete Random Variables"]] &nbsp; 
 +
*and the third main chapter &nbsp; &rArr; &nbsp; [[Theory_of_Stochastic_Signals/Probability_Density_Function#.23_OVERVIEW_OF_THE_THIRD_MAIN_CHAPTER_.23|"Continuous Random Variables"]]. 
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; To describe the statistical dependences between two variables&nbsp; $x$ &nbsp;and&nbsp; $y$,&nbsp; it is convenient to combine the two components <br> &nbsp; &nbsp; &nbsp; into one &nbsp; &raquo;'''two-dimensional random variable'''&laquo; &nbsp;  or &nbsp; &raquo;'''2D random variable'''&laquo;&nbsp; $(x, y)$.
 +
*The individual components can be signals such as the real  and imaginary parts of a phase modulated signal.
 +
*But there are a variety of two-dimensional random variables in other domains as well,&nbsp; as the following example will show.}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; The left diagram is from the random experiment&nbsp; "Throwing two dice".&nbsp;
 +
 
 +
[[File: P_ID162__Sto_T_4_1_S1_neu.png |frame| Two examples of statistically dependent random variables]]
 +
 
 +
*Plotted to the right is the number of the first die&nbsp; $(W_1)$,&nbsp;
 +
*plotted to the top is the sum&nbsp; $S$&nbsp; of both dice.&nbsp;
 +
 
 +
 
 +
The two components here are each discrete random variables between which there are statistical dependencies:
 +
*If&nbsp; $W_1 = 1$,&nbsp; then the sum&nbsp; $S$&nbsp; can only take values between&nbsp; $2$&nbsp; and&nbsp; $7$,&nbsp; each with equal probability.
 +
*In contrast,&nbsp; for&nbsp; $W_1 = 6$&nbsp; all values between&nbsp; $7$&nbsp; and&nbsp; $12$&nbsp; are possible,&nbsp; also with equal probability.
 +
 
 +
 
 +
 
 +
In the right diagram,&nbsp; the maximum temperatures of the&nbsp; $31$ days in May 2002 of Munich&nbsp; (to the top)&nbsp; and the mountain&nbsp; "Zugspitze"&nbsp; (to the right)&nbsp; are contrasted.&nbsp; Both random variables are continuous in value:
 +
*Although the measurement points are about&nbsp; $\text{100 km}$&nbsp; apart,&nbsp; and on the Zugspitze,&nbsp; it is on average about &nbsp; $20$&nbsp; degrees colder than in Munich due to the different altitudes &nbsp;$($nearly&nbsp; $3000$&nbsp; versus&nbsp; $520$&nbsp; meters$)$,&nbsp; one recognizes nevertheless a certain statistical dependence between the two random variables&nbsp; ${\it Θ}_{\rm M}$&nbsp; and&nbsp; ${\it Θ}_{\rm Z}$.
 +
*If it is warm in Munich,&nbsp; then pleasant temperatures are also more likely to be expected on the Zugspitze.&nbsp; However,&nbsp; the relationship is not deterministic:&nbsp; The coldest day in May 2002 was a different day in Munich than the coldest day on the Zugspitze. }}
 +
 
 +
==Joint probability density function==
 +
<br>
 +
We restrict ourselves here mostly to continuous valued random variables.
 +
*However,&nbsp; sometimes the peculiarities of two-dimensional discrete random variables are discussed in more detail.&nbsp;
 +
*Most of the characteristics previously defined for one-dimensional random variables can be easily extended to two-dimensional variables.
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
The&nbsp; probability density function&nbsp; $\rm (PDF)$&nbsp; of the two-dimensional random variable at the location&nbsp; $(x_\mu,\hspace{0.1cm} y_\mu)$ &nbsp; &rArr; &nbsp; &raquo;'''joint PDF'''&laquo; &nbsp; or &nbsp; &raquo;'''2D&ndash;PDF'''&laquo; <br>is an extension of the one-dimensional PDF&nbsp; $(∩$&nbsp; denotes logical&nbsp; "and"&nbsp; operation$)$:
 +
:$$f_{xy}(x_\mu, \hspace{0.1cm}y_\mu) =  \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0} }\right.}\frac{ {\rm Pr}\big [ (x_\mu - {\rm \Delta} x/{\rm 2} \le x  \le x_\mu  + {\rm \Delta} x/{\rm 2}) \cap (y_\mu - {\rm \Delta} y/{\rm 2} \le y \le y_\mu +{\rm \Delta}y/{\rm 2}) \big]  }{ {\rm \Delta} \ x\cdot{\rm \Delta} y}.$$
 +
$\rm Note$:
 +
*If the two-dimensional random variable is discrete,&nbsp; the definition must be slightly modified:
 +
*For the lower range limits,&nbsp; the&nbsp; "less-than-equal"&nbsp; sign must then be replaced by&nbsp; "less-than"&nbsp; according to the section&nbsp; [[Theory_of_Stochastic_Signals/Cumulative_Distribution_Function#CDF_for_discrete-valued_random_variables|"CDF for discrete-valued random variables"]].&nbsp; }}
 +
 
 +
 
 +
Using this joint PDF $f_{xy}(x, y)$,&nbsp; statistical dependencies within the two-dimensional random variable&nbsp; $(x,\ y)$&nbsp; are also fully captured in contrast to the two one-dimensional density functions &nbsp; ⇒ &nbsp; &raquo;'''marginal probability density functions'''&laquo; &nbsp; $($or &nbsp; "edge probability density functions"$)$:
 +
:$$f_{x}(x) = \int _{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}y ,$$
 +
:$$f_{y}(y) = \int_{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}x .$$
 +
 
 +
These two marginal probability density functions&nbsp; $f_x(x)$&nbsp; and&nbsp; $f_y(y)$
 +
*provide only statistical information about the individual components&nbsp; $x$&nbsp; and&nbsp; $y$, resp.
 +
*but not about the statistical bindings between them.
 +
 
