Difference between revisions of "Mobile Communications/The GWSSUS Channel Model"

From LNTwww
 
(134 intermediate revisions by 7 users not shown)
Line 1: Line 1:
+
 
 
{{Header
 
{{Header
|Untermenü=Frequenzselektive Übertragungskanäle
+
|Untermenü=Frequency-Selective Transmission Channels
|Vorherige Seite=Mehrwegeempfang beim Mobilfunk
+
|Vorherige Seite=Multipath Reception in Mobile Communications
|Nächste Seite=Historie und Entwicklung der Mobilfunksysteme
+
|Nächste Seite=History and Development of Mobile Communication Systems
 
}}
 
}}
  
== Verallgemeinerte Systemfunktionen zeitvarianter Systeme (1) ==
+
== Generalized system functions of time variant-systems ==
 
<br>
 
<br>
Während es bei linearen zeitinvarianten (LZI) Systemen mit der Übertragungsfunktion <i>H</i>(<i>f</i>) und der Impulsantwort <i>h</i>(<i>&tau;</i>) nur zwei das System vollständig beschreibende Funktionen gibt, sind bei zeitvarianten (LZV) Systemen insgesamt vier verschiedene Systemfunktionen möglich. Eine formale Untersscheidung dieser Funktionen hinsichtlich Zeit&ndash; und Frequenzbereichsdarstellung durch Klein&ndash; und Großbuchstaben ist damit ausgeschlossen.<br>
+
Linear time-invariant systems&nbsp; $\rm (LTI)$&nbsp; can be completely described with only two system functions,
 
+
*the transfer function&nbsp; $H(f)$&nbsp; and
Deshalb nehmen wir nun eine Nomenklaturänderung vor, die sich wie folgt formalisieren lässt:
+
*the impulse response&nbsp; $h(t)$ &nbsp; &rArr; &nbsp; after renaming &nbsp; $h(\tau)$.  
*Die vier möglichen Systemfunktionen werden einheitlich mit <b><i>&eta;</i><sub>12</sub></b> bezeichnet.<br>
 
  
*Der erste Index ist entweder ein <b>V</b> (Verzögerungszeit <i>&tau;</i>) oder ein <b>F</b> (Frequenz <i>f</i>).<br>
 
  
*Als zweiter Index ist entweder ein <b>Z</b> (Zeit <i>t</i>) oder ein <b>D</b> (Dopplerfrequenz <i>f</i><sub>D</sub>) möglich.<br><br>
+
In contrast, four different functions are possible with time-variant systems&nbsp; $\rm (LTV)$&nbsp;.&nbsp; A formal distinction of these functions with regard to time and frequency domain representation by lowercase and uppercase letters is thus excluded.
  
Da beim Mobilfunk im Gegensatz zur leitungsgebundenen Übertragung die Systemfunktionen nicht deterministisch beschrieben werden können, sondern statistische Größen sind, müssen später noch entsprechende Korrelationsfunktionen betrachtet werden. Diese bezeichnen wir im Folgenden einheitlich mit <b><i>&phi;</i><sub>12</sub></b>, und verwenden gleiche Indizes wie für die Systemfunktionen  <b><i>&eta;</i><sub>12</sub></b>.<br>
+
Therefore a nomenclature change will be made, which can be formalized as follows:
 +
*The four possible system functions are uniformly denoted by&nbsp; $\boldsymbol{\eta}_{12}$&nbsp;.<br>
  
Diese formalisierten Bezeichnungen sind in der folgenden Grafik in blauer Schrift eingetragen. Zusätzlich sind  die in anderen Kapiteln oder der Literatur verwendeten Bezeichnungen angegeben (graue Schrift). In den weiteren Kapiteln werden diese teilweise ebenfalls benutzt.<br>
+
*The first subindex is either a&nbsp; $\boldsymbol{\rm V}$&nbsp; $($because of German&nbsp; $\rm V\hspace{-0.05cm}$erzögerung &nbsp; &rArr; &nbsp; delay time &nbsp;$\tau)$&nbsp; or&nbsp; a&nbsp; $\boldsymbol{\rm F}$&nbsp; $($frequency&nbsp; $f)$.<br>
  
[[File:P ID2165 Mob T 2 3 S1 v1.png|Zusammenhang zwischen den Systemfunktionen|class=fit]]<br>
+
*Either a&nbsp; $\boldsymbol{\rm Z}$&nbsp; $($because of German&nbsp; $\rm Z\hspace{-0.05cm}$eit &nbsp; &rArr; &nbsp; time &nbsp;$t)$&nbsp;  or a&nbsp; $\boldsymbol{\rm D}$&nbsp; $($Doppler frequency&nbsp; $f_{\rm D})$&nbsp; is possible as the second subindex.
  
Die Bildbeschreibung folgt auf der nächsten Seite.
+
[[File:EN_Mob_T_2_3_S1_neu.png|right|frame|Relation between the four system functions|class=fit]]
  
== Verallgemeinerte Systemfunktionen zeitvarianter Systeme (2) ==
+
<br>Since, in contrast to line-based transmission, the system functions of mobile communications cannot be described deterministically, but are statistical variables, the corresponding correlation functions must be considered later on.&nbsp;  
<br>
 
In der [http://en.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.281.29 Grafik] auf der letzten Seite sind die vier Systemfunktionen dargestellt. Oben erkennt man die zeitvariante Impulsantwort <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>), die in Kapitel 2.2 mit <i>h</i>(<i>&tau;</i>, <i>t</i>) bezeichnet wurde. Die zugehörige Autokorrelationsfunktion (AKF) ist
 
  
:<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot
+
In the following, we will refer to these as&nbsp; $\boldsymbol{\varphi}_{12}$,&nbsp; and use the same indices as for the system functions&nbsp; $\boldsymbol{\eta}_{12}$.<br>
\eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}. </math>
 
  
Zur <i>Frequenz&ndash;Zeit&ndash;Darstellung</i> (rechter Block) kommt man durch eine Fouriertransformation bezüglich der Verzögerung <i>&tau;</i>. Man erhält so die zeitvariante Übertragungsfunktion <i>H</i>(<i>f</i>, <i>t</i>) = <i>&eta;</i><sub>FZ</sub>(<i>f</i>, <i>t</i>). Die Fouriertransformation hinsichtlich <i>&tau;</i> ist in der Grafik durch &bdquo;<i>F<sub>&tau;</sub></i>[ &middot; ]&rdquo; angedeutet. Ausgeschrieben lautet das Fourierintegral:
+
*These formalized designations are inscribed in the graphic in blue letters.
 +
*Additionally, the designations used in other chapters or literature are given&nbsp; (gray letters).&nbsp; In the other chapters these are also partly used.
 +
<br clear=all>
 +
${\rm (1)}$ &nbsp; At the top you can see the&nbsp; &raquo;'''time-variant impulse response'''&laquo;  &nbsp; ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t) \equiv h(\tau,\hspace{0.05cm} t)$&nbsp; in the&nbsp; "delay&ndash;time range".&nbsp; The associated auto-correlation function&nbsp; $\rm (ACF)$&nbsp; is
 +
:::<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \big[ \eta_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1) \cdot
 +
\eta_{\rm VZ}^{\star}(\tau_2, t_2) \big]\hspace{0.05cm}. </math>
  
:<math>\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f \tau)\hspace{0.15cm}{\rm d}\tau  
+
${\rm (2)}$&nbsp; For the&nbsp; "frequency&ndash;time representation"&nbsp; you get the&nbsp; &raquo;'''time-variant transfer function'''&laquo; &nbsp; ${\eta}_{\rm FZ}(f,\hspace{0.05cm} t) \equiv H(f,\hspace{0.05cm} t)$.&nbsp;
  \hspace{0.05cm}, \hspace{0.3cm} {\rm kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t)
+
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;The Fourier transform with respect to&nbsp; $\tau$&nbsp; is represented in the graph by&nbsp; ${\rm F}_\tau\hspace{0.05cm}[ \cdot ]$&nbsp;.&nbsp; The Fourier integral is written out in full:
 +
:::<math>\eta_{\rm FZ}(f, \hspace{0.05cm} t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau,\hspace{0.05cm}  t) \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau  
 +
  \hspace{0.05cm}, \hspace{0.3cm} \text{kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t)
 
  \hspace{0.2cm}  \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)
 
  \hspace{0.2cm}  \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Die AKF dieser zeitvarianten Übertragungsfunktion lautet allgemein:
+
:The ACF of this time-variant  transfer function is generally:
  
:<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot  
+
:::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \big [ \eta_{\rm FZ}(f_1, t_1) \cdot  
  \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.</math>
+
  \eta_{\rm FZ}^{\star}(f_2, t_2) \big ]\hspace{0.05cm}.</math>
  
Die Scatter&ndash;Funktion <i>&eta;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) entsprechend dem linken Block &ndash; manchmal auch mit <i>s</i>(<i>&tau;</i>, <i>f</i><sub>D</sub>) bezeichnet &ndash; beschreibt den Mobilfunkkanal im Verzögerungs&ndash;Doppler&ndash;Bereich. Sie ergibt sich aus der zeitvarianten Impulsantwort  <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) durch Fouriertransformation bezüglich des zweiten Parameters <i>t</i>:
+
${\rm (3)}$&nbsp; The&nbsp; &raquo;'''Scatter&ndash;Function'''&laquo;&nbsp; ${\eta}_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) \equiv s(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; corresponding to the left block describes the mobile communications channel in the&nbsp; "delay&ndash;Doppler area". &nbsp;  
 +
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;$f_{\rm D}$&nbsp; describes the&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution|$\text{Doppler frequency}$]]. &nbsp; The scatter function results from&nbsp; ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t)$&nbsp; through Fourier transformation with respect to the second parameter&nbsp; $t$:
  
:<math> \eta_{\rm VD}(\tau, f_{\rm D})
+
:::<math> \eta_{\rm VD}(\tau, f_{\rm D})
  \hspace{0.2cm}  \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)</math>
+
  \hspace{0.2cm}  \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.3cm}
 
+
\Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot  
:<math>\Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot  
 
 
  \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ]
 
  \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ]
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Der Funktionsparameter <i>f</i><sub>D</sub> bezeichnet hierbei die [http://en.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Dopplerfrequenz_und_deren_Verteilung_.281.29 Dopplerfrequenz.]<br>
+
${\rm (4)}$&nbsp; Finally, we consider the so-called&nbsp; &raquo;'''frequency-variant transfer function'''&laquo;&nbsp; $\eta_{\rm FD}(f, f_{\rm D})$, i.e. the&nbsp; "frequency&ndash;Doppler representation".&nbsp;
 +
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;According to the graph, this can be reached in two ways:
  
Abschließend betrachten wir noch die so genannte frequenzvariante Übertragungsfunktion, also die Frequenz&ndash;Doppler&ndash;Darstellung. Entsprechend der [http://en.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.281.29 Grafik] gelangt man zu dieser auf zwei Wege:
+
::$$\eta_{\rm FD}(f, f_{\rm D})
 +
\hspace{0.2cm}  \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},\hspace{0.5cm}\eta_{\rm FD}(f, f_{\rm D})
 +
\hspace{0.2cm}  \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$
  
:<math>\eta_{\rm FD}(f, f_{\rm D})
+
{{BlaueBox|TEXT= 
\hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},</math>
+
$\text{Notes:}$&nbsp;
 +
*The specified Fourier correlations between the system functions in the graph are illustrated by the outer, dark green arrows and are marked with &nbsp; ${\rm F}_p\hspace{0.05cm}[\hspace{0.05cm} \cdot \hspace{0.05cm}]$&nbsp;,&nbsp; <br>the index &nbsp;$p$&nbsp; indicates to which parameter&nbsp; $\tau$,&nbsp; $f$,&nbsp; $t$&nbsp; or&nbsp; $f_{\rm D}$&nbsp; does the  Fourier transformation refer.
  
