Difference between revisions of "Theory of Stochastic Signals/Creation of Predefined ACF Properties"
(19 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Header | {{Header | ||
− | |Untermenü= | + | |Untermenü=Filtering of Stochastic Signals |
|Vorherige Seite=Digitale Filter | |Vorherige Seite=Digitale Filter | ||
− | |Nächste Seite=Matched | + | |Nächste Seite=Matched Filter |
}} | }} | ||
− | == | + | ==ACF at the output of a non-recursive filter== |
<br> | <br> | ||
− | + | We consider a non-recursive $M$–th order digital filter according to the following diagram. | |
− | [[File:P_ID555__Sto_T_5_3_S1_neu.png |frame| | + | [[File:P_ID555__Sto_T_5_3_S1_neu.png |frame| $M$-th order non-recursive filter]] |
− | + | The discrete-time input variable $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$ is | |
− | * | + | * mean–free $(m_x = 0)$, |
− | * | + | * Gaussian distributed (with standard deviation ⇒ "standard deviation" $σ_x)$, and |
− | * | + | * without memory ("white noise") ⇒ statistically independent samples. |
− | + | This results in the following properties: | |
− | * | + | *The discrete-time auto-correlation function $\rm (ACF)$ at the input is: |
− | :$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c} {\sigma _x ^2 } & {\rm{ | + | :$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c} {\sigma _x ^2 } & {\rm{for}\quad {\it k} = 0,} \\ 0 & {\rm{for}\quad {\it k} \ne 0.} \\\end{array}} \right.$$ |
− | * | + | *The ACF of the discrete-time output sequence $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$ is given as follows: |
− | :$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2 \cdot \sum\limits_{\mu = 0}^{M - k} {a_\mu \cdot a_{\mu + k } } \quad {\rm{ | + | :$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2 \cdot \sum\limits_{\mu = 0}^{M - k} {a_\mu \cdot a_{\mu + k } } \quad {\rm{for}}\quad {\it k} = 0, 1,\,\text{...}\,,\,{\it M}.$$ |
− | * | + | *All ACF values with $k > M$ are zero, and all ACF values with $k < M$ are symmetric about $k = 0$: |
:$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$ | :$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$ | ||
− | |||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 1:}$ If discrete-time white noise with standard deviation $σ_x = 2$ is present at the input of a first-order non-recursive filter $($filter coefficients $a_0 = 0.6$, $a_1 = 0.8),$ the discrete ACF values of the output signal are (all other ACF values are zero): |
− | [[File:P_ID597__Sto_T_5_3_S1_b_neu.png |frame| | + | [[File:P_ID597__Sto_T_5_3_S1_b_neu.png |frame| ACF at the output of a first order filter|right]] |
:$$\varphi _y (0) = \sigma _x ^2 \cdot ( {a_0 ^2 + a_1 ^2 }) = 4,$$ | :$$\varphi _y (0) = \sigma _x ^2 \cdot ( {a_0 ^2 + a_1 ^2 }) = 4,$$ | ||
:$$\varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot a_0 \cdot a_1 = 1.92.$$ | :$$\varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot a_0 \cdot a_1 = 1.92.$$ | ||
− | + | The graphic can be interpreted as follows: | |
− | * | + | *Because of $a_0^2 + a_1^2 = 1$, the output signal $y(t)$ has exactly the same variance $σ_y^2 = φ_y(0) = 0.4$ as the input signal: $σ_x^2 = φ_x(0)$. |
− | * | + | *Unlike the input sequence $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$, the output sequence $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$ has statistical bindings between adjacent samples. }} |
− | == | + | ==Determining the coefficients== |
<br> | <br> | ||
− | + | Now the following question is to be answered: How can the coefficients $a_0$, ... , $a_M$ of a $M$–th order non-recursive filter can be determined, | |
− | * | + | * if the desired ACF values $φ_y(0)$, ... ,s $φ_y(M · T_{\rm A})$ are given and |
− | * | + | * outside the range from $-M · T_{\rm A}$ to $+M · T_{\rm A}$ all ACF values are to be zero. |
− | |||
− | |||
− | |||
+ | For the standard deviation $σ_x = 1$, the following nonlinear system of equations is obtained, using $φ_k = φ_y(k · T_{\rm A})$ for simplicity of notation: | ||
+ | :$$\begin{align*}\varphi _0 & = \sum\limits_{\mu = 0}^M {a_\mu^2 ,}\\ \varphi _1 & = \sum\limits_{\mu = 0}^{M - 1} {a_\mu \cdot a_{\mu + 1} ,} \\ & ... &\\ \varphi _{M - 1} & = a_0 \cdot a_{M - 1} + a_1 \cdot a_M , \\ \varphi _M & = a_0 \cdot a_M .\end{align*}$$ | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Conclusion:}$ |
− | * | + | *Thus, for the $M + 1$ coefficients, one also obtains $M + 1$ independent equations. |