 +
 
 +
==Two-dimensional cumulative distribution function==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Like the&nbsp; "2D&ndash;PDF",&nbsp; the&nbsp; &raquo;'''2D cumulative distribution function'''&laquo;&nbsp; is merely a useful extension of the&nbsp; [[Theory_of_Stochastic_Signals/Cumulative_Distribution_Function#CDF_for_continuous-valued_random_variables|$\text{one-dimensional distribution function}$]]&nbsp; $\rm (CDF)$:
 +
:$$F_{xy}(r_{x},r_{y}) = {\rm Pr}\big [(x \le r_{x}) \cap (y \le r_{y}) \big ] .$$}}
 +
 
 +
 
 +
The following similarities and differences between the&nbsp; "1D&ndash;CDF"&nbsp; and the&nbsp; 2D&ndash;CDF"&nbsp; emerge:
 +
*The functional relationship between two-dimensional PDF and two-dimensional CDF is given by integration as in the one-dimensional case,&nbsp; but now in two dimensions.&nbsp; For continuous valued random variables:
 +
:$$F_{xy}(r_{x},r_{y})=\int_{-\infty}^{r_{y}} \int_{-\infty}^{r_{x}} f_{xy}(x,y) \,\,{\rm d}x \,\, {\rm d}y .$$
 +
*Inversely,&nbsp; the probability density function can be given from the cumulative distribution function by partial differentiation to&nbsp; $r_{x}$&nbsp; and&nbsp; $r_{y}$:
 +
:$$f_{xy}(x,y)=\frac{{\rm d}^{\rm 2} F_{xy}(r_{x},r_{y})}{{\rm d} r_{x} \,\, {\rm d} r_{y}}\Bigg|_{\left.{r_{x}=x \atop {r_{y}=y}}\right.}.$$
 +
*Relative to the two-dimensional cumulative distribution function&nbsp; $F_{xy}(r_{x}, r_{y})$&nbsp; the following limits apply:
 +
:$$F_{xy}(-\infty,-\infty) = 0,$$
 +
:$$F_{xy}(r_{\rm x},+\infty)=F_{x}(r_{x} ),$$
 +
:$$F_{xy}(+\infty,r_{y})=F_{y}(r_{y} ) ,$$
 +
:$$F_{xy} (+\infty,+\infty) = 1.$$
 +
*From the last equation&nbsp; $($infinitely large&nbsp; $r_{x}$&nbsp;  and&nbsp; $r_{y})$&nbsp; we obtain the&nbsp; &raquo;'''normalization condition'''&laquo;&nbsp; for the&nbsp; "2D&ndash; PDF":
 +
:$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1 . $$
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp; Note the significant difference between one-dimensional and two-dimensional random variables:
 +
*For one-dimensional random variables,&nbsp; the area under the PDF always yields the value&nbsp; $1$.  
 +
*For two-dimensional random variables,&nbsp; the PDF volume is always equal to&nbsp; $1$.}}
 +
 
 +
==PDF for statistically independent components==
 +
<br>
 +
For statistically independent components&nbsp; $x$,&nbsp; $y$&nbsp; the following holds for the joint probability according to the elementary laws of statistics if&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are continuous in value:
 +
:$${\rm Pr} \big[(x_{\rm 1}\le x \le x_{\rm 2}) \cap( y_{\rm 1}\le y\le y_{\rm 2})\big] ={\rm Pr} (x_{\rm 1}\le x \le x_{\rm 2}) \cdot {\rm Pr}(y_{\rm 1}\le y\le y_{\rm 2}) .$$
 +
For this,&nbsp; in the case of independent components can also be written:
 +
:$${\rm Pr} \big[(x_{\rm 1}\le x \le x_{\rm 2}) \cap(y_{\rm 1}\le y\le y_{\rm 2})\big] =\int _{x_{\rm 1}}^{x_{\rm 2}}f_{x}(x) \,{\rm d}x\cdot \int_{y_{\rm 1}}^{y_{\rm 2}} f_{y}(y) \, {\rm d}y.$$
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; It follows that for&nbsp; &raquo;'''statistical independence'''&laquo;&nbsp; the following condition must be satisfied with respect to the&nbsp; &raquo;'''two-dimensional probability density function'''&laquo;:
 +
:$$f_{xy}(x,y)=f_{x}(x) \cdot f_y(y) .$$}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; In the graph,&nbsp; the instantaneous values of a two-dimensional random variable are plotted as points in the&nbsp; $(x,\, y)$&ndash;plane.
 +
*Ranges with many points,&nbsp; which accordingly appear dark,&nbsp; indicate large values of the two-dimensional PDF&nbsp; $f_{xy}(x,\, y)$.
 +
*In contrast,&nbsp; the random variable&nbsp; $(x,\, y)$&nbsp; has relatively few components in rather bright areas.
 +
 
 +
[[File:P_ID153__Sto_T_4_1_S4_nochmals_neu.png |frame| Statistically independent components: &nbsp;$f_{xy}(x, y)$, $f_{x}(x)$&nbsp; and&nbsp;$f_{y}(y)$]]
 +
<br>
 +
The graph can be interpreted as follows:
 +
*The marginal probability densities&nbsp; $f_{x}(x)$&nbsp; and&nbsp; $f_{y}(y)$&nbsp; already indicate that both&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are Gaussian and zero mean,&nbsp; and that the random variable&nbsp; $x$&nbsp; has a larger standard deviation than&nbsp; $y$.
 +
*$f_{x}(x)$&nbsp; and&nbsp; $f_{y}(y)$&nbsp; do not provide information on whether or not statistical bindings exist for the random variable&nbsp; $(x,\, y)$.
 +
*However,&nbsp; using the&nbsp; "2D-PDF"&nbsp; $f_{xy}(x,\, y)$&nbsp; one can see that here there are no statistical bindings between the two components&nbsp; $x$&nbsp; and&nbsp; $y$.
 +
*With statistical independence,&nbsp; any cut through&nbsp; $f_{xy}(x, y)$&nbsp; parallel to&nbsp; $y$&ndash;axis yields a function that is equal in shape to the marginal PDF&nbsp; $f_{y}(y)$.&nbsp; Similarly,&nbsp; all cuts parallel to&nbsp; $x$&ndash;axis are equal in shape to&nbsp; $f_{x}(x)$.
 +
*This fact is equivalent to saying that in this example&nbsp; $f_{xy}(x,\, y)$&nbsp; can be represented as the product of the two marginal probability densities: &nbsp;
 +
:$$f_{xy}(x,\, y)=f_{x}(x) \cdot f_y(y) .$$}}
 +
 