:<math>\eta_{\rm FD}(f, f_{\rm D})
+
*The inner&nbsp; (lighter)&nbsp; arrows indicate the links via the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|$\text{inverse Fourier transform}$]]. &nbsp; For this we use the notation&nbsp; ${ {\rm F}_p}^{-1}\hspace{0.05cm}[ \hspace{0.05cm} \cdot \hspace{0.05cm} ]$.
\hspace{0.2cm} \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.</math>
 
  
Anzumerken ist, dass die angegebenen Fourier&ndash;Zusammenhänge zwischen den Systemfunktionen in der [http://en.lntwww.de/index.php?title=Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell&action=submit#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.282.29 Grafik] durch die äußeren, dunkelgrünen Pfeile veranschaulicht sind. Die inneren (helleren) Pfeile kennzeichnen jeweils die Verknüpfungen über die [http://en.lntwww.de/Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral inverse Fouriertransformation.]<br>
+
*The applet&nbsp; [[Applets:Impulses and Spectra|"Impulses and Spectra"]] illustrates the connection between the time and frequency domain, which can be described by formulas using Fourier transformation and Fourier inverse transformation.}}
  
<b>Hinweis:</b> Ein Interaktionsmodul zeigt den Zusammenhang zwischen Zeit&ndash; und Frequenzbereich, formelmäßig beschreibbar durch Fouriertransformation und Fourierrücktransformation:<br>
 
  
[[Zeitfunktion und zugehörige Spektralfunktion Please add link and do not upload flash video.]]
+
== Simplifications due to the GWSSUS requirements ==
 
 
== Vereinfachungen aufgrund der GWSSUS–Voraussetzungen ==
 
 
<br>
 
<br>
Der allgemeine Zusammenhang zwischen den vier Systemfunktionen ist aufgrund nichtstationärer Effekte sehr kompliziert. Es müssen gegenüber dem allgemeinen Modell einige Einschränkungen getroffen werden, um zu einem geeigneten Modell für den Mobilfunkkanal zu gelangen, aus dem sich relevante Aussagen für praktische Anwendungen ableiten lassen.<br>
+
The general relationship between the four system functions is very complicated due to non-stationary effects.  
  
Man kommt zum GWSSUS&ndash;Modell (<i><b>G</b>aussian <b>W</b>ide <b>S</b>ense <b>S</b>tationary <b>U</b>ncorrelated <b>S</b>cattering</i>) durch folgende Festlegungen:
+
[[File:EN_Mob_T_2_3_S2_v2.png|right|frame|Connections between the description functions of the GWSSUS model|class=fit]]
*Der Zufallsprozess der Kanalimpulsantwort <i>h</i>(<i>&tau;</i>, <i>t</i>) = <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) wird allgemein als komplex (also Beschreibung im äquivalenten Tiefpassbereich), gaußisch (Kennung <b>G</b>) sowie als mittelwertfrei (Rayleigh, nicht Rice, also keine Sichtverbindung) angenommen.<br>
+
Compared to the general model, some limitations have to be made in order to arrive at a suitable model for the mobile communications channel from which relevant statements for practical applications can be derived.<br>
  
*Der Zufallsprozess sei schwach stationär, das heißt, seine Kenngrößen ändern sich  mit der Zeit nur geringfügig, und die AKF <i>&phi;</i><sub>VZ</sub>(<i>&tau;</i><sub>1</sub>, <i>t</i><sub>1</sub>, <i>&tau;</i><sub>2</sub>, <i>t</i><sub>2</sub>) der zeitvarianten Impulsantwort hängt nicht mehr von den absoluten Zeiten <i>t</i><sub>1</sub> und <i>t</i><sub>2</sub> ab, sondern nur noch von der Zeitdifferenz &Delta;<i>t</i> = <i>t</i><sub>2</sub> &ndash; <i>t</i><sub>1</sub>. Darauf weist die Kennung <b>WSS</b> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i><b>W</b>ide <b>S</b>ense <b>S</b>tationary</i> hin.<br>
+
The following definitions lead to the&nbsp; $\rm GWSSUS$ model&nbsp; <br>$( \rm G$aussian&nbsp; $\rm W$ide&nbsp; $\rm S$ense&nbsp; $\rm S$tationary&nbsp; $\rm U$ncorrelated&nbsp; $\rm S$cattering$)$:
 +
*The random process of the channel impulse response&nbsp; $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$&nbsp; is generally assumed to be complex&nbsp; (i.e., description in the equivalent low-pass range),&nbsp; Gaussian&nbsp; $($identifier&nbsp; $\rm G)$&nbsp; and zero-mean&nbsp; (Rayleigh, not Rice, that means, no line of sight)&nbsp;.<br>
  
*Die einzelnen Echos aufgrund von Mehrwegeausbreitung sind unkorreliert, was durch die Kennung <b>US</b>  &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i><b>U</b>ncorrelated <b>S</b>cattering</i> ausgedrückt wird.<br>
+
*The random process is weakly stationary&nbsp; &rArr; &nbsp; its characteristics change only slightly with time, and the ACF&nbsp; $ {\varphi}_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1,\hspace{0.05cm}\tau_2,\hspace{0.05cm} t_2)$&nbsp; of the time-variant impulse response does not depend on the absolute times&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; but only on the time difference&nbsp; $\Delta t = t_2 - t_1$. &nbsp; This is indicated by the identifier&nbsp; $\rm WSS$&nbsp; &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $\rm W$ide $\rm S$ense $\rm S$tationary.<br>
  
[[File:P ID2166 Mob T 2 3 S2 v1.png|Zusammenhänge zwischen den Beschreibungsfunktionen des GWSSUS–Modells|class=fit]]<br>
+
*The individual echoes due to multipath propagation are uncorrelated, which is expressed by the identifier&nbsp; $\rm US$ &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $\rm U$ncorrelated $\rm S$cattering</i>.
 +
<br clear=all>
 +
The mobile communications channel can be described in full according to this graph.&nbsp; The individual  power-spectral densities&nbsp; (labeled blue)&nbsp; and the correlation function&nbsp; (labeled red)&nbsp; is explained in detail in the following sections.<br>
  
Unter Berücksichtigung dieser Eigenschaften lässt sich der Mobilfunkkanal entsprechend der hier angegebenen Grafik beschreiben. Auf die einzelnen Leistungsdichtespektren (blau beschriftet) und die Korrelationsfunktion (mit roter Schrift) wird auf den nächsten Seiten noch im Detail eingegangen.<br>
 
  
== AKF und LDS der zeitvarianten Impulsantwort (1) ==
+
== Auto-correlation function of the time-variant impulse response==
 
<br>
 
<br>
Zunächst betrachten wir die Autokorrelationsfunktion (AKF) der zeitvarianten Impulsantwort &nbsp;&#8658;&nbsp; <i>h</i>(<i>&tau;</i>, <i>t</i>) = <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) etwas genauer. Dabei zeigt sich:
+
We now consider the&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)|$\text{auto-correlation function}$]]&nbsp; $\rm (ACF)$&nbsp; of the time-variant impulse response &nbsp; &#8658; &nbsp; $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$&nbsp; more closely.&nbsp; It shows:
  
*Aufgrund der <b>WSS</b>&ndash;Eigenschaft lässt sich mit &Delta;<i>t</i> = <i>t</i><sub>2</sub> &ndash; <i>t</i><sub>1</sub> schreiben:
+
*Based on the&nbsp; $\rm WSS$ property, the auto-correlation function can be written with&nbsp; $\Delta t = t_2 - t_1$&nbsp;:
  
 
::<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = \varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t)\hspace{0.05cm}.</math>
 
::<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = \varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t)\hspace{0.05cm}.</math>
  
*Da die Echos als unabhängig voneinander vorausgesetzt wurden (<b>US</b>&ndash;Eigenschaft), kann man die Impulsantwort bezüglich den Verzögerungen <i>&tau;</i><sub>1</sub>, <i>&tau;</i><sub>2</sub> als unkorreliert annehmen. Dann gilt:
+
*Since the echoes were assumed to be independent of each other&nbsp; $\rm (US$ property$)$, the impulse response can be assumed to be uncorrelated with respect to the delays&nbsp; $\tau_1$&nbsp; and&nbsp; $\tau_2$.&nbsp; Then:
  
 
::<math>\varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t) = 0 \hspace{0.35cm}{\rm f\ddot{u}r}\hspace{0.35cm} \tau_1 \ne \tau_2\hspace{0.05cm}. </math>
 
::<math>\varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t) = 0 \hspace{0.35cm}{\rm f\ddot{u}r}\hspace{0.35cm} \tau_1 \ne \tau_2\hspace{0.05cm}. </math>
  
*Ersetzt man nun <i>&tau;</i><sub>1</sub> durch <i>&tau;</i> und <i>&tau;</i><sub>2</sub> durch <i>&tau;</i> + &Delta;<i>&tau;</i>, so lässt sich diese Autokorrelationsfunktion in folgender Weise darstellen:
+
*If one now replaces&nbsp; $\tau_1$&nbsp; with&nbsp; $\tau$&nbsp; and&nbsp; $\tau_2$&nbsp; with&nbsp; $\tau + \Delta \tau$, this auto-correlation function can be represented in the following way:
  
 
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. </math>
 
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. </math>
  
*Wegen der Ausblendeigenschaft der Diracfunktion  verschwindet die AKF für <i>&tau;</i><sub>1</sub>&nbsp;&ne;&nbsp;<i>&tau;</i><sub>2</sub> &nbsp;&#8658;&nbsp; &Delta;<i>t</i> &ne; 0. <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) nennt man das <i>Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum</i>, das von der Verzögerung <i>&tau;</i> (= <i>&tau;</i><sub>1</sub> = <i>&tau;</i><sub>2</sub>) und zusätzlich von der Zeitdifferenz &Delta;<i>t</i> = <i>t</i><sub>1</sub> &ndash; <i>t</i><sub>2</sub> abhängt.<br><br>
+
*Because of the convolution property of the Dirac delta function, the ACF for&nbsp; $\tau_1 \ne \tau_2$ &nbsp; &#8658; &nbsp; $\Delta \tau \ne 0$ disappears.  
  
Beachten Sie, dass hier Autokorrelationsfunktion <i>&phi;</i><sub>VZ</sub>(&Delta;<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) und Leistungsdichtespektrum <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) nicht wie sonst üblich über die Fouriertransformation zusammenhängen, sondern nach obiger Gleichung über eine Diracfunktion verknüpft sind. Nicht alle Symmetrieeigenschaften, die aus dem [http://en.lntwww.de/Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine Wiener&ndash;Chintchine&ndash;Theorem] folgen, sind somit auch hier gegeben. Insbesondere ist es durchaus möglich und sogar sehr wahrscheinlich, dass ein solches Leistungsdichtespektrum eine ungerade Funktion ist.<br>
 
  
In der [http://en.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Vereinfachungen_aufgrund_der_GWSSUS.E2.80.93Voraussetzungen Übersicht] ist  das Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;</i><i>t</i>) oben in der Mitte zu erkennen. Da <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) wie jede beliebige [http://en.lntwww.de/Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort Impulsantwort] die Einheit [1/s] aufweist, hat die Autokorrelationsfunktion
+
*$ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.1cm}$&nbsp; is the&nbsp; &raquo;'''delay&ndash;time's cross power-spectral density'''&laquo;, which depends on the delay&nbsp; $\tau \ (= \tau_1 =\tau_2)$&nbsp; and on the time difference&nbsp; $\Delta t = t_2 - t_1$&nbsp;.
 +
<br>
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Please note:}$&nbsp;
 +
*With this approach, the auto-correlation function&nbsp; $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp; and the power-spectral density &nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $&nbsp; are not connected via the Fourier transform as usual, but are linked via a Dirac delta function:
 +
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. </math>
 +
*Not all symmetry properties that follow from the&nbsp; [[Theory_of_Stochastic_Signals/Power_Density_Spectrum_(PDS)#Wiener-Khintchine_Theorem| $\text{Wiener&ndash;Khintchine theorem}$]]&nbsp; are thus given here.&nbsp; In particular it is quite possible and even very likely that such a power-spectral density is an odd function.}}<br>
 +
 