− | * | + | *By successive elimination of the coefficients $a_1$, ... , $a_M$, finally a nonlinear equation of higher order remains for $a_0$.}} |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 2:}$ We consider the following constellation: |
− | + | #a recursive filter of first order ⇒ $M = 1$, | |
− | + | #a discrete-time input sequence $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$ with mean $m_x =$ 0 and standard deviation $σ_x = 1$, | |
− | + | #desired ACF values of the sequence $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$: $ φ_y(0) = φ_0 =0.58$, $φ_y(±T_{\rm A}) = φ_1 = 0.21$. | |
− | + | *Thus, the above system of equations is: | |
:$$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$ | :$$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$ | ||
:$$\varphi _1 = a_0 \cdot a_1 = 0.21.$$ | :$$\varphi _1 = a_0 \cdot a_1 = 0.21.$$ | ||
− | + | *This leads to an equation of degree $4$, | |
:$$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$ | :$$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$ | ||
− | + | *A solution represents $a_0 = 0.7$. By inserting it into the second equation, we find $a_1 = 0.3$. | |
− | + | One recognizes from this example that already in the simplest case ⇒ $M = 1$ for $a_0$ a nonlinear determination equation of degree $4$ results.}} | |
− | == | + | ==Ambiguities in the determination of the coefficients== |
<br> | <br> | ||
− | + | As the last example showed, with $M = 1$ the determination equation for $a_0$ is of degree $4$. At the same time, this means that there are also four sets of coefficients, all leading to the same ACF. | |
− | * | + | |
− | * | + | This is obvious for the following reasons: |
− | * | + | *The coefficients $a_0$ and $a_1$ can change sign simultaneously without changing the system of equations. |
+ | *Replacing $a_0$ by $a_1$ and vice versa results in the same equation of determination. | ||
+ | *This operation corresponds to a mirroring and shifting of the impulse response. | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 3:}$ As shown in the [[Theory_of_Stochastic_Signals/Creation_of_Predefined_ACF_Properties#Ambiguities_in_the_determination_of_the_coefficients|"last section"]], the parameter set $a_0 = 0.7$, $a_1 = 0.3$ is suitable to generate the ACF values $φ_0 = 0.58$ and $φ_1 = 0.21$. The desired ACF of the output sequence is then in detailed notation: |
− | [[File:P_ID557__Sto_T_5_3_S2_b_neu_100.png |frame| | + | [[File:P_ID557__Sto_T_5_3_S2_b_neu_100.png |frame| Example of ACF calculation|right]] |
:$$\varphi_y(\tau) = 0.58 \cdot \delta(\tau) + 0.21 \cdot \delta(\tau - T_{\rm A}) | :$$\varphi_y(\tau) = 0.58 \cdot \delta(\tau) + 0.21 \cdot \delta(\tau - T_{\rm A}) | ||
+ 0.21 \cdot \delta(\tau + T_{\rm A}) .$$ | + 0.21 \cdot \delta(\tau + T_{\rm A}) .$$ | ||
− | + | The same ACF is also obtained with the coefficients | |
− | |||
*$a_0 = - 0.7,\quad a_1 = -0.3,$ | *$a_0 = - 0.7,\quad a_1 = -0.3,$ | ||
*$a_0 = +0.3,\quad a_1 = +0.7,$ | *$a_0 = +0.3,\quad a_1 = +0.7,$ | ||
Line 91: | Line 90: | ||
− | + | These configurations are obtained by | |
− | * | + | *simultaneously multiplying all coefficients by $-1$, and |
− | * | + | *swapping the numerical values of $a_0$ and $a_1$. |
− | + | The diagram shows the respective impulse responses leading to the desired ACF.}} | |
− | == | + | ==Exercises for the chapter== |
<br> | <br> | ||
− | [[Aufgaben: | + | [[Aufgaben:Exercise_5.5:_ACF-Equivalent_Filters|Exercise 5.5: ACF-equivalent Filters]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_5.5Z:_ACF_after_1st_Order_Filter|Exercise 5.5Z: ACF after 1st Order Filter]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_5.6:_Filter_Dimensioning|Exercise 5.6: Filter Dimensioning]] |
− | [[Aufgaben: | + | [[Aufgaben:Aufgabe_5.6Z:_Nochmals_Filterdimensionierung|Exercise 5.6Z: Filter Dimensioning again]] |
{{Display}} | {{Display}} |
Latest revision as of 19:55, 21 December 2022
Contents
ACF at the output of a non-recursive filter
We consider a non-recursive $M$–th order digital filter according to the following diagram.
The discrete-time input variable $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$ is
- mean–free $(m_x = 0)$,
- Gaussian distributed (with standard deviation ⇒ "standard deviation" $σ_x)$, and
- without memory ("white noise") ⇒ statistically independent samples.