 +
==PDF for statistically dependent components==
 +
<br>
 +
If there are statistical bindings between&nbsp; $x$&nbsp; and&nbsp; $y$,&nbsp; then different cuts parallel to&nbsp; $x$&ndash; and&nbsp; $y$&ndash;axis,&nbsp; resp.,&nbsp; yield different&nbsp; (non-shape equivalent)&nbsp; functions.&nbsp; In this case,&nbsp; of course,&nbsp; the joint PDF cannot be described as a product of the two&nbsp; (one-dimensional)&nbsp; marginal probability densities functions either.
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 3:}$&nbsp; The graph shows the instantaneous values of a two-dimensional random variable in the&nbsp; $(x, y)$&ndash;plane.
 +
[[File:P_ID156__Sto_T_4_1_S5_neu.png |right|frame|Statistically dependent components: &nbsp;$f_{xy}(x, y)$, $f_{x}(x)$,&nbsp; $f_{y}(y)$ ]]
 +
<br>Now,&nbsp; unlike&nbsp; $\text{Example 2}$&nbsp; there are statistical bindings between&nbsp; $x$&nbsp; and&nbsp; $y$.
 +
*The two-dimensional random variable takes all&nbsp; "2D" values with equal probability in the parallelogram drawn in blue.
 +
*No values are possible outside the parallelogram.
 +
 
 +
 
 +
<br>One recognizes from this representation:
 +
#Integration over $f_{xy}(x, y)$&nbsp; parallel to the&nbsp; $x$&ndash;axis leads to the triangular marginal PDF&nbsp; $f_{y}(y)$,&nbsp; integration parallel to&nbsp; $y$&ndash;axis to the trapezoidal PDF $f_{x}(x)$.
 +
#From the joint PDF $f_{xy}(x, y)$&nbsp; it can already be guessed that for each&nbsp; $x$&ndash;value on statistical average, a different&nbsp; $y$&ndash;value is to be expected.
 +
#This means that the components&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are statistically dependent on each other. }}
 +
 
 +
==Expected values of two-dimensional random variables==
 +
<br>
 +
A special case of statistical dependence is&nbsp; "correlation".
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; Under&nbsp; &raquo;'''correlation'''&laquo;&nbsp; one understands a&nbsp; "linear dependence"&nbsp; between the individual components&nbsp; $x$&nbsp; and&nbsp; $y$.
 +
*Correlated random variables are thus always also statistically dependent.
 +
*But not every statistical dependence implies correlation at the same time.}}
 +
 
 +
 
 +
To quantitatively capture correlation,&nbsp; one uses various expected values of the two-dimensional random variable&nbsp; $(x, y)$.
 +
 
 +
These are defined analogously to the one-dimensional case, 
 +
*according to&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable|"Chapter 2"]]&nbsp; (for discrete valued random variables).
 +
*and&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|"Chapter 3"]]&nbsp; (for continuous valued random variables):
 +
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; For the&nbsp; (non-centered)&nbsp; &raquo;'''moments'''&laquo;&nbsp; the following relation holds:
 +
:$$m_{kl}={\rm E}\big[x^k\cdot y^l\big]=\int_{-\infty}^{+\infty}\hspace{0.2cm}\int_{-\infty}^{+\infty} x\hspace{0.05cm}^{k} \cdot y\hspace{0.05cm}^{l} \cdot f_{xy}(x,y) \, {\rm d}x\, {\rm d}y.$$
 +
Thus,&nbsp; the two linear means are&nbsp; $m_x = m_{10}$&nbsp; and&nbsp; $m_y = m_{01}.$ }}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''central moments'''&laquo;&nbsp; $($related to&nbsp; $m_x$&nbsp; and&nbsp; $m_y)$&nbsp;  are:
 +
:$$\mu_{kl} = {\rm E}\big[(x-m_{x})\hspace{0.05cm}^k \cdot (y-m_{y})\hspace{0.05cm}^l\big] .$$
 +
In this general definition equation,&nbsp; the variances&nbsp; $σ_x^2$&nbsp; and&nbsp; $σ_y^2$&nbsp; of the two individual components are included by&nbsp; $\mu_{20}$&nbsp; and&nbsp; $\mu_{02}$,&nbsp; resp. }}
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; Of particular importance is the&nbsp; &raquo;'''covariance'''&laquo;&nbsp; $(k = l = 1)$,&nbsp; which is a measure of the&nbsp; "linear statistical dependence"&nbsp; between the variables&nbsp; $x$&nbsp; and&nbsp; $y$:
 +
:$$\mu_{11} = {\rm E}\big[(x-m_{x})\cdot(y-m_{y})\big] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x-m_{x}) \cdot (y-m_{y})\cdot f_{xy}(x,y) \,{\rm d}x \, {\rm d}y .$$
 +
In the following,&nbsp; we also denote the covariance&nbsp; $\mu_{11}$&nbsp; in part by&nbsp; "$\mu_{xy}$",&nbsp; if the covariance refers to the random variables&nbsp; $x$&nbsp; and&nbsp; $y$.}}
 +
 
 +
 
 +
Notes:
 +
*The covariance&nbsp; $\mu_{11}=\mu_{xy}$&nbsp; is related to the non-centered moment&nbsp; $m_{11} = m_{xy} = {\rm E}\big[x \cdot y\big]$&nbsp; as follows:
 +
:$$\mu_{xy} = m_{xy} -m_{x }\cdot m_{y}.$$
 +
 