 +
In the overview in the last section, the&nbsp; &raquo;'''delay&ndash;time's cross power-spectral density'''&laquo;&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $&nbsp; can be seen in the top middle.  
 +
*Since&nbsp; $\eta_{\rm VZ}(\tau, t) $,&nbsp; like any&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Impulse_response|$\text{impulse response}$]],&nbsp; has the unit&nbsp; $\rm [1/s]$&nbsp;, the auto-correlation function has the unit&nbsp; $\rm [1/s^2]$:
  
:<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = {\rm E} \left [ \eta_{\rm VZ}(\tau, t) \cdot  
+
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = {\rm E} \left [ \eta_{\rm VZ}(\tau, t) \cdot  
  \eta_{\rm VZ}^{\star}(\tau + \Delta \tau, t + \Delta t) \right ]</math>
+
  \eta_{\rm VZ}^{\star}(\tau + \Delta \tau, t + \Delta t) \right ].</math>
  
die Einheit [1/s<sup>2</sup>]. Da aber auch die Diracfunktion mit Zeitargument, <i>&delta;</i>(&Delta;<i>&tau;</i>), die Einheit [1/s] aufweist, besitzt das Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) ebenfalls die Einheit [1/s]:
+
*But since the Dirac delta function with the time argument &nbsp; $\delta(\Delta \tau)$ also has the unit&nbsp; $\rm [1/s]$&nbsp; the delay&ndash;time's cross power-spectral density&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $&nbsp; also has the unit $\rm [1/s]$:
  
:<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.</math>
+
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.</math>
  
== AKF und LDS der zeitvarianten Impulsantwort (2) ==
+
== Power-spectral density of the time-variant impulse response==
 
<br>
 
<br>
Zum Verzögerungs&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) kommt man, indem man in der Funktion <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) den zweiten Parameter &Delta;<i>t</i> = 0 setzt. Die Grafik zeigt einen beispielhaften Verlauf.<br>
+
[[File:P ID2170 Mob T 2 3 S3a v2.png|right|frame|Delay's power-spectral density |class=fit]]
 +
One obtains the &nbsp; &raquo;'''delay's power-spectral density'''&laquo; &nbsp; ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; by setting the second parameter of&nbsp; ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp; to&nbsp; $\Delta t = 0$&nbsp;.&nbsp; The graphic on the right shows an exemplary curve.<br>
  
[[File:P ID2170 Mob T 2 3 S3a v2.png|Verzögerungs–Leistungsdichtespektrum|class=fit]]<br>
+
The delay's power-spectral density is a central quantity for the description of the mobile communications channel.&nbsp; This has the following characteristics:
 +
*${\it \Phi}_{\rm V}(\Delta \tau_0)$&nbsp; is a measure for the "power" of those signal components which are delayed by&nbsp; $\tau_0$&nbsp;.&nbsp; For this purpose, an implicit averaging over all Doppler frequencies&nbsp; $(f_{\rm D})$&nbsp; is carried out.<br>
  
Das Verzögerungs&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) ist eine zentrale Größe für die Beschreibung eines Mobilfunkkanals. Es weist folgende Eigenschaften auf:
+
*The delay's power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; has, like&nbsp; ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp;, the unit&nbsp; $\rm [1/s]$. &nbsp; It characterizes the power distribution over all possible delays&nbsp; $\tau$.<br>
*<i>&Phi;</i><sub>V</sub>(<i>&tau;</i><sub>0</sub>) ist ein Maß für die &bdquo;Leistung&rdquo; derjenigen Signalanteile, die um <i>&tau;</i><sub>0</sub> verzögert werden. Es wird hierfür implizit eine Mittelung über alle Dopplerfrequenzen (<i>f</i><sub>D</sub>) vorgenommen.<br>
 
  
*Das Verzögerungs&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) hat wie <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) die Einheit [1/s]. Es charakterisiert die Leistungsverteilung über alle möglichen Verzögerungszeiten <i>&tau;</i>.<br>
+
*In the graphic, the power&nbsp; $ P_0 \approx {\it \Phi}_{\rm V}(\Delta \tau_0)\cdot \Delta \tau$&nbsp; of those signal components that arrive at the receiver via any path with a delay between&nbsp; $\tau_0 \pm \Delta \tau/2$.&nbsp; <br>
  
*In obiger Grafik farblich markiert ist die Leistung <i>P</i><sub>0</sub> &asymp; <i>&Phi;</i><sub>V</sub>(<i>&tau;</i><sub>0</sub>) &middot; &Delta;<i>&tau;</i> solcher Signalanteile, die beim Empfänger über beliebige Pfade mit einer Verzögerung zwischen <i>&tau;</i><sub>0</sub> &plusmn; &Delta;<i>&tau;</i>/2 eintreffen.<br>
+
*Normalizing the power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; in such a way that the area is&nbsp; $1$&nbsp; results in the probability density function&nbsp; $\rm (PDF)$ of the delay time:
  
*Normiert man das Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) derart, dass sich die Fläche 1 ergibt, so erhält man die Wahrscheinlichkeitsdichtefunktion (WDF) der Verzögerungszeit:
+
::<math>{\rm PDF}_{\rm V}(\tau) = \frac{{\it \Phi}_{\rm V}(\tau)}{\int_{0 }^{\infty}{\it \Phi}_{\rm V}(\tau)\hspace{0.15cm}{\rm d}\tau} \hspace{0.05cm}.</math>
  
::<math>{\rm WDF}_{\rm V}(\tau) = \frac{{\it \Phi}_{\rm V}(\tau)}{\int_{0 }^{\infty}{\it \Phi}_{\rm V}(\tau)\hspace{0.15cm}{\rm d}\tau} \hspace{0.05cm}.</math>
+
'''Note on nomenclature''':  
 +
*In the book&nbsp; "Stochastic Signal Theory"&nbsp; we would have denoted this&nbsp; [[Theory_of_Stochastic_Signals/Probability_Density_Function_(PDF)#Definition_of_the_probability_density_function|$\text{probability density function}$]]&nbsp; with $f_\tau(\tau)$.
 +
*To make the relation between&nbsp; ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; and the PDF clear and to avoid confusion with the frequency $f$&nbsp; we use the nomenclature given here.<br>
  
Im Buch &bdquo;Stochastische Signaltheorie&rdquo; hätten wir diese Wahrscheinlichkeitsdichtefunktion mit <i>f<sub>&tau;</sub></i>(<i>&tau;</i>) bezeichnet. Um den Zusammenhang zwischen  <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) und der WDF deutlich werden zu lassen und Verwechslungen mit der Frequenz <i>f</i> zu vermeiden, wurde hier diese Nomenklatur gewählt.<br>
 
  
== Verzögerungsmodelle nach COST 207 ==
+
{{GraueBox|TEXT=
 +
$\text{Example 1: Delay models according to COST 207}$
 
<br>
 
<br>
In den 1990er Jahren gründete die Europäische Union die Arbeitsgruppe COST 207 mit dem Ziel, standardisierte Kanalmodelle für den zellularen Mobilfunk bereitzustellen. Hierbei  steht COST für <i>European Cooperation in Science and Technology</i>.<br>
 
  
In diesem internationalen Gremium wurden vier Profile für die Verzögerungszeit <i>&tau;</i> entwickelt, basierend auf Messungen und gültig für unterschiedliche Anwendungsszenarien. Im Folgenden werden vier verschiedene Verzögerungs&ndash;Leistungsdichtespektren angegeben, wobei stets der  Normierungsfaktor <i>&Phi;</i><sub>0</sub> = <i>&Phi;</i><sub>V</sub>(<i>&tau;</i> = 0) verwendet wird:
+
In the 1990s, the European Union founded the working group COST 207 with the aim to provide standardized channel models for cellular mobile communications.&nbsp; where "COST" stands for&nbsp; "European Cooperation in Science and Technology".<br>
*Profil RA (englisch <i>Rural Area</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; ländliches Gebiet:
 
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}
 
\hspace{0.15cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 0.7\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.109\,{\rm \mu s}\hspace{0.05cm}.</math>
 
  
*Profil TU (englisch <i>Typical Urban</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Städte und Vororte:
+
In this international committee profiles for the delay time&nbsp; $\tau$&nbsp; have been developed, based on measurements and valid for different application scenarios. &nbsp; In the following, four different delay's power-spectral densities are given, where the normalization factor&nbsp; ${\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0)$&nbsp; is always used.&nbsp; The graph shows the PSDs of these profiles in logarithmic representation:
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}
 
\hspace{0.15cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 7\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s}\hspace{0.05cm}.</math>
 
  
*Profil BU (englisch <i>Bad Urban</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; ungünstige Bedingungen in Städten:
+
[[File:P ID2175 Mob T 2 3 S4a v1.png|right|frame|Delay's power-spectral densities according to COST|class=fit]]
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}  
+
 
 +
'''(1)'''&nbsp; profile&nbsp; $\rm RA$&nbsp; ("Rural Area"):
 +
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}
 +
\hspace{0.3cm}\text{for}\hspace{0.2cm} 0 < \tau < 0.7\,{\rm &micro;  s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.109\,{\rm &micro; s}\hspace{0.05cm}.</math>
 +
 
 +
'''(2)'''&nbsp; profile&nbsp; $\rm TU$&nbsp; ("Typical Urban") &nbsp;&nbsp;&#8658;&nbsp;&nbsp; cities and suburbs:
 +
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}
 +
\hspace{0.3cm}\text{for}\hspace{0.2cm} 0 < \tau < 7\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s}\hspace{0.05cm}.</math>
 +
 
 +
'''(3)'''&nbsp; profile&nbsp; $\rm BU$&nbsp; ("Bad Urban") &nbsp;&nbsp;&#8658;&nbsp;&nbsp; unfavourable conditions in cities:
 +
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0}  
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
  0.5 \cdot {\rm e}^{ (5\,{\rm \mu s}-\tau) / \tau_0}  \end{array} \right.\quad
+
  0.5 \cdot {\rm e}^{ (5\,{\rm &micro; s}-\tau) / \tau_0}  \end{array} \right.\quad
\begin{array}{*{1}l} \hspace{-0.05cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 5\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s}\hspace{0.05cm},
+
\begin{array}{*{1}l} \hspace{0.1cm} {\rm for}\hspace{0.3cm} 0 < \tau < 5\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s}\hspace{0.05cm},
\\  \hspace{-0.05cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 5\,{\rm \mu s} < \tau < 10\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s} \hspace{0.05cm}. \\ \end{array}</math>
+
\\  \hspace{0.1cm} {\rm for}\hspace{0.3cm} 5\,{\rm &micro; s} < \tau < 10\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}. \\ \end{array}</math>
  
*Profil HT (englisch <i>Hilly Terrain</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; hügeliges Gebiet und Bergland:
+
'''(4)'''&nbsp; profile&nbsp; $\rm HT$&nbsp; ("Hilly Terrain") &nbsp;&nbsp;&#8658;&nbsp;&nbsp; hilly and mountainous regions:
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}   
+
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0}   
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
  0.04 \cdot {\rm e}^{ (15\,{\rm \mu s}-\tau) / \tau_0}  \end{array} \right.\quad
+
  0.04 \cdot {\rm e}^{ (15\,{\rm &micro; s}-\tau) / \tau_0}  \end{array} \right.\quad
\begin{array}{*{1}l} \hspace{-0.4cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 2\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm \mu s}\hspace{0.05cm},
+
\begin{array}{*{1}l} \hspace{-0.25cm} {\rm for}\hspace{0.3cm} 0 < \tau < 2\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm &micro; s}\hspace{0.05cm},
\\  \hspace{-0.4cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 15\,{\rm \mu s} < \tau < 20\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s} \hspace{0.05cm}. \\ \end{array}</math>
+
\\  \hspace{-0.25cm} {\rm for}\hspace{0.3cm} 15\,{\rm &micro; s} < \tau < 20\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}. \\ \end{array}</math>
 +
 