This results in the following properties:
- The discrete-time auto-correlation function $\rm (ACF)$ at the input is:
- $$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c} {\sigma _x ^2 } & {\rm{for}\quad {\it k} = 0,} \\ 0 & {\rm{for}\quad {\it k} \ne 0.} \\\end{array}} \right.$$
- The ACF of the discrete-time output sequence $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$ is given as follows:
- $$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2 \cdot \sum\limits_{\mu = 0}^{M - k} {a_\mu \cdot a_{\mu + k } } \quad {\rm{for}}\quad {\it k} = 0, 1,\,\text{...}\,,\,{\it M}.$$
- All ACF values with $k > M$ are zero, and all ACF values with $k < M$ are symmetric about $k = 0$:
- $$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$
$\text{Example 1:}$ If discrete-time white noise with standard deviation $σ_x = 2$ is present at the input of a first-order non-recursive filter $($filter coefficients $a_0 = 0.6$, $a_1 = 0.8),$ the discrete ACF values of the output signal are (all other ACF values are zero):
- $$\varphi _y (0) = \sigma _x ^2 \cdot ( {a_0 ^2 + a_1 ^2 }) = 4,$$
- $$\varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot a_0 \cdot a_1 = 1.92.$$
The graphic can be interpreted as follows:
- Because of $a_0^2 + a_1^2 = 1$, the output signal $y(t)$ has exactly the same variance $σ_y^2 = φ_y(0) = 0.4$ as the input signal: $σ_x^2 = φ_x(0)$.
- Unlike the input sequence $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$, the output sequence $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$ has statistical bindings between adjacent samples.
Determining the coefficients
Now the following question is to be answered: How can the coefficients $a_0$, ... , $a_M$ of a $M$–th order non-recursive filter can be determined,
- if the desired ACF values $φ_y(0)$, ... ,s $φ_y(M · T_{\rm A})$ are given and
- outside the range from $-M · T_{\rm A}$ to $+M · T_{\rm A}$ all ACF values are to be zero.
For the standard deviation $σ_x = 1$, the following nonlinear system of equations is obtained, using $φ_k = φ_y(k · T_{\rm A})$ for simplicity of notation:
- $$\begin{align*}\varphi _0 & = \sum\limits_{\mu = 0}^M {a_\mu^2 ,}\\ \varphi _1 & = \sum\limits_{\mu = 0}^{M - 1} {a_\mu \cdot a_{\mu + 1} ,} \\ & ... &\\ \varphi _{M - 1} & = a_0 \cdot a_{M - 1} + a_1 \cdot a_M , \\ \varphi _M & = a_0 \cdot a_M .\end{align*}$$
$\text{Conclusion:}$
- Thus, for the $M + 1$ coefficients, one also obtains $M + 1$ independent equations.
- By successive elimination of the coefficients $a_1$, ... , $a_M$, finally a nonlinear equation of higher order remains for $a_0$.
$\text{Example 2:}$ We consider the following constellation:
- a recursive filter of first order ⇒ $M = 1$,
- a discrete-time input sequence $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$ with mean $m_x =$ 0 and standard deviation $σ_x = 1$,
- desired ACF values of the sequence $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$: $ φ_y(0) = φ_0 =0.58$, $φ_y(±T_{\rm A}) = φ_1 = 0.21$.
- Thus, the above system of equations is:
- $$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$
- $$\varphi _1 = a_0 \cdot a_1 = 0.21.$$
- This leads to an equation of degree $4$,
- $$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$
- A solution represents $a_0 = 0.7$. By inserting it into the second equation, we find $a_1 = 0.3$.
One recognizes from this example that already in the simplest case ⇒ $M = 1$ for $a_0$ a nonlinear determination equation of degree $4$ results.
Ambiguities in the determination of the coefficients
As the last example showed, with $M = 1$ the determination equation for $a_0$ is of degree $4$. At the same time, this means that there are also four sets of coefficients, all leading to the same ACF.
This is obvious for the following reasons:
- The coefficients $a_0$ and $a_1$ can change sign simultaneously without changing the system of equations.
- Replacing $a_0$ by $a_1$ and vice versa results in the same equation of determination.
- This operation corresponds to a mirroring and shifting of the impulse response.
$\text{Example 3:}$ As shown in the "last section", the parameter set $a_0 = 0.7$, $a_1 = 0.3$ is suitable to generate the ACF values $φ_0 = 0.58$ and $φ_1 = 0.21$. The desired ACF of the output sequence is then in detailed notation:
- $$\varphi_y(\tau) = 0.58 \cdot \delta(\tau) + 0.21 \cdot \delta(\tau - T_{\rm A}) + 0.21 \cdot \delta(\tau + T_{\rm A}) .$$
The same ACF is also obtained with the coefficients
- $a_0 = - 0.7,\quad a_1 = -0.3,$
- $a_0 = +0.3,\quad a_1 = +0.7,$
- $a_0 = - 0.3,\quad a_1 = -0.7.$
These configurations are obtained by
- simultaneously multiplying all coefficients by $-1$, and
- swapping the numerical values of $a_0$ and $a_1$.
The diagram shows the respective impulse responses leading to the desired ACF.
Exercises for the chapter
Exercise 5.5: ACF-equivalent Filters
Exercise 5.5Z: ACF after 1st Order Filter
Exercise 5.6: Filter Dimensioning
Exercise 5.6Z: Filter Dimensioning again