 +
*This equation is enormously advantageous for numerical evaluations,&nbsp; since&nbsp; $m_{xy}$,&nbsp; $m_x$&nbsp; and&nbsp; $m_y$&nbsp; can be found from the sequences&nbsp; $〈x_v〉$&nbsp; and&nbsp; $〈y_v〉$&nbsp; in a single run.
 +
*On the other hand,&nbsp; if one were to calculate the covariance&nbsp; $\mu_{xy}$&nbsp; according to the above definition equation,&nbsp; one would have to find the mean values&nbsp; $m_x$&nbsp; and&nbsp; $m_y$&nbsp; in a first run and could then only calculate the expected value&nbsp; ${\rm E}\big[(x - m_x) \cdot (y - m_y)\big]$&nbsp; in a second run.
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; In the first two rows of the table,&nbsp; the first elements of two random sequences&nbsp; $〈x_ν〉$&nbsp; and&nbsp; $〈y_ν〉$&nbsp; are entered.&nbsp; In the last row, the respective products&nbsp; $x_ν - y_ν$&nbsp; are given.
 +
[[File:P_ID628__Sto_T_4_1_S6Neu.png |right|frame|Example for two-dimensional expected values]] 
 +
*By averaging over ten sequence elements in each case,&nbsp; one obtains&nbsp;
 +
:$$m_x =0.5,\ \ m_y = 1, \ \ m_{xy} = 0.69.$$
 +
*This directly results in the value for the covariance:
 +
:$$\mu_{xy} = 0.69 - 0.5 · 1 = 0.19.$$
 +
 
 +
Without knowledge of the equation&nbsp; $\mu_{xy} = m_{xy} - m_x\cdot m_y$&nbsp; one would have had to first determine the means&nbsp; $m_x$&nbsp; and&nbsp; $m_y$&nbsp; in the first run,&nbsp; and then determine the covariance&nbsp; $\mu_{xy}$&nbsp; as the expected value of the product of the zero mean variables in a second run.}}
 +
 
 +
==Correlation coefficient==
 +
<br>
 +
With statistical independence of the two components&nbsp; $x$&nbsp; and&nbsp; $y$ &nbsp; the covariance&nbsp; $\mu_{xy} \equiv 0$.&nbsp; This case has already been considered in&nbsp; $\text{Example 2}$&nbsp; in the section&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#PDF_for_statistically_independent_components|"PDF for statistically independent components"]].
 +
 
 +
*But the result&nbsp; $\mu_{xy} = 0$&nbsp; is also possible for statistically dependent components&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; namely when they are uncorrelated,&nbsp; i.e.&nbsp; "linearly independent".
 +
*The statistical dependence is then not of first order,&nbsp; but of higher order,&nbsp; for example corresponding to the equation&nbsp; $y=x^2.$
 +
 
 +
 
 +
One speaks of&nbsp; &raquo;'''complete correlation'''&laquo;&nbsp; when the&nbsp; (deterministic)&nbsp; dependence between&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; is expressed by the equation&nbsp; $y = K · x$.&nbsp; Then the covariance is given by:
 +
* $\mu_{xy} = σ_x · σ_y$&nbsp; with positive&nbsp; $K$&nbsp; value,
 +
* $\mu_{xy} = - σ_x · σ_y$&nbsp; with negative&nbsp; $K$&nbsp; value. 
 +
 
 +
 
 +
Therefore,&nbsp;  instead of the&nbsp; "covariance"&nbsp; one often uses the so-called&nbsp; "correlation coefficient"&nbsp; as descriptive quantity.
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''correlation coefficient'''&laquo;&nbsp; is the quotient of the covariance&nbsp; $\mu_{xy}$&nbsp; and the product of the standard deviations&nbsp; $σ_x$&nbsp; and&nbsp; $σ_y$&nbsp; of the two components:
 +
:$$\rho_{xy}=\frac{\mu_{xy} }{\sigma_x \cdot \sigma_y}.$$}}
 +
 
 +
 
 +
The correlation coefficient&nbsp; $\rho_{xy}$&nbsp; has the following properties:
 +
*Because of normalization, &nbsp; $-1 \le ρ_{xy} ≤ +1$&nbsp; always holds.
 +
*If the two random variables&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are uncorrelated,&nbsp; then&nbsp; $ρ_{xy} = 0$.
 +
*For strict linear dependence between&nbsp; $x$&nbsp; and&nbsp; $y$ &nbsp;  &rArr; &nbsp; $ρ_{xy}= ±1$ &nbsp; &rArr; &nbsp; complete correlation.
 +
*A positive correlation coefficient means that when&nbsp; $x$&nbsp; is larger,&nbsp; on statistical average,&nbsp; $y$&nbsp; is also larger than when&nbsp; $x$&nbsp; is smaller.
 +
*In contrast,&nbsp; a negative correlation coefficient expresses that&nbsp; $y$&nbsp; becomes smaller on average as&nbsp; $x$&nbsp; increases. 
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
[[File:P_ID232__Sto_T_4_1_S7a_neu.png |right|frame| Two-dimensional Gaussian PDF with correlation]]
 +
$\text{Example 5:}$&nbsp; The following conditions apply:
 +
#The considered components&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; each have a Gaussian PDF.
 +
#The two standard deviations are different&nbsp; $(σ_y < σ_x)$.
 +
#The correlation coefficient is&nbsp; $ρ_{xy} = 0.8$.
 +
 
 +
 
 +
Unlike&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#PDF_for_statistically_independent_components|$\text{Example 2}$]]&nbsp; with statistically independent components &nbsp; &rArr; &nbsp; $ρ_{xy} = 0$&nbsp; $($even though&nbsp; $σ_y < σ_x)$&nbsp; one recognizes that here 
 +
*with larger&nbsp; $x$&ndash;value, on statistical average,&nbsp; $y$&nbsp; is also larger
 +
*than with a smaller&nbsp; $x$&ndash;value.}}
 +
 