 +
One can see from the graphics:
 +
*The exponential functions in linear representation now become straight lines.<br>
 +
 
 +
*For logarithmic display, you can read the PSD parameter&nbsp; $\tau_0$&nbsp; for&nbsp; $\rm 10 \cdot lg \ (1/e) = -4.34 \ dB$&nbsp; as shown in the graph for the&nbsp; $\rm TU$ profile.
 +
 
 +
*These four COST profiles are described in the&nbsp; [[Aufgaben:Exercise 2.8: COST Delay Models|"Exercise 2.8"]]&nbsp; in more detail.}}
 +
<br clear =all>
 +
 
 +
== ACF and PSD of the frequency-variant transfer function==
 +
<br>
 +
The system function &nbsp; $\eta_{\rm FD}(f, f_{\rm D})$&nbsp; described in the&nbsp; [[Mobile_Communications/The_GWSSUS channel model#Generalized system functions_of time variant_systems|"overview in the first section of this chapter"]]&nbsp; is also known as the&nbsp; "Frequency-variant Transfer Function"&nbsp; where the adjective&nbsp; "frequency-variant"&nbsp; refers to the Doppler frequency $f_{\rm D}$.
 +
 
 +
The associated auto-correlation function&nbsp; $\rm (ACF)$&nbsp; is defined as follows:
 +
 
 +
::<math>\varphi_{\rm FD}(f_1, f_{\rm D_1}, f_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm FD}(f_1, f_{\rm D_1}) \cdot
 +
\eta_{\rm FZ}^{\star}(f_2, f_{\rm D_2}) \right ]\hspace{0.05cm}. </math>
 +
 
 +
By similar considerations as in the&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model#Power_density_spectrum_of_the_time-variant_impulse_response|"previous section"]]&nbsp; this auto-correlation function can be represented under GWSSUS conditions as follows
 +
 
 +
::<math>\varphi_{\rm FD}(\Delta f, \Delta f_{\rm D}) = \delta(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \hspace{0.05cm}.</math>
 +
 
 +
The following applies:
 +
*${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; is the so-called&nbsp; &raquo;'''frequency&ndash;Doppler's cross power-spectral density'''&laquo;, which is highlighted in the graphic by a yellow background.<br>
 +
 
 +
*The first argument&nbsp; $\Delta f = f_2 - f_1$&nbsp; takes into account that ACF and PSD depend only on the frequency difference due to the&nbsp; "stationarity"&nbsp;.
 +
 +
*The factor&nbsp; $\delta (\Delta f_{\rm D})$&nbsp; with&nbsp; $\Delta f_{\rm D} = f_{\rm D_2} - f_{\rm D_1}$&nbsp; expresses the&nbsp; "uncorrelation of the PSD"&nbsp; with respect to the Doppler shift.<br>
 +
 
 +
*You get from&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; to&nbsp; &raquo;'''Doppler's power-spectral density'''&laquo; &nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; if you set&nbsp; $\Delta f= 0$.&nbsp;
 +
 +
*The Doppler's power-spectral density&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; indicates the power with which individual Doppler frequencies occur.<br>
 +
 
 +
*The&nbsp; probability density function&nbsp; $\rm (PDF)$&nbsp; of the Doppler frequency is obtained from&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; by suitable normalization. &nbsp; The PDF has like&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; the unit&nbsp; $\rm [1/Hz]$.&nbsp;
 +
[[File:P ID2173 Mob T 2 3 S5 v1.png|right|frame|To calculate the Doppler's power-spectral density|class=fit]]
 +
::<math>{\rm PDF}_{\rm D}(f_{\rm D}) = \frac{{\it \Phi}_{\rm D}(f_{\rm D})}{\int_{-\infty }^{+\infty}{\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.15cm}{\rm d}f_{\rm D}} \hspace{0.05cm}.</math>
 +
 
 +
*Often, for example for a vertical monopulse antenna in an isotropically scattered field, the&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; is given by the&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution| $\text{Jakes spectrum}$]]&nbsp;.<br>
 +
 
 +
 
 +
The frequency&ndash;Doppler's cross power-spectral density&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; is highlighted in yellow.&nbsp; The Fourier connections to the neighboring GWSSUS system description functions&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; and&nbsp; ${\it \varphi}_{\rm FZ}(\Delta f, \Delta t)$&nbsp;are also marked.
 +
 
 +
We refer here to the interactive applet&nbsp; [[Applets:The_Doppler_Effect|"The Doppler Effect"]].
 +
<br clear=all>
 +
== ACF and PSD of the delay-Doppler function ==
 +
<br>
 +
The system function shown in the&nbsp; [[Mobile_Communications/The_GWSSUS channel model#Generalized_system functions_of time variant_systems|"overview in the first section of this chapter"]]&nbsp; on the left hand side was named&nbsp; $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp;. &nbsp;
 +
 
 +
The auto-correlation function&nbsp; $\rm (ACF)$&nbsp; of this delay&ndash;Doppler function can be written with&nbsp; $\Delta \tau = \tau_2 - \tau_1$&nbsp; and&nbsp; $\Delta f_{\rm D} = f_{\rm D2} - f_{\rm D1}$&nbsp; taking into account the GWSSUS properties with&nbsp; $\Delta \tau = \tau_2 - \tau_1$&nbsp; and&nbsp; $\Delta f_{\rm D} = f_{\rm D2} - f_{\rm D1}$&nbsp; as follows
 +
 
 +
::<math>\varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = \varphi_{\rm VD}(\Delta \tau, \Delta f_{\rm D}) =
 +
  \delta(\Delta \tau) \cdot {\rm \delta}(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{0.05cm}.</math>
 +
 
 +
It should be noted about this equation:
 +
*The first Dirac delta function&nbsp; $\delta (\Delta \tau)$&nbsp; takes into account that the delays are uncorrelated&nbsp; ("Uncorrelated Scattering").
 +
 +
*The second Dirac delta function&nbsp; $\delta (\Delta f_{\rm D})$&nbsp; follows from the stationarity&nbsp; ("Wide Sense Stationary").<br>
 +
 
 +
*The delay&ndash;Doppler's power-spectral density&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp;, also called &nbsp;&raquo;'''Scatter Function'''&laquo;&nbsp; can be calculated from&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$&nbsp; or&nbsp;${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; as follows:
 +
 
 +
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) ={\rm F}_{\Delta t} \big [ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \big ]
 +
= \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VZ}(\tau, \Delta t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm D} \hspace{0.05cm}\cdot \hspace{0.05cm}\Delta t}\hspace{0.15cm}{\rm d}\Delta t \hspace{0.05cm},</math>
 +
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\rm F}_{f_{\rm D}}^{-1} \big [ {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \big ]
 +
= \int_{-\infty}^{+\infty} {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \cdot {\rm e}^{+{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \tau \hspace{0.05cm}\cdot \hspace{0.05cm} \Delta f}\hspace{0.15cm}{\rm d}\Delta f \hspace{0.05cm}. </math>
 +
 
 +
*Both, the system function&nbsp; $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp; and the derived functions&nbsp; $\varphi _{\rm VD}(\Delta \tau, \Delta f_{\rm D})$&nbsp; and&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$,&nbsp; are dimensionless. &nbsp; For more information on this,&nbsp; see the specification for&nbsp; [[Aufgaben:Exercise 2.6: Dimensions in GWSSUS|"Exercise 2.6"]].
 +
 
 +
*Furthermore, if the GWSSUS requirements are met, the scatter function is equal to the product of the delay's and Doppler's PSDs:
 +
 
 +
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math>
 +
 
 +
[[File:P ID2171 Mob T 2 3 S6 v1.png|right|frame|One-dimensional description functions of the GWSSUS model ]]
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;
 +
 
 +
The figure summarizes the results of this chapter so far.&nbsp; It should be noted: 
 +
 
 +
'''(1)''' &nbsp; The influence of the delay time&nbsp; $\tau$&nbsp; and the Doppler frequency&nbsp; $f_{\rm D}$&nbsp; can be separated 
 +
*into the blue power-spectral density ${\it \Phi}_{\rm V}(\tau)$ 
 +
*and the red power-spectral density ${\it \Phi}_{\rm D}(f_{\rm D})$.<br>
 +
 
 +
 
 +
'''(2)''' &nbsp; The two&ndash;dimensional&nbsp; delay&ndash;Doppler's power-spectral density&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; is equal to the product of these two functions.}}
 +
<br clear=all>
 +
== ACF and PSD of the time-variant transfer function ==
 +
<br>
 +
The following diagram shows all the relationships between the individual power-spectral densities once again in compact form.
 +
[[File:P ID2176 Mob T 2 3 S7 v1.png|right|frame|Compact summary of all GWSSUS description quantities |class=fit]]
 +
This has already been discussed in the last sections:
 +
*the&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model#Autocorrelation_function_of_the_time-variant_impulse_response|$\text{delay&ndash;time's cross-power-spectral density}$]]:
 +
:$${\it \Phi}_{\rm VZ}(\tau, \Delta t)\hspace{0.55cm}\Rightarrow \hspace{0.3cm}\text{with}  \hspace{0.2cm}\Delta t = 0\text{:}  \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau),$$
 +
*the&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model#ACF_and_PSD_of_the_frequency-variant_transfer_function|$\text{frequency&ndash;Doppler's cross-power-spectral density}$]]:
 +
:$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{with}  \hspace{0.2cm}\Delta f = 0\text{:}  \hspace{0.2cm} {\it \Phi}_{\rm D}( f_{\rm D}),$$
 +
*the&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model#ACF_and_PSD_of_the_delay-Doppler_function |$\text{delay&ndash;Doppler's cross-power-spectral density}$ ]]:
 +
:$${\it \Phi}_{\rm VD}(\tau, f_{\rm D})= {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.$$
 +
<br clear=all>
 +
The&nbsp; &raquo;'''frequency&ndash;time's correlation function'''&laquo;&nbsp; (marked yellow in the adjacent graph)&nbsp; has not yet been considered:
 +
 
 +
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot
 +
\eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.</math>
 +
 
 +
Considering again the GWSSUS simplifications and the identity&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t) \equiv H(f, \hspace{0.05cm}t)$, the ACF can be also written with&nbsp; $\Delta f = f_2 - f_1$&nbsp; and&nbsp; $\Delta t = t_2 - t_1$&nbsp; as follows:
 +
 
 +
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t)
 +
= {\rm E} \big [ H(f, t) \cdot
 +
H^{\star}(f + \Delta f, t + \Delta t) \big ]\hspace{0.05cm}.</math>
 +
 
 +
It should be noted in this respect:
 +
*You already can see from the name that&nbsp; $\varphi_{\rm FZ}(\Delta f, \Delta t)$&nbsp; is a correlation function and not a PSD like the functions&nbsp;  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$,&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; and&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$. <br>
 +
 
 +
*The Fourier  relationships  with the neighboring functions are:
 +
 
 +
::<math>{\it \Phi}_{\rm VZ}(\tau, \Delta t)
 +
\hspace{0.2cm}  \stackrel{\tau, \hspace{0.05cm}\Delta f}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \varphi_{\rm FZ}(\Delta f, \hspace{0.05cm}\Delta t)
 +
\hspace{0.2cm}  \stackrel{\Delta t,\hspace{0.05cm} f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm FD}(\Delta f,\hspace{0.05cm} f_{\rm D})
 +
\hspace{0.05cm}.</math>
 +
 
 +
*If you set the parameters&nbsp; $\Delta t = 0$&nbsp; or&nbsp; $\Delta f = 0$&nbsp; in this two&ndash;dimensional function, the separate correlation functions for the frequency domain or the time domain result:
 +
 
 +
:$$\varphi_{\rm F}(\Delta f) =  \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},\hspace{0.5cm}
 +
\varphi_{\rm Z}(\Delta t) =  \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.$$
 +
 
 +
*From the graph it is also clear that these correlation functions correspond to the derived power-spectral  densities via the Fourier transform:
 +
 
 +
::<math>\varphi_{\rm F}(\Delta f) \hspace{0.2cm}  {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm},  
 +
\hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm}  {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math><br>
 +
 
 +
== Parameters of the GWSSUS model==
 +
<br>
 +
According to the results in the last section, the mobile channel is replaced by
 +
*the delay's power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; and<br>
 +
 
 +
*the Doppler's power-spectral density&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$.<br><br>
 +
 
 +
By suitable normalization to the respective area&nbsp; $1$&nbsp; the density functions result with respect to the delay time&nbsp; $\tau$&nbsp; or the Doppler frequency $f_{\rm D}$.<br>
 +
 
 +
Characteristic values can be derived from the power-spectral  densities or the corresponding correlation functions.&nbsp; The most important ones are listed here:
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''Multipath Spread'''&laquo;&nbsp; or &nbsp;&raquo;'''Time Delay Spread'''&laquo;&nbsp; $T_{\rm V}$&nbsp; specifies the spread that a Dirac delta experiences through the channel on statistical average. &nbsp; <br>$T_{\rm V}$&nbsp; is defined as the standard deviation&nbsp; $(\sigma_{\rm V})$&nbsp; the random variable&nbsp; $\tau$:
 +
 
 +
::<math>T_{\rm V} = \sigma_{\rm V} = \sqrt{ {\rm E} \big [ \tau^2 \big ] - m_{\rm V}^2}
 +
  \hspace{0.05cm}.</math>
 +
 
 +
*The mean value&nbsp; $m_{\rm V} = {\rm E}\big[\tau \big]$&nbsp; is an&nbsp; "Average Excess Delay"&nbsp; for all signal components.
 +
 +
*${\rm E} \big [ \tau^2 \big ] $&nbsp; is to be calculated as the root mean square value.}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''Coherence Bandwidth'''&laquo;&nbsp; $B_{\rm K}$&nbsp; &nbsp;is the&nbsp; $\Delta f$&nbsp; value at which the frequency's correlation function has dropped to half of its value for the first time.
 +
 
 +
::<math>\vert \varphi_{\rm F}(\Delta f = B_{\rm K})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm F}(\Delta f = 0)\vert \hspace{0.05cm}.</math>
 +
 
 +
*$B_{\rm K}$&nbsp; is a measure of the minimum frequency difference by which two harmonic oscillations must differ in order to have completely different channel transmission characteristics.
 +
 +
*If the signal bandwidth is&nbsp; $B_{\rm S} <B_{\rm K}$, then all spectral components are changed in approximately the same way by the channel. <br>This means: &nbsp; '''Precisely then there is a non-frequency selective fading'''.}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; The graphic on the left side shows the delay's power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$
 +
[[File:P ID2177 Mob T 2 3 S8 v3.png|right|frame|Multipath spread and coherence bandwidth|class=fit]]
 +
*with&nbsp; $T_{\rm V} = 1 \ \rm &micro;s$&nbsp; (red curve),
 +
*with&nbsp; $T_{\rm V} = 2 \ \rm &micro;s$&nbsp; (blue curve).
 +
 
  
Die Grafik zeigt die Verzögerungs&ndash;Leistungsdichte dieser Profile in logarithmischer Darstellung. Aus den Exponentialfunktionen bei linearer Darstellung werden nun geradlinige Verläufe.<br>
+
In the right&ndash;hand&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; representation, the coherence bandwidths are drawn in:
 +
*$B_{\rm K} = 276 \ \rm kHz$&nbsp; (red curve),
 +
*$B_{\rm K} = 138 \ \rm kHz$&nbsp; (blue curve).
 +
<br clear=all>
 +
You can see from these numerical values:
 +
*The multipath spread&nbsp; $T_{\rm V}$,&nbsp; obtainable from &nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp;, and the coherence bandwidth&nbsp; $B_{\rm K}$,&nbsp; determined by&nbsp; $\varphi_{\rm F}(\Delta f)$,&nbsp; stand in a fixed relation to each other: &nbsp;
 +
:$$B_{\rm K} \approx 0.276/T_{\rm V}.$$
 +
*The often&nbsp; [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications#Coherence_bandwidth_as_a_function_of_M|$\text{used approximation}$]]&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 1/T_{\rm V}$&nbsp; is very inaccurate at exponential&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp;.}}
  
[[File:P ID2175 Mob T 2 3 S4a v1.png|Verzögerungs–Leistungsdichte nach COST|class=fit]]<br>
 
  
Bei dieser logarithmischen Darstellung kann man den LDS&ndash;Parameter <i>&tau;</i><sub>0</sub> bei 10 &middot lg(1/e) = &ndash;4.34 dB ablesen, wie in der Grafik für das TU-Profil eingezeichnet.  Auf diese vier COST&ndash;Profile wird in der Aufgabe A2.8 noch genauer eingegangen.
+
Let us now consider the time variance characteristics derived from the time correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; or from the Doppler's power-spectral density&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp;:
  
== AKF und LDS der frequenzvarianten Übertragungsfunktion ==
+
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''Correlation Time'''&laquo;&nbsp; $T_{\rm D}$&nbsp;  specifies the average time that must elapse until the channel has completely changed its transmission properties due to the time variance.&nbsp; Its definition is similar to the definition of the coherence bandwidth:
 +
 
 +
::<math>\vert \varphi_{\rm Z}(\Delta t = T_{\rm D})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm Z}(\Delta t = 0)\vert  \hspace{0.05cm}.</math>}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''Doppler Spread'''&laquo; &nbsp;$B_{\rm D}$&nbsp; is the average frequency broadening that the individual spectral signal components experience. &nbsp; The calculation is similar to multipath broadening in that the Doppler spread&nbsp; $B_{\rm D}$&nbsp; is calculated as the standard deviation of the random quantity $f_{\rm D}$&nbsp;:
 +
 
 +
::<math>B_{\rm D} = \sigma_{\rm D} = \sqrt{ {\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2}
 +
  \hspace{0.05cm}.</math>
 +
 
 +
*First of all, the Doppler PDF is to be determined from&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; through area normalization to&nbsp; $1$.&nbsp;
 +
 
 +
*This results in the mean Doppler shift&nbsp; $m_{\rm D} = {\rm E}[f_{\rm D}]$&nbsp; and the standard deviation&nbsp; $\sigma_{\rm D}$.}}<br>
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; The diagram is valid for a time&ndash;variant channel without direct component.&nbsp; Shown on the left is the&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#ACF_and_PSD_with_Rayleigh.E2.80.93Fading|$\text{Jakes spectrum}$]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$.
 +
[[File:P ID2181 Mob T 2 3 S8b v1.png|right|frame|Doppler spread and correlation time|class=fit]]
 +
The Doppler spread&nbsp; $B_{\rm D}$&nbsp; can be determined from this:
 +
 
 +
::<math>f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz}  \hspace{0.05cm},</math>
 +
::<math>f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz}  \hspace{0.05cm}.</math>
 +
 
 +
The time correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp;  is sketched on the right, as the Fourier transform of&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp;.
 +
 
 +
This can be expressed for given boundary conditions with the Bessel function&nbsp; ${\rm J}_0()$&nbsp; as:
 +
::<math>\varphi_{\rm Z}(\Delta t \hspace{-0.05cm} = \hspace{-0.05cm}T_{\rm D}) \hspace{-0.05cm}= \hspace{-0.05cm} {\rm J}_0(2 \pi \hspace{-0.05cm} \cdot \hspace{-0.05cm} f_{\rm D,\hspace{0.1cm}max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\Delta t ).</math>
 +
 +
*The correlation duration of the blue curve is&nbsp; $T_{\rm D} = 4.84 \ \rm ms$.
 +
 +
*For&nbsp; $f_{\rm D,\hspace{0.1cm}max} = 100\,{\rm Hz}$&nbsp; the correlation duration is only half.
 +
 
 +
*In this case, it generally applies: &nbsp; $B_{\rm D} \cdot T_{\rm D}\approx 0.17$.}}
 +
<br clear=all>
 +
== Simulation according to the GWSSUS model ==
 
<br>
 
<br>
Die in der [http://en.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.281.29 Grafik] auf der ersten Seite dieses Kapitels unten dargestellte Systemfunktion <i>&eta;</i><sub>FD</sub>(<i>f</i>, <i>f</i><sub>D</sub>) wird auch frequenzvariante Übertragungsfunktion genannt, wobei sich das Adjektiv &bdquo;frequenzvariant&rdquo; auf die Dopplerfrequenz bezieht. Die dazugehörige AKF ist wie folgt definiert:
+
The&nbsp; &raquo;'''Monte&ndash;Carlo method'''&laquo;,&nbsp; here described for the simulation of a GWSSUS mobile communication channel, is based on work by Rice&nbsp; [Ric44]<ref name='Ric44'>Rice, S.O.:&nbsp; Mathematical Analysis of Random Noise.&nbsp; BSTJ–23, pp. 282–332 und BSTJ–24, pp. 45–156, 1945.</ref>&nbsp; and&nbsp; Höher [Höh90]<ref name='Höh90'>Höher, P.:&nbsp; Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung.&nbsp; Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.</ref>.
 +
 
 +
*The two&ndash;dimensional impulse response is represented by a sum of&nbsp; $M$&nbsp; complex exponential functions.&nbsp; $M$&nbsp; can be interpreted as the number of different paths:
 +
 
 +
::<math>h(\tau,\ t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M}  \alpha_m  \cdot \delta (t - \tau_m) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}  \phi_{m} }\cdot {\rm e}^{ {\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m}      t}
 +
\hspace{0.05cm}. </math>
 +
 
 +
*First, the delays&nbsp; $\tau_m$,&nbsp; the attenuation factors&nbsp; $\alpha_m$,&nbsp; the equally distributed phases&nbsp; $\phi_m$&nbsp; and the Doppler frequencies&nbsp; $f_{{\rm D},\hspace{0.1cm} m}$&nbsp; will be randomly generated according to the GWSSUS specifications.&nbsp; The base for the random generation of the Doppler frequencies&nbsp; $f_{{\rm D},\hspace{0.1cm} m}$&nbsp; is the&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution| $\text{Jakes spectrum}$]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$,&nbsp;which, appropiately normalized, simultaneously indicates the probability density function&nbsp; $\rm (PDF)$&nbsp; of the Doppler frequencies.<br>
 +
 
 +
*Because of&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; the delay time&nbsp; $\tau_m$&nbsp; is independent of the Doppler frequency&nbsp; $f_{{\rm D},\hspace{0.1cm} m}$&nbsp; for all&nbsp; $m$.&nbsp; This is valid with good approximation for terrestrial land mobile communication.&nbsp; For the random generation of the parameters&nbsp; $\alpha_m$&nbsp; and&nbsp; $\tau_m$,&nbsp; which determine the delay&ndash;power-spectral density &nbsp;$ {\it \Phi}_{\rm V}(\tau)$&nbsp; the following&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model#Power_density_spectrum_of_the_time-variant_impulse_response|$\text{COST profiles}$]]&nbsp; are available: &nbsp; $\rm RA$&nbsp; ("Rural Area"),&nbsp; $\rm TU$&nbsp; ("Typical Urban"),&nbsp; $\rm BU$&nbsp; ("Bad Urban")&nbsp; and&nbsp; $\rm HT$&nbsp; ("Hilly Terrain"). <br>
 +
 
 +
*The greater the number  of different paths &nbsp; $M$&nbsp; is chosen for the simulation, the better a real impulse response is approximated by the above equation.&nbsp; However, the higher accuracy of the simulation is at the expense of its duration.&nbsp; In the literature, favorable values are given for $M$&nbsp; between&nbsp; $100$&nbsp; and&nbsp; $600$&nbsp;. <br>
 +
 
 +
 
 +
[[File:P ID2183 Mob T 2 3 S9a.png|right|frame|Time-variant  transfer function&nbsp; $($the absolute value squared is&nbsp; simulated$)$]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; The graphic from&nbsp; [Hin08]<ref name='Hin08'>Hindelang, T.:&nbsp; Mobile Communications.&nbsp;
 +
Lecture notes. Institute for Communications Engineering. Munich: Technical University of Munich, 2008.</ref>&nbsp;  shows a simulation result: &nbsp; &nbsp; $20 \cdot \lg \vert H(f, \hspace{0.1cm}t)\vert$&nbsp; is shown as a 2D plot, where the time-variant transfer function&nbsp; $H(f, \hspace{0.1cm}t)$&nbsp; is also referred to as&nbsp; $\eta_{\rm FZ}(f, \hspace{0.1cm}t)$&nbsp; in this tutorial.<br>
  
:<math>\varphi_{\rm FD}(f_1, f_{\rm D_1}, f_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm FD}(f_1, f_{\rm D_1}) \cdot
+
The simulation is based on the following parameters:
  \eta_{\rm FZ}^{\star}(f_2, f_{\rm D_2}) \right ]\hspace{0.05cm}. </math>
+
*The time variance results from a movement with&nbsp; $v = 3 \ \rm km/h$.
 +
   
 +
*The carrier frequency is&nbsp; $f_{\rm T} = 2 \ \rm GHz$.<br>
  
Durch ähnliche Überlegungen wie auf der letzten Seite kann man diese Autokorrelationsfunktion unter GWSSUS&ndash;Bedingungen wie folgt darstellen:
+
*The maximum delay time is&nbsp; $\tau_{\rm max} \approx 0.4 \ \rm &micro; s$.
  