 +
 
 +
==Regression line==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''regression line'''&laquo;&nbsp; &ndash; sometimes called&nbsp; "correlation line" &ndash;&nbsp; is the straight line&nbsp; $y = K(x)$&nbsp; in the&nbsp; $(x,  y)$&ndash;plane through the&nbsp; "midpoint"&nbsp; $(m_x, m_y)$.&nbsp;
 +
[[File: EN_Sto_T_4_1_S7neu.png |frame|Two-dimensional Gaussian PDF with regression line&nbsp; $\rm (RL)$ ]]
 +
The regression line has the following properties: 
 +
 
 +
*The mean square deviation from this straight line&nbsp; - viewed in&nbsp; $y$&ndash;direction and averaged over all&nbsp; $N$&nbsp; points -&nbsp; is minimal:
 +
:$$\overline{\varepsilon_y^{\rm 2} }=\frac{\rm 1}{N} \cdot \sum_{\nu=\rm 1}^{N}\; \;\big [y_\nu - K(x_{\nu})\big ]^{\rm 2}={\rm minimum}.$$
 +
*The regression line can be interpreted as a kind of&nbsp; "statistical symmetry axis".&nbsp; The equation of the straight line is:
 +
:$$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x - m_x)+m_y.$$
 +
*The angle taken by the regression line to the&nbsp; $x$&ndash;axis is:
 +
:$$\theta_{y\hspace{0.05cm}\rightarrow \hspace{0.05cm}x}={\rm arctan}\ (\frac{\sigma_{y} }{\sigma_{x} }\cdot \rho_{xy}).$$}}
 +
 
 +
 
 +
By this nomenclature it should be made clear that we are dealing here with the regression of&nbsp; $y$&nbsp; on&nbsp; $x$.
 +
 
 +
*The regression in the opposite direction&nbsp;  &ndash; that is, from&nbsp; $x$&nbsp; to&nbsp; $y$ &ndash;&nbsp;  on the other hand,&nbsp;  means the minimization of the mean square deviation in&nbsp; $x$&ndash;direction.
 +
 
 +
*The&nbsp; (German language)&nbsp;  applet&nbsp; [[Applets:Korrelation_und_Regressionsgerade|"Korrelation und Regressionsgerade"]] &nbsp; &rArr; &nbsp; "Correlation Coefficient and Regression Line"&nbsp; illustrates <br>that in general&nbsp; $($if&nbsp; $σ_y \ne σ_x)$&nbsp; for the regression of&nbsp; $x$&nbsp; on&nbsp; $y$&nbsp; will result in a different angle and thus a different regression line:
 +
:$$\theta_{x\hspace{0.05cm}\rightarrow \hspace{0.05cm} y}={\rm arctan}\ (\frac{\sigma_{x}}{\sigma_{y}}\cdot \rho_{xy}).$$
 +
 
 +
 
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_4.1:_Triangular_(x,_y)_Area|Exercise 4.1: Triangular (x, y) Area]]
 +
 
 +
[[Aufgaben:Exercise_4.1Z:_Appointment_to_Breakfast|Exercise 4.1Z: Appointment to Breakfast]]
 +
 
 +
[[Aufgaben:Exercise_4.2:_Triangle_Area_again|Exercise 4.2: Triangle Area again]]
 +
 
 +
[[Aufgaben:Exercise_4.2Z:_Correlation_between_"x"_and_"e_to_the_Power_of_x"|Exercise 4.2Z: Correlation between "x" and "e to the Power of x"]]
 +
 
 +
[[Aufgaben:Exercise_4.3:_Algebraic_and_Modulo_Sum|Exercise 4.3: Algebraic and Modulo Sum]]
 +
 
 +
[[Aufgaben:Exercise_4.3Z:_Dirac-shaped_2D_PDF|Exercise 4.3Z: Dirac-shaped 2D PDF]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:38, 21 December 2022

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


Now random variables with statistical bindings are treated and illustrated by typical examples. 

After the general description of two-dimensional random variables,  we turn to

  1. the  "auto-correlation function", 
  2. the  "cross-correlation function"
  3. and the associated spectral functions  $($"power-spectral density",  "cross power-spectral density"$)$.


Specifically,  this chapter covers:

  • the statistical description of  »two-dimensional random variables«  using the  »joint PDF«,
  • the difference between  »statistical dependence«  and  »correlation«,
  • the classification features  »stationarity«  and  »ergodicity«  of stochastic processes,
  • the definitions of  »auto-correlation function«  $\rm (ACF)$  and  »power-spectral density«  $\rm (PSD)$,
  • the definitions of  »cross-correlation function«  $\rm (CCF)$   and  »cross power-spectral density«  $\rm (C–PSD)$, 
  • the numerical determination of all these variables in the two- and multi-dimensional case.



Properties and examples


As a transition to the  $\text{correlation functions}$  we now consider two random variables  $x$  and  $y$,  between which statistical dependences exist. 

Each of these two random variables can be described on its own with the introduced characteristic variables corresponding


$\text{Definition:}$  To describe the statistical dependences between two variables  $x$  and  $y$,  it is convenient to combine the two components
      into one   »two-dimensional random variable«   or   »2D random variable«  $(x, y)$.

  • The individual components can be signals such as the real and imaginary parts of a phase modulated signal.
  • But there are a variety of two-dimensional random variables in other domains as well,  as the following example will show.


$\text{Example 1:}$  The left diagram is from the random experiment  "Throwing two dice". 

Two examples of statistically dependent random variables
  • Plotted to the right is the number of the first die  $(W_1)$, 
  • plotted to the top is the sum  $S$  of both dice. 


The two components here are each discrete random variables between which there are statistical dependencies:

  • If  $W_1 = 1$,  then the sum  $S$  can only take values between  $2$  and  $7$,  each with equal probability.
  • In contrast,  for  $W_1 = 6$  all values between  $7$  and  $12$  are possible,  also with equal probability.