:<math>\varphi_{\rm FD}(\Delta f, \Delta f_{\rm D}) = \delta(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \hspace{0.05cm}.</math>
+
* According to the approximation we obtain the coherence bandwidth&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 2.5 \ \rm MHz$.<br>
  
Dabei gilt:
+
*The maximum Doppler frequency is&nbsp; $f_\text{D, max} \approx 5.5 \ \rm Hz$.
*<i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>, <i>f</i><sub>D</sub>) ist das sogenannte <i>Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum</i>, das in der Grafik am Seitenende durch gelbe Hinterlegung hervorgehoben ist.<br>
 
  
*Das erste Argument &Delta;<i>f</i> = <i>f</i><sub>2</sub> &ndash; <i>f</i><sub>1</sub> berücksichtigt, dass aufgrund der <i>Stationarität</i> die AKF und das LDS nur von der Frequenzdifferenz abhängen.<br>
+
* The Doppler spread results in&nbsp; $B_{\rm D} \approx 4 \ \rm Hz$.}}
 +
<br clear=all>
  
*Der Faktor <i>&delta;</i>(&Delta;<i>f</i><sub>D</sub>) mit  &Delta;<i>f</i><sub>D</sub> = <i>f</i><sub>D</sub><sub>2</sub> &ndash; <i>f</i><sub>D</sub><sub>1</sub> drückt die <i>Unkorreliertheit</i> der AKF bezüglich der Dopplerverschiebung aus.<br>
+
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise 2.5: Scatter Function]]
  
*Man kommt von <i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>,&nbsp;<i>f</i><sub>D</sub>)&nbsp;zum Doppler&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>), wenn man <nobr>&Delta;<i>f</i> = 0</nobr> setzt. <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) gibt an, mit welcher Leistung einzelne Dopplerfrequenzen auftreten.<br>
+
[[Aufgaben:Exercise 2.5Z: Multi-Path Scenario]]
  
*Die <i>Wahrscheinlichkeitsdichte</i> der Dopplerfrequenz ergibt sich aus <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) durch geeignete Flächennormierung. Diese weist wie <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) die Einheit [1/Hz] auf:
+
[[Aufgaben:Exercise 2.6: Dimensions in GWSSUS]]
  
::<math>{\rm WDF}_{\rm D}(f_{\rm D}) = \frac{{\it \Phi}_{\rm D}(f_{\rm D})}{\int_{-\infty }^{+\infty}{\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.15cm}{\rm d}f_{\rm D}} \hspace{0.05cm}.</math>
+
[[Aufgaben:Exercise 2.7: Coherence Bandwidth]]
  
*In vielen Fällen, so zum Beispiel für eine vertikale Monopulsantenne im isotrop gestreuten Feld, ist <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) durch das [http://en.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading Jakes&ndash;Spektrum] gegeben.<br><br>
+
[[Aufgaben:Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel]]
  
Das <i>Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum</i> <nobr><i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>, <i>f</i><sub>D</sub>)</nobr> ist in der folgenden Grafik gelb hinterlegt.<br>
+
[[Aufgaben:Exercise 2.8: COST Delay Models]]
  
[[File:P ID2173 Mob T 2 3 S5 v1.png|Zur Berechnung des Doppler–Leistungsdichtespektrums|class=fit]]<br>
+
[[Aufgaben:Exercise 2.9: Coherence Time]]
  
Eingezeichnet sind in dieser Grafik auch die Fourierzusammenhänge zu den benachbarten GWSSUS&ndash;Systembeschreibungsfunktionen.<br>
+
==References==
Wir verweisen hier auf das folgende Interaktionsmodul:<br>
 
[[Zur Verdeutlichung des Dopplereffekts Please add link and do not upload flash videos.]]
 
  
 +
<references/>
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:38, 30 January 2023

Generalized system functions of time variant-systems


Linear time-invariant systems  $\rm (LTI)$  can be completely described with only two system functions,

  • the transfer function  $H(f)$  and
  • the impulse response  $h(t)$   ⇒   after renaming   $h(\tau)$.


In contrast, four different functions are possible with time-variant systems  $\rm (LTV)$ .  A formal distinction of these functions with regard to time and frequency domain representation by lowercase and uppercase letters is thus excluded.

Therefore a nomenclature change will be made, which can be formalized as follows:

  • The four possible system functions are uniformly denoted by  $\boldsymbol{\eta}_{12}$ .
  • The first subindex is either a  $\boldsymbol{\rm V}$  $($because of German  $\rm V\hspace{-0.05cm}$erzögerung   ⇒   delay time  $\tau)$  or  a  $\boldsymbol{\rm F}$  $($frequency  $f)$.
  • Either a  $\boldsymbol{\rm Z}$  $($because of German  $\rm Z\hspace{-0.05cm}$eit   ⇒   time  $t)$  or a  $\boldsymbol{\rm D}$  $($Doppler frequency  $f_{\rm D})$  is possible as the second subindex.
Relation between the four system functions


Since, in contrast to line-based transmission, the system functions of mobile communications cannot be described deterministically, but are statistical variables, the corresponding correlation functions must be considered later on. 

In the following, we will refer to these as  $\boldsymbol{\varphi}_{12}$,  and use the same indices as for the system functions  $\boldsymbol{\eta}_{12}$.

  • These formalized designations are inscribed in the graphic in blue letters.
  • Additionally, the designations used in other chapters or literature are given  (gray letters).  In the other chapters these are also partly used.


${\rm (1)}$   At the top you can see the  »time-variant impulse response«   ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t) \equiv h(\tau,\hspace{0.05cm} t)$  in the  "delay–time range".  The associated auto-correlation function  $\rm (ACF)$  is

\[\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \big[ \eta_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \big]\hspace{0.05cm}. \]

${\rm (2)}$  For the  "frequency–time representation"  you get the  »time-variant transfer function«   ${\eta}_{\rm FZ}(f,\hspace{0.05cm} t) \equiv H(f,\hspace{0.05cm} t)$. 
         The Fourier transform with respect to  $\tau$  is represented in the graph by  ${\rm F}_\tau\hspace{0.05cm}[ \cdot ]$ .  The Fourier integral is written out in full:

\[\eta_{\rm FZ}(f, \hspace{0.05cm} t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau,\hspace{0.05cm} t) \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}, \hspace{0.3cm} \text{kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t) \hspace{0.05cm}.\]
The ACF of this time-variant transfer function is generally:
\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \big [ \eta_{\rm FZ}(f_1, t_1) \cdot \eta_{\rm FZ}^{\star}(f_2, t_2) \big ]\hspace{0.05cm}.\]

${\rm (3)}$  The  »Scatter–Function«  ${\eta}_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) \equiv s(\tau,\hspace{0.05cm} f_{\rm D})$  corresponding to the left block describes the mobile communications channel in the  "delay–Doppler area".  
         $f_{\rm D}$  describes the  $\text{Doppler frequency}$.   The scatter function results from  ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t)$  through Fourier transformation with respect to the second parameter  $t$:

\[ \eta_{\rm VD}(\tau, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ] \hspace{0.05cm}.\]

${\rm (4)}$  Finally, we consider the so-called  »frequency-variant transfer function«  $\eta_{\rm FD}(f, f_{\rm D})$, i.e. the  "frequency–Doppler representation". 
         According to the graph, this can be reached in two ways:

$$\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},\hspace{0.5cm}\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$

$\text{Notes:}$ 

  • The specified Fourier correlations between the system functions in the graph are illustrated by the outer, dark green arrows and are marked with   ${\rm F}_p\hspace{0.05cm}[\hspace{0.05cm} \cdot \hspace{0.05cm}]$ , 
    the index  $p$  indicates to which parameter  $\tau$,  $f$,  $t$  or  $f_{\rm D}$  does the Fourier transformation refer.
  • The inner  (lighter)  arrows indicate the links via the  $\text{inverse Fourier transform}$.   For this we use the notation  ${ {\rm F}_p}^{-1}\hspace{0.05cm}[ \hspace{0.05cm} \cdot \hspace{0.05cm} ]$.
  • The applet  "Impulses and Spectra" illustrates the connection between the time and frequency domain, which can be described by formulas using Fourier transformation and Fourier inverse transformation.


Simplifications due to the GWSSUS requirements


The general relationship between the four system functions is very complicated due to non-stationary effects.

Connections between the description functions of the GWSSUS model

Compared to the general model, some limitations have to be made in order to arrive at a suitable model for the mobile communications channel from which relevant statements for practical applications can be derived.

The following definitions lead to the  $\rm GWSSUS$ model 
$( \rm G$aussian  $\rm W$ide  $\rm S$ense  $\rm S$tationary  $\rm U$ncorrelated  $\rm S$cattering$)$:

  • The random process of the channel impulse response  $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$  is generally assumed to be complex  (i.e., description in the equivalent low-pass range),  Gaussian  $($identifier  $\rm G)$  and zero-mean  (Rayleigh, not Rice, that means, no line of sight) .
  • The random process is weakly stationary  ⇒   its characteristics change only slightly with time, and the ACF  $ {\varphi}_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1,\hspace{0.05cm}\tau_2,\hspace{0.05cm} t_2)$  of the time-variant impulse response does not depend on the absolute times  $t_1$  and  $t_2$  but only on the time difference  $\Delta t = t_2 - t_1$.   This is indicated by the identifier  $\rm WSS$    ⇒   $\rm W$ide $\rm S$ense $\rm S$tationary.
  • The individual echoes due to multipath propagation are uncorrelated, which is expressed by the identifier  $\rm US$   ⇒   $\rm U$ncorrelated $\rm S$cattering.


The mobile communications channel can be described in full according to this graph.  The individual power-spectral densities  (labeled blue)  and the correlation function  (labeled red)  is explained in detail in the following sections.


Auto-correlation function of the time-variant impulse response


We now consider the  $\text{auto-correlation function}$  $\rm (ACF)$  of the time-variant impulse response   ⇒   $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$  more closely.  It shows:

  • Based on the  $\rm WSS$ property, the auto-correlation function can be written with  $\Delta t = t_2 - t_1$ :
\[\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = \varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t)\hspace{0.05cm}.\]
  • Since the echoes were assumed to be independent of each other  $\rm (US$ property$)$, the impulse response can be assumed to be uncorrelated with respect to the delays  $\tau_1$  and  $\tau_2$.  Then:
\[\varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t) = 0 \hspace{0.35cm}{\rm f\ddot{u}r}\hspace{0.35cm} \tau_1 \ne \tau_2\hspace{0.05cm}. \]
  • If one now replaces  $\tau_1$  with  $\tau$  and  $\tau_2$  with  $\tau + \Delta \tau$, this auto-correlation function can be represented in the following way:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. \]
  • Because of the convolution property of the Dirac delta function, the ACF for  $\tau_1 \ne \tau_2$   ⇒   $\Delta \tau \ne 0$ disappears.


  • $ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.1cm}$  is the  »delay–time's cross power-spectral density«, which depends on the delay  $\tau \ (= \tau_1 =\tau_2)$  and on the time difference  $\Delta t = t_2 - t_1$ .


$\text{Please note:}$ 

  • With this approach, the auto-correlation function  $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$  and the power-spectral density   ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  are not connected via the Fourier transform as usual, but are linked via a Dirac delta function:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. \]
  • Not all symmetry properties that follow from the  $\text{Wiener–Khintchine theorem}$  are thus given here.  In particular it is quite possible and even very likely that such a power-spectral density is an odd function.


In the overview in the last section, the  »delay–time's cross power-spectral density«  ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  can be seen in the top middle.

  • Since  $\eta_{\rm VZ}(\tau, t) $,  like any  $\text{impulse response}$,  has the unit  $\rm [1/s]$ , the auto-correlation function has the unit  $\rm [1/s^2]$:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = {\rm E} \left [ \eta_{\rm VZ}(\tau, t) \cdot \eta_{\rm VZ}^{\star}(\tau + \Delta \tau, t + \Delta t) \right ].\]
  • But since the Dirac delta function with the time argument   $\delta(\Delta \tau)$ also has the unit  $\rm [1/s]$  the delay–time's cross power-spectral density  ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  also has the unit $\rm [1/s]$:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.\]

Power-spectral density of the time-variant impulse response


Delay's power-spectral density

One obtains the   »delay's power-spectral density«   ${\it \Phi}_{\rm V}(\Delta \tau)$  by setting the second parameter of  ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$  to  $\Delta t = 0$ .  The graphic on the right shows an exemplary curve.

The delay's power-spectral density is a central quantity for the description of the mobile communications channel.  This has the following characteristics:

  • ${\it \Phi}_{\rm V}(\Delta \tau_0)$  is a measure for the "power" of those signal components which are delayed by  $\tau_0$ .  For this purpose, an implicit averaging over all Doppler frequencies  $(f_{\rm D})$  is carried out.
  • The delay's power-spectral density  ${\it \Phi}_{\rm V}(\Delta \tau)$  has, like  ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$ , the unit  $\rm [1/s]$.   It characterizes the power distribution over all possible delays  $\tau$.
  • In the graphic, the power  $ P_0 \approx {\it \Phi}_{\rm V}(\Delta \tau_0)\cdot \Delta \tau$  of those signal components that arrive at the receiver via any path with a delay between  $\tau_0 \pm \Delta \tau/2$. 
  • Normalizing the power-spectral density  ${\it \Phi}_{\rm V}(\Delta \tau)$  in such a way that the area is  $1$  results in the probability density function  $\rm (PDF)$ of the delay time:
\[{\rm PDF}_{\rm V}(\tau) = \frac{{\it \Phi}_{\rm V}(\tau)}{\int_{0 }^{\infty}{\it \Phi}_{\rm V}(\tau)\hspace{0.15cm}{\rm d}\tau} \hspace{0.05cm}.\]

Note on nomenclature:

  • In the book  "Stochastic Signal Theory"  we would have denoted this  $\text{probability density function}$  with $f_\tau(\tau)$.
  • To make the relation between  ${\it \Phi}_{\rm V}(\Delta \tau)$  and the PDF clear and to avoid confusion with the frequency $f$  we use the nomenclature given here.


$\text{Example 1: Delay models according to COST 207}$

In the 1990s, the European Union founded the working group COST 207 with the aim to provide standardized channel models for cellular mobile communications.  where "COST" stands for  "European Cooperation in Science and Technology".

In this international committee profiles for the delay time  $\tau$  have been developed, based on measurements and valid for different application scenarios.   In the following, four different delay's power-spectral densities are given, where the normalization factor  ${\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0)$  is always used.  The graph shows the PSDs of these profiles in logarithmic representation:

Delay's power-spectral densities according to COST

(1)  profile  $\rm RA$  ("Rural Area"):

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.3cm}\text{for}\hspace{0.2cm} 0 < \tau < 0.7\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.109\,{\rm µ s}\hspace{0.05cm}.\]

(2)  profile  $\rm TU$  ("Typical Urban")   ⇒   cities and suburbs:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.3cm}\text{for}\hspace{0.2cm} 0 < \tau < 7\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s}\hspace{0.05cm}.\]

(3)  profile  $\rm BU$  ("Bad Urban")   ⇒   unfavourable conditions in cities:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\ 0.5 \cdot {\rm e}^{ (5\,{\rm µ s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}l} \hspace{0.1cm} {\rm for}\hspace{0.3cm} 0 < \tau < 5\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s}\hspace{0.05cm}, \\ \hspace{0.1cm} {\rm for}\hspace{0.3cm} 5\,{\rm µ s} < \tau < 10\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \\ \end{array}\]

(4)  profile  $\rm HT$  ("Hilly Terrain")   ⇒   hilly and mountainous regions:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\ 0.04 \cdot {\rm e}^{ (15\,{\rm µ s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}l} \hspace{-0.25cm} {\rm for}\hspace{0.3cm} 0 < \tau < 2\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm µ s}\hspace{0.05cm}, \\ \hspace{-0.25cm} {\rm for}\hspace{0.3cm} 15\,{\rm µ s} < \tau < 20\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \\ \end{array}\]

One can see from the graphics:

  • The exponential functions in linear representation now become straight lines.
  • For logarithmic display, you can read the PSD parameter  $\tau_0$  for  $\rm 10 \cdot lg \ (1/e) = -4.34 \ dB$  as shown in the graph for the  $\rm TU$ profile.
  • These four COST profiles are described in the  "Exercise 2.8"  in more detail.


ACF and PSD of the frequency-variant transfer function


The system function   $\eta_{\rm FD}(f, f_{\rm D})$  described in the  "overview in the first section of this chapter"  is also known as the  "Frequency-variant Transfer Function"  where the adjective  "frequency-variant"  refers to the Doppler frequency $f_{\rm D}$.

The associated auto-correlation function  $\rm (ACF)$  is defined as follows:

\[\varphi_{\rm FD}(f_1, f_{\rm D_1}, f_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm FD}(f_1, f_{\rm D_1}) \cdot \eta_{\rm FZ}^{\star}(f_2, f_{\rm D_2}) \right ]\hspace{0.05cm}. \]

By similar considerations as in the  "previous section"  this auto-correlation function can be represented under GWSSUS conditions as follows

\[\varphi_{\rm FD}(\Delta f, \Delta f_{\rm D}) = \delta(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \hspace{0.05cm}.\]

The following applies:

  • ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  is the so-called  »frequency–Doppler's cross power-spectral density«, which is highlighted in the graphic by a yellow background.
  • The first argument  $\Delta f = f_2 - f_1$  takes into account that ACF and PSD depend only on the frequency difference due to the  "stationarity" .
  • The factor  $\delta (\Delta f_{\rm D})$  with  $\Delta f_{\rm D} = f_{\rm D_2} - f_{\rm D_1}$  expresses the  "uncorrelation of the PSD"  with respect to the Doppler shift.
  • You get from  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  to  »Doppler's power-spectral density«   ${\it \Phi}_{\rm D}(f_{\rm D})$  if you set  $\Delta f= 0$. 
  • The Doppler's power-spectral density  ${\it \Phi}_{\rm D}(f_{\rm D})$  indicates the power with which individual Doppler frequencies occur.
  • The  probability density function  $\rm (PDF)$  of the Doppler frequency is obtained from  ${\it \Phi}_{\rm D}(f_{\rm D})$  by suitable normalization.   The PDF has like  ${\it \Phi}_{\rm D}(f_{\rm D})$  the unit  $\rm [1/Hz]$. 
To calculate the Doppler's power-spectral density
\[{\rm PDF}_{\rm D}(f_{\rm D}) = \frac{{\it \Phi}_{\rm D}(f_{\rm D})}{\int_{-\infty }^{+\infty}{\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.15cm}{\rm d}f_{\rm D}} \hspace{0.05cm}.\]
  • Often, for example for a vertical monopulse antenna in an isotropically scattered field, the  ${\it \Phi}_{\rm D}(f_{\rm D})$  is given by the  $\text{Jakes spectrum}$ .


The frequency–Doppler's cross power-spectral density  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  is highlighted in yellow.  The Fourier connections to the neighboring GWSSUS system description functions  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  and  ${\it \varphi}_{\rm FZ}(\Delta f, \Delta t)$ are also marked.

We refer here to the interactive applet  "The Doppler Effect".

ACF and PSD of the delay-Doppler function


The system function shown in the  "overview in the first section of this chapter"  on the left hand side was named  $\eta_{\rm VD}(\tau, f_{\rm D})$ .  

The auto-correlation function  $\rm (ACF)$  of this delay–Doppler function can be written with  $\Delta \tau = \tau_2 - \tau_1$  and  $\Delta f_{\rm D} = f_{\rm D2} - f_{\rm D1}$  taking into account the GWSSUS properties with  $\Delta \tau = \tau_2 - \tau_1$  and  $\Delta f_{\rm D} = f_{\rm D2} - f_{\rm D1}$  as follows

\[\varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = \varphi_{\rm VD}(\Delta \tau, \Delta f_{\rm D}) = \delta(\Delta \tau) \cdot {\rm \delta}(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{0.05cm}.\]

It should be noted about this equation:

  • The first Dirac delta function  $\delta (\Delta \tau)$  takes into account that the delays are uncorrelated  ("Uncorrelated Scattering").
  • The second Dirac delta function  $\delta (\Delta f_{\rm D})$  follows from the stationarity  ("Wide Sense Stationary").
  • The delay–Doppler's power-spectral density  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$ , also called  »Scatter Function«  can be calculated from  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$  or ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  as follows:
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) ={\rm F}_{\Delta t} \big [ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \big ] = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VZ}(\tau, \Delta t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm D} \hspace{0.05cm}\cdot \hspace{0.05cm}\Delta t}\hspace{0.15cm}{\rm d}\Delta t \hspace{0.05cm},\]
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\rm F}_{f_{\rm D}}^{-1} \big [ {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \big ] = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \cdot {\rm e}^{+{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \tau \hspace{0.05cm}\cdot \hspace{0.05cm} \Delta f}\hspace{0.15cm}{\rm d}\Delta f \hspace{0.05cm}. \]
  • Both, the system function  $\eta_{\rm VD}(\tau, f_{\rm D})$  and the derived functions  $\varphi _{\rm VD}(\Delta \tau, \Delta f_{\rm D})$  and  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$,  are dimensionless.   For more information on this,  see the specification for  "Exercise 2.6".
  • Furthermore, if the GWSSUS requirements are met, the scatter function is equal to the product of the delay's and Doppler's PSDs:
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.\]
One-dimensional description functions of the GWSSUS model

$\text{Conclusion:}$ 

The figure summarizes the results of this chapter so far.  It should be noted:

(1)   The influence of the delay time  $\tau$  and the Doppler frequency  $f_{\rm D}$  can be separated

  • into the blue power-spectral density ${\it \Phi}_{\rm V}(\tau)$
  • and the red power-spectral density ${\it \Phi}_{\rm D}(f_{\rm D})$.


(2)   The two–dimensional  delay–Doppler's power-spectral density  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  is equal to the product of these two functions.


ACF and PSD of the time-variant transfer function


The following diagram shows all the relationships between the individual power-spectral densities once again in compact form.