In the right diagram,  the maximum temperatures of the  $31$ days in May 2002 of Munich  (to the top)  and the mountain  "Zugspitze"  (to the right)  are contrasted.  Both random variables are continuous in value:

  • Although the measurement points are about  $\text{100 km}$  apart,  and on the Zugspitze,  it is on average about   $20$  degrees colder than in Munich due to the different altitudes  $($nearly  $3000$  versus  $520$  meters$)$,  one recognizes nevertheless a certain statistical dependence between the two random variables  ${\it Θ}_{\rm M}$  and  ${\it Θ}_{\rm Z}$.
  • If it is warm in Munich,  then pleasant temperatures are also more likely to be expected on the Zugspitze.  However,  the relationship is not deterministic:  The coldest day in May 2002 was a different day in Munich than the coldest day on the Zugspitze.

Joint probability density function


We restrict ourselves here mostly to continuous valued random variables.

  • However,  sometimes the peculiarities of two-dimensional discrete random variables are discussed in more detail. 
  • Most of the characteristics previously defined for one-dimensional random variables can be easily extended to two-dimensional variables.


$\text{Definition:}$  The  probability density function  $\rm (PDF)$  of the two-dimensional random variable at the location  $(x_\mu,\hspace{0.1cm} y_\mu)$   ⇒   »joint PDF«   or   »2D–PDF«
is an extension of the one-dimensional PDF  $(∩$  denotes logical  "and"  operation$)$:

$$f_{xy}(x_\mu, \hspace{0.1cm}y_\mu) = \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0} }\right.}\frac{ {\rm Pr}\big [ (x_\mu - {\rm \Delta} x/{\rm 2} \le x \le x_\mu + {\rm \Delta} x/{\rm 2}) \cap (y_\mu - {\rm \Delta} y/{\rm 2} \le y \le y_\mu +{\rm \Delta}y/{\rm 2}) \big] }{ {\rm \Delta} \ x\cdot{\rm \Delta} y}.$$

$\rm Note$:

  • If the two-dimensional random variable is discrete,  the definition must be slightly modified:
  • For the lower range limits,  the  "less-than-equal"  sign must then be replaced by  "less-than"  according to the section  "CDF for discrete-valued random variables"


Using this joint PDF $f_{xy}(x, y)$,  statistical dependencies within the two-dimensional random variable  $(x,\ y)$  are also fully captured in contrast to the two one-dimensional density functions   ⇒   »marginal probability density functions«   $($or   "edge probability density functions"$)$:

$$f_{x}(x) = \int _{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}y ,$$
$$f_{y}(y) = \int_{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}x .$$

These two marginal probability density functions  $f_x(x)$  and  $f_y(y)$

  • provide only statistical information about the individual components  $x$  and  $y$, resp.
  • but not about the statistical bindings between them.


Two-dimensional cumulative distribution function


$\text{Definition:}$  Like the  "2D–PDF",  the  »2D cumulative distribution function«  is merely a useful extension of the  $\text{one-dimensional distribution function}$  $\rm (CDF)$:

$$F_{xy}(r_{x},r_{y}) = {\rm Pr}\big [(x \le r_{x}) \cap (y \le r_{y}) \big ] .$$


The following similarities and differences between the  "1D–CDF"  and the  2D–CDF"  emerge:

  • The functional relationship between two-dimensional PDF and two-dimensional CDF is given by integration as in the one-dimensional case,  but now in two dimensions.  For continuous valued random variables:
$$F_{xy}(r_{x},r_{y})=\int_{-\infty}^{r_{y}} \int_{-\infty}^{r_{x}} f_{xy}(x,y) \,\,{\rm d}x \,\, {\rm d}y .$$
  • Inversely,  the probability density function can be given from the cumulative distribution function by partial differentiation to  $r_{x}$  and  $r_{y}$:
$$f_{xy}(x,y)=\frac{{\rm d}^{\rm 2} F_{xy}(r_{x},r_{y})}{{\rm d} r_{x} \,\, {\rm d} r_{y}}\Bigg|_{\left.{r_{x}=x \atop {r_{y}=y}}\right.}.$$
  • Relative to the two-dimensional cumulative distribution function  $F_{xy}(r_{x}, r_{y})$  the following limits apply:
$$F_{xy}(-\infty,-\infty) = 0,$$
$$F_{xy}(r_{\rm x},+\infty)=F_{x}(r_{x} ),$$
$$F_{xy}(+\infty,r_{y})=F_{y}(r_{y} ) ,$$
$$F_{xy} (+\infty,+\infty) = 1.$$
  • From the last equation  $($infinitely large  $r_{x}$  and  $r_{y})$  we obtain the  »normalization condition«  for the  "2D– PDF":
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1 . $$

$\text{Conclusion:}$  Note the significant difference between one-dimensional and two-dimensional random variables:

  • For one-dimensional random variables,  the area under the PDF always yields the value  $1$.
  • For two-dimensional random variables,  the PDF volume is always equal to  $1$.

PDF for statistically independent components


For statistically independent components  $x$,  $y$  the following holds for the joint probability according to the elementary laws of statistics if  $x$  and  $y$  are continuous in value:

$${\rm Pr} \big[(x_{\rm 1}\le x \le x_{\rm 2}) \cap( y_{\rm 1}\le y\le y_{\rm 2})\big] ={\rm Pr} (x_{\rm 1}\le x \le x_{\rm 2}) \cdot {\rm Pr}(y_{\rm 1}\le y\le y_{\rm 2}) .$$

For this,  in the case of independent components can also be written:

$${\rm Pr} \big[(x_{\rm 1}\le x \le x_{\rm 2}) \cap(y_{\rm 1}\le y\le y_{\rm 2})\big] =\int _{x_{\rm 1}}^{x_{\rm 2}}f_{x}(x) \,{\rm d}x\cdot \int_{y_{\rm 1}}^{y_{\rm 2}} f_{y}(y) \, {\rm d}y.$$

$\text{Definition:}$  It follows that for  »statistical independence«  the following condition must be satisfied with respect to the  »two-dimensional probability density function«:

$$f_{xy}(x,y)=f_{x}(x) \cdot f_y(y) .$$


$\text{Example 2:}$  In the graph,  the instantaneous values of a two-dimensional random variable are plotted as points in the  $(x,\, y)$–plane.