Compact summary of all GWSSUS description quantities

This has already been discussed in the last sections:

$${\it \Phi}_{\rm VZ}(\tau, \Delta t)\hspace{0.55cm}\Rightarrow \hspace{0.3cm}\text{with} \hspace{0.2cm}\Delta t = 0\text{:} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau),$$
$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{with} \hspace{0.2cm}\Delta f = 0\text{:} \hspace{0.2cm} {\it \Phi}_{\rm D}( f_{\rm D}),$$
$${\it \Phi}_{\rm VD}(\tau, f_{\rm D})= {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.$$


The  »frequency–time's correlation function«  (marked yellow in the adjacent graph)  has not yet been considered:

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.\]

Considering again the GWSSUS simplifications and the identity  $\eta_{\rm FZ}(f, \hspace{0.05cm}t) \equiv H(f, \hspace{0.05cm}t)$, the ACF can be also written with  $\Delta f = f_2 - f_1$  and  $\Delta t = t_2 - t_1$  as follows:

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t) = {\rm E} \big [ H(f, t) \cdot H^{\star}(f + \Delta f, t + \Delta t) \big ]\hspace{0.05cm}.\]

It should be noted in this respect:

  • You already can see from the name that  $\varphi_{\rm FZ}(\Delta f, \Delta t)$  is a correlation function and not a PSD like the functions  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$,  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  and  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$.
  • The Fourier relationships with the neighboring functions are:
\[{\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.2cm} \stackrel{\tau, \hspace{0.05cm}\Delta f}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \varphi_{\rm FZ}(\Delta f, \hspace{0.05cm}\Delta t) \hspace{0.2cm} \stackrel{\Delta t,\hspace{0.05cm} f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm FD}(\Delta f,\hspace{0.05cm} f_{\rm D}) \hspace{0.05cm}.\]
  • If you set the parameters  $\Delta t = 0$  or  $\Delta f = 0$  in this two–dimensional function, the separate correlation functions for the frequency domain or the time domain result:
$$\varphi_{\rm F}(\Delta f) = \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},\hspace{0.5cm} \varphi_{\rm Z}(\Delta t) = \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.$$
  • From the graph it is also clear that these correlation functions correspond to the derived power-spectral densities via the Fourier transform:
\[\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}, \hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm} {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.\]

Parameters of the GWSSUS model


According to the results in the last section, the mobile channel is replaced by

  • the delay's power-spectral density  ${\it \Phi}_{\rm V}(\tau)$  and
  • the Doppler's power-spectral density  ${\it \Phi}_{\rm D}(f_{\rm D})$.

By suitable normalization to the respective area  $1$  the density functions result with respect to the delay time  $\tau$  or the Doppler frequency $f_{\rm D}$.

Characteristic values can be derived from the power-spectral densities or the corresponding correlation functions.  The most important ones are listed here:

$\text{Definition:}$  The  »Multipath Spread«  or  »Time Delay Spread«  $T_{\rm V}$  specifies the spread that a Dirac delta experiences through the channel on statistical average.  
$T_{\rm V}$  is defined as the standard deviation  $(\sigma_{\rm V})$  the random variable  $\tau$:

\[T_{\rm V} = \sigma_{\rm V} = \sqrt{ {\rm E} \big [ \tau^2 \big ] - m_{\rm V}^2} \hspace{0.05cm}.\]
  • The mean value  $m_{\rm V} = {\rm E}\big[\tau \big]$  is an  "Average Excess Delay"  for all signal components.
  • ${\rm E} \big [ \tau^2 \big ] $  is to be calculated as the root mean square value.


$\text{Definition:}$  The  »Coherence Bandwidth«  $B_{\rm K}$   is the  $\Delta f$  value at which the frequency's correlation function has dropped to half of its value for the first time.

\[\vert \varphi_{\rm F}(\Delta f = B_{\rm K})\vert \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm F}(\Delta f = 0)\vert \hspace{0.05cm}.\]
  • $B_{\rm K}$  is a measure of the minimum frequency difference by which two harmonic oscillations must differ in order to have completely different channel transmission characteristics.
  • If the signal bandwidth is  $B_{\rm S} <B_{\rm K}$, then all spectral components are changed in approximately the same way by the channel.
    This means:   Precisely then there is a non-frequency selective fading.


$\text{Example 2:}$  The graphic on the left side shows the delay's power-spectral density  ${\it \Phi}_{\rm V}(\tau)$

Multipath spread and coherence bandwidth
  • with  $T_{\rm V} = 1 \ \rm µs$  (red curve),
  • with  $T_{\rm V} = 2 \ \rm µs$  (blue curve).


In the right–hand  $\varphi_{\rm F}(\Delta f)$  representation, the coherence bandwidths are drawn in:

  • $B_{\rm K} = 276 \ \rm kHz$  (red curve),
  • $B_{\rm K} = 138 \ \rm kHz$  (blue curve).


You can see from these numerical values:

  • The multipath spread  $T_{\rm V}$,  obtainable from   ${\it \Phi}_{\rm V}(\tau)$ , and the coherence bandwidth  $B_{\rm K}$,  determined by  $\varphi_{\rm F}(\Delta f)$,  stand in a fixed relation to each other:  
$$B_{\rm K} \approx 0.276/T_{\rm V}.$$
  • The often  $\text{used approximation}$  $B_{\rm K}\hspace{0.02cm}' \approx 1/T_{\rm V}$  is very inaccurate at exponential  ${\it \Phi}_{\rm V}(\tau)$ .


Let us now consider the time variance characteristics derived from the time correlation function  $\varphi_{\rm Z}(\Delta t)$  or from the Doppler's power-spectral density  ${\it \Phi}_{\rm D}(f_{\rm D})$ :

$\text{Definition:}$  The  »Correlation Time«  $T_{\rm D}$  specifies the average time that must elapse until the channel has completely changed its transmission properties due to the time variance.  Its definition is similar to the definition of the coherence bandwidth:

\[\vert \varphi_{\rm Z}(\Delta t = T_{\rm D})\vert \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm Z}(\Delta t = 0)\vert \hspace{0.05cm}.\]


$\text{Definition:}$  The  »Doppler Spread«  $B_{\rm D}$  is the average frequency broadening that the individual spectral signal components experience.   The calculation is similar to multipath broadening in that the Doppler spread  $B_{\rm D}$  is calculated as the standard deviation of the random quantity $f_{\rm D}$ :

\[B_{\rm D} = \sigma_{\rm D} = \sqrt{ {\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2} \hspace{0.05cm}.\]
  • First of all, the Doppler PDF is to be determined from  ${\it \Phi}_{\rm D}(f_{\rm D})$  through area normalization to  $1$. 
  • This results in the mean Doppler shift  $m_{\rm D} = {\rm E}[f_{\rm D}]$  and the standard deviation  $\sigma_{\rm D}$.


$\text{Example 3:}$  The diagram is valid for a time–variant channel without direct component.  Shown on the left is the  $\text{Jakes spectrum}$  ${\it \Phi}_{\rm D}(f_{\rm D})$.

Doppler spread and correlation time

The Doppler spread  $B_{\rm D}$  can be determined from this:

\[f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz} \hspace{0.05cm},\]
\[f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz} \hspace{0.05cm}.\]

The time correlation function  $\varphi_{\rm Z}(\Delta t)$  is sketched on the right, as the Fourier transform of  ${\it \Phi}_{\rm D}(f_{\rm D})$ .

This can be expressed for given boundary conditions with the Bessel function  ${\rm J}_0()$  as:

\[\varphi_{\rm Z}(\Delta t \hspace{-0.05cm} = \hspace{-0.05cm}T_{\rm D}) \hspace{-0.05cm}= \hspace{-0.05cm} {\rm J}_0(2 \pi \hspace{-0.05cm} \cdot \hspace{-0.05cm} f_{\rm D,\hspace{0.1cm}max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\Delta t ).\]
  • The correlation duration of the blue curve is  $T_{\rm D} = 4.84 \ \rm ms$.
  • For  $f_{\rm D,\hspace{0.1cm}max} = 100\,{\rm Hz}$  the correlation duration is only half.
  • In this case, it generally applies:   $B_{\rm D} \cdot T_{\rm D}\approx 0.17$.


Simulation according to the GWSSUS model


The  »Monte–Carlo method«,  here described for the simulation of a GWSSUS mobile communication channel, is based on work by Rice  [Ric44][1]  and  Höher [Höh90][2].

  • The two–dimensional impulse response is represented by a sum of  $M$  complex exponential functions.  $M$  can be interpreted as the number of different paths:
\[h(\tau,\ t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M} \alpha_m \cdot \delta (t - \tau_m) \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \phi_{m} }\cdot {\rm e}^{ {\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m} t} \hspace{0.05cm}. \]
  • First, the delays  $\tau_m$,  the attenuation factors  $\alpha_m$,  the equally distributed phases  $\phi_m$  and the Doppler frequencies  $f_{{\rm D},\hspace{0.1cm} m}$  will be randomly generated according to the GWSSUS specifications.  The base for the random generation of the Doppler frequencies  $f_{{\rm D},\hspace{0.1cm} m}$  is the  $\text{Jakes spectrum}$  ${\it \Phi}_{\rm D}(f_{\rm D})$, which, appropiately normalized, simultaneously indicates the probability density function  $\rm (PDF)$  of the Doppler frequencies.
  • Because of  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})$  the delay time  $\tau_m$  is independent of the Doppler frequency  $f_{{\rm D},\hspace{0.1cm} m}$  for all  $m$.  This is valid with good approximation for terrestrial land mobile communication.  For the random generation of the parameters  $\alpha_m$  and  $\tau_m$,  which determine the delay–power-spectral density  $ {\it \Phi}_{\rm V}(\tau)$  the following  $\text{COST profiles}$  are available:   $\rm RA$  ("Rural Area"),  $\rm TU$  ("Typical Urban"),  $\rm BU$  ("Bad Urban")  and  $\rm HT$  ("Hilly Terrain").
  • The greater the number of different paths   $M$  is chosen for the simulation, the better a real impulse response is approximated by the above equation.  However, the higher accuracy of the simulation is at the expense of its duration.  In the literature, favorable values are given for $M$  between  $100$  and  $600$ .


Time-variant transfer function  $($the absolute value squared is  simulated$)$

$\text{Example 4:}$  The graphic from  [Hin08][3]  shows a simulation result:     $20 \cdot \lg \vert H(f, \hspace{0.1cm}t)\vert$  is shown as a 2D plot, where the time-variant transfer function  $H(f, \hspace{0.1cm}t)$  is also referred to as  $\eta_{\rm FZ}(f, \hspace{0.1cm}t)$  in this tutorial.

The simulation is based on the following parameters:

  • The time variance results from a movement with  $v = 3 \ \rm km/h$.
  • The carrier frequency is  $f_{\rm T} = 2 \ \rm GHz$.
  • The maximum delay time is  $\tau_{\rm max} \approx 0.4 \ \rm µ s$.
  • According to the approximation we obtain the coherence bandwidth  $B_{\rm K}\hspace{0.02cm}' \approx 2.5 \ \rm MHz$.
  • The maximum Doppler frequency is  $f_\text{D, max} \approx 5.5 \ \rm Hz$.
  • The Doppler spread results in  $B_{\rm D} \approx 4 \ \rm Hz$.


Exercises for the chapter


Exercise 2.5: Scatter Function

Exercise 2.5Z: Multi-Path Scenario

Exercise 2.6: Dimensions in GWSSUS

Exercise 2.7: Coherence Bandwidth

Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel

Exercise 2.8: COST Delay Models

Exercise 2.9: Coherence Time

References

  1. Rice, S.O.:  Mathematical Analysis of Random Noise.  BSTJ–23, pp. 282–332 und BSTJ–24, pp. 45–156, 1945.
  2. Höher, P.:  Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung.  Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.
  3. Hindelang, T.:  Mobile Communications.  Lecture notes. Institute for Communications Engineering. Munich: Technical University of Munich, 2008.