  • Ranges with many points,  which accordingly appear dark,  indicate large values of the two-dimensional PDF  $f_{xy}(x,\, y)$.
  • In contrast,  the random variable  $(x,\, y)$  has relatively few components in rather bright areas.
Statistically independent components:  $f_{xy}(x, y)$, $f_{x}(x)$  and $f_{y}(y)$


The graph can be interpreted as follows:

  • The marginal probability densities  $f_{x}(x)$  and  $f_{y}(y)$  already indicate that both  $x$  and  $y$  are Gaussian and zero mean,  and that the random variable  $x$  has a larger standard deviation than  $y$.
  • $f_{x}(x)$  and  $f_{y}(y)$  do not provide information on whether or not statistical bindings exist for the random variable  $(x,\, y)$.
  • However,  using the  "2D-PDF"  $f_{xy}(x,\, y)$  one can see that here there are no statistical bindings between the two components  $x$  and  $y$.
  • With statistical independence,  any cut through  $f_{xy}(x, y)$  parallel to  $y$–axis yields a function that is equal in shape to the marginal PDF  $f_{y}(y)$.  Similarly,  all cuts parallel to  $x$–axis are equal in shape to  $f_{x}(x)$.
  • This fact is equivalent to saying that in this example  $f_{xy}(x,\, y)$  can be represented as the product of the two marginal probability densities:  
$$f_{xy}(x,\, y)=f_{x}(x) \cdot f_y(y) .$$

PDF for statistically dependent components


If there are statistical bindings between  $x$  and  $y$,  then different cuts parallel to  $x$– and  $y$–axis,  resp.,  yield different  (non-shape equivalent)  functions.  In this case,  of course,  the joint PDF cannot be described as a product of the two  (one-dimensional)  marginal probability densities functions either.

$\text{Example 3:}$  The graph shows the instantaneous values of a two-dimensional random variable in the  $(x, y)$–plane.

Statistically dependent components:  $f_{xy}(x, y)$, $f_{x}(x)$,  $f_{y}(y)$


Now,  unlike  $\text{Example 2}$  there are statistical bindings between  $x$  and  $y$.

  • The two-dimensional random variable takes all  "2D" values with equal probability in the parallelogram drawn in blue.
  • No values are possible outside the parallelogram.



One recognizes from this representation:

  1. Integration over $f_{xy}(x, y)$  parallel to the  $x$–axis leads to the triangular marginal PDF  $f_{y}(y)$,  integration parallel to  $y$–axis to the trapezoidal PDF $f_{x}(x)$.
  2. From the joint PDF $f_{xy}(x, y)$  it can already be guessed that for each  $x$–value on statistical average, a different  $y$–value is to be expected.
  3. This means that the components  $x$  and  $y$  are statistically dependent on each other.

Expected values of two-dimensional random variables


A special case of statistical dependence is  "correlation".

$\text{Definition:}$  Under  »correlation«  one understands a  "linear dependence"  between the individual components  $x$  and  $y$.

  • Correlated random variables are thus always also statistically dependent.
  • But not every statistical dependence implies correlation at the same time.


To quantitatively capture correlation,  one uses various expected values of the two-dimensional random variable  $(x, y)$.

These are defined analogously to the one-dimensional case,

  • according to  "Chapter 2"  (for discrete valued random variables).
  • and  "Chapter 3"  (for continuous valued random variables):


$\text{Definition:}$  For the  (non-centered)  »moments«  the following relation holds:

$$m_{kl}={\rm E}\big[x^k\cdot y^l\big]=\int_{-\infty}^{+\infty}\hspace{0.2cm}\int_{-\infty}^{+\infty} x\hspace{0.05cm}^{k} \cdot y\hspace{0.05cm}^{l} \cdot f_{xy}(x,y) \, {\rm d}x\, {\rm d}y.$$

Thus,  the two linear means are  $m_x = m_{10}$  and  $m_y = m_{01}.$


$\text{Definition:}$  The  »central moments«  $($related to  $m_x$  and  $m_y)$  are:

$$\mu_{kl} = {\rm E}\big[(x-m_{x})\hspace{0.05cm}^k \cdot (y-m_{y})\hspace{0.05cm}^l\big] .$$

In this general definition equation,  the variances  $σ_x^2$  and  $σ_y^2$  of the two individual components are included by  $\mu_{20}$  and  $\mu_{02}$,  resp.


$\text{Definition:}$  Of particular importance is the  »covariance«  $(k = l = 1)$,  which is a measure of the  "linear statistical dependence"  between the variables  $x$  and  $y$:

$$\mu_{11} = {\rm E}\big[(x-m_{x})\cdot(y-m_{y})\big] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x-m_{x}) \cdot (y-m_{y})\cdot f_{xy}(x,y) \,{\rm d}x \, {\rm d}y .$$

In the following,  we also denote the covariance  $\mu_{11}$  in part by  "$\mu_{xy}$",  if the covariance refers to the random variables  $x$  and  $y$.


Notes:

  • The covariance  $\mu_{11}=\mu_{xy}$  is related to the non-centered moment  $m_{11} = m_{xy} = {\rm E}\big[x \cdot y\big]$  as follows:
$$\mu_{xy} = m_{xy} -m_{x }\cdot m_{y}.$$
  • This equation is enormously advantageous for numerical evaluations,  since  $m_{xy}$,  $m_x$  and  $m_y$  can be found from the sequences  $〈x_v〉$  and  $〈y_v〉$  in a single run.
  • On the other hand,  if one were to calculate the covariance  $\mu_{xy}$  according to the above definition equation,  one would have to find the mean values  $m_x$  and  $m_y$  in a first run and could then only calculate the expected value  ${\rm E}\big[(x - m_x) \cdot (y - m_y)\big]$  in a second run.


$\text{Example 4:}$  In the first two rows of the table,  the first elements of two random sequences  $〈x_ν〉$  and  $〈y_ν〉$  are entered.  In the last row, the respective products  $x_ν - y_ν$  are given.

Example for two-dimensional expected values
  • By averaging over ten sequence elements in each case,  one obtains 
$$m_x =0.5,\ \ m_y = 1, \ \ m_{xy} = 0.69.$$
  • This directly results in the value for the covariance:
$$\mu_{xy} = 0.69 - 0.5 · 1 = 0.19.$$

Without knowledge of the equation  $\mu_{xy} = m_{xy} - m_x\cdot m_y$  one would have had to first determine the means  $m_x$  and  $m_y$  in the first run,  and then determine the covariance  $\mu_{xy}$  as the expected value of the product of the zero mean variables in a second run.

Correlation coefficient


With statistical independence of the two components  $x$  and  $y$   the covariance  $\mu_{xy} \equiv 0$.  This case has already been considered in  $\text{Example 2}$  in the section  "PDF for statistically independent components".

  • But the result  $\mu_{xy} = 0$  is also possible for statistically dependent components  $x$  and  $y$  namely when they are uncorrelated,  i.e.  "linearly independent".
  • The statistical dependence is then not of first order,  but of higher order,  for example corresponding to the equation  $y=x^2.$


One speaks of  »complete correlation«  when the  (deterministic)  dependence between  $x$  and  $y$  is expressed by the equation  $y = K · x$.  Then the covariance is given by:

  • $\mu_{xy} = σ_x · σ_y$  with positive  $K$  value,
  • $\mu_{xy} = - σ_x · σ_y$  with negative  $K$  value.


Therefore,  instead of the  "covariance"  one often uses the so-called  "correlation coefficient"  as descriptive quantity.

$\text{Definition:}$  The  »correlation coefficient«  is the quotient of the covariance  $\mu_{xy}$  and the product of the standard deviations  $σ_x$  and  $σ_y$  of the two components:

$$\rho_{xy}=\frac{\mu_{xy} }{\sigma_x \cdot \sigma_y}.$$


The correlation coefficient  $\rho_{xy}$  has the following properties:

  • Because of normalization,   $-1 \le ρ_{xy} ≤ +1$  always holds.
  • If the two random variables  $x$  and  $y$  are uncorrelated,  then  $ρ_{xy} = 0$.
  • For strict linear dependence between  $x$  and  $y$   ⇒   $ρ_{xy}= ±1$   ⇒   complete correlation.
  • A positive correlation coefficient means that when  $x$  is larger,  on statistical average,  $y$  is also larger than when  $x$  is smaller.
  • In contrast,  a negative correlation coefficient expresses that  $y$  becomes smaller on average as  $x$  increases.


Two-dimensional Gaussian PDF with correlation

$\text{Example 5:}$  The following conditions apply:

  1. The considered components  $x$  and  $y$  each have a Gaussian PDF.
  2. The two standard deviations are different  $(σ_y < σ_x)$.
  3. The correlation coefficient is  $ρ_{xy} = 0.8$.


Unlike  $\text{Example 2}$  with statistically independent components   ⇒   $ρ_{xy} = 0$  $($even though  $σ_y < σ_x)$  one recognizes that here

  • with larger  $x$–value, on statistical average,  $y$  is also larger
  • than with a smaller  $x$–value.


Regression line


$\text{Definition:}$  The  »regression line«  – sometimes called  "correlation line" –  is the straight line  $y = K(x)$  in the  $(x, y)$–plane through the  "midpoint"  $(m_x, m_y)$. 

Two-dimensional Gaussian PDF with regression line  $\rm (RL)$

The regression line has the following properties:

  • The mean square deviation from this straight line  - viewed in  $y$–direction and averaged over all  $N$  points -  is minimal:
$$\overline{\varepsilon_y^{\rm 2} }=\frac{\rm 1}{N} \cdot \sum_{\nu=\rm 1}^{N}\; \;\big [y_\nu - K(x_{\nu})\big ]^{\rm 2}={\rm minimum}.$$
  • The regression line can be interpreted as a kind of  "statistical symmetry axis".  The equation of the straight line is:
$$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x - m_x)+m_y.$$
  • The angle taken by the regression line to the  $x$–axis is:
$$\theta_{y\hspace{0.05cm}\rightarrow \hspace{0.05cm}x}={\rm arctan}\ (\frac{\sigma_{y} }{\sigma_{x} }\cdot \rho_{xy}).$$


By this nomenclature it should be made clear that we are dealing here with the regression of  $y$  on  $x$.

  • The regression in the opposite direction  – that is, from  $x$  to  $y$ –  on the other hand,  means the minimization of the mean square deviation in  $x$–direction.
  • The  (German language)  applet  "Korrelation und Regressionsgerade"   ⇒   "Correlation Coefficient and Regression Line"  illustrates
    that in general  $($if  $σ_y \ne σ_x)$  for the regression of  $x$  on  $y$  will result in a different angle and thus a different regression line:
$$\theta_{x\hspace{0.05cm}\rightarrow \hspace{0.05cm} y}={\rm arctan}\ (\frac{\sigma_{x}}{\sigma_{y}}\cdot \rho_{xy}).$$


Exercises for the chapter


Exercise 4.1: Triangular (x, y) Area

Exercise 4.1Z: Appointment to Breakfast

Exercise 4.2: Triangle Area again

Exercise 4.2Z: Correlation between "x" and "e to the Power of x"

Exercise 4.3: Algebraic and Modulo Sum

Exercise 4.3Z: Dirac-shaped 2D PDF