Difference between revisions of "Examples of Communication Systems/Radio Interface"

From LNTwww
 
(74 intermediate revisions by 6 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=GSM – Global System for Mobile Communications
 
|Untermenü=GSM – Global System for Mobile Communications
|Vorherige Seite=Allgemeine Beschreibung von GSM
+
|Vorherige Seite=General Description of GSM
|Nächste Seite=Sprachcodierung
+
|Nächste Seite=Voice Coding
 
}}
 
}}
  
  
==Logische Kanäle von GSM  ==  
+
==Logical channels of GSM  ==  
 
<br>
 
<br>
Entscheidend für den ordnungsgemäßen Betrieb des GSM–Netzes und den Informationsaustausch zwischen Mobil– und Basisstation ist die '''Funkschnittstelle'''. Diese wird auch „Luftschnittstelle” oder „Physical Layer” genannt und definiert alle physikalischen Kanäle des GSM–Systems sowie deren Zuordnung zu den logischen Kanälen. Weiterhin ist die Funkschnittstelle für weitere Funktionalitäten wie zum Beispiel das ''Radio Subsystem Link Control'' zuständig.
+
The&nbsp; &raquo;'''radio interface'''&laquo;&nbsp; is crucial for the proper operation of the GSM network and the exchange of information between mobile and base station.&nbsp;
 +
*This is also called the&nbsp; "air interface"&nbsp; or&nbsp; "physical layer"&nbsp; and defines all physical channels of the GSM system as well as their assignment to the logical channels.&nbsp;
  
Beginnen wir mit den ''logischen Kanälen''. Diese können entweder einen ganzen physikalischen Kanal oder auch nur einen Teil eines physikalischen Kanals belegen und unterteilen sich in zwei Kategorien:
+
*Furthermore,&nbsp; the radio interface is responsible for other functionalities such as the&nbsp; "radio subsystem link control".
*'''Traffic Channels''' (deutsch: Verkehrskanäle) werden ausschließlich für die Übertragung von Benutzerdatenströmen wie Sprache, Fax und Daten genutzt. Diese Kanäle sind für beide Richtungen &ndash; also
 
  
:: ''Mobile Station'' (MS) ⇔ ''Base Station Subsystem'' (BSS)
+
[[File:EN_Bei_T_3_2_S1_v4.png|right|frame|Compilation of the logical channels of GSM]]
  
:ausgelegt und können entweder durch einen Vollraten–Verkehrskanal (13 kbit/s) oder von zwei Halbratenkanälen (je 5.6 kbit/s) belegt werden.
+
Let's start with the&nbsp; &raquo;'''logical channels'''&laquo;.&nbsp; These can occupy either an entire physical channel or only a portion of a physical channel and fall into two categories:
*'''Control Channels''' (deutsch: Signalisierungskanäle) versorgen über die Funkschnittstelle alle aktiven Mobilstationen durch eine paketorientierte Signalisierung, um jederzeit Nachrichten von der ''Base Transceiver Station'' (BTS ) empfangen bzw. Nachrichten an die BTS senden zu können.
+
*&raquo;'''Traffic Channels'''&laquo;&nbsp; are used exclusively for the transmission of user data streams such as voice,&nbsp; fax and data.&nbsp; These channels are for both directions
  
[[File:P_ID1192__Bei_T_3_2_S1.png|right|frame|Zusammenstellung der logischen Kanäle von GSM]]
+
:: mobile station&nbsp; $\rm (MS)$ &nbsp; ⇔ &nbsp; base station subsystem&nbsp; $\rm  (BSS)$
<br>Die Tabelle listet die logischen Kanäle des GSM auf.
+
 
*Diese unterscheiden sich von den logischen ISDN–Kanälen durch ein zusätzliches „m” für „mobile”.  
+
:designed and can be occupied either by a full rate traffic channel&nbsp; $\text{(13 kbit/s)}$&nbsp; or by two half rate channels&nbsp; $\text{(5.6 kbit/s)}$&nbsp;  each.
*Beispielsweise ist der „Bm–Kanal” vergleichbar mit dem B–Kanal des ISDN.
+
 
 +
*&raquo;'''Control Channels'''&laquo;&nbsp; supply all active mobile stations via the radio interface by means of packet-oriented signaling in order to be able to receive messages from the&nbsp; base transceiver station&nbsp; $\rm (BTS )$&raquo; or send messages to the BTS at any time.
 +
 
 +
<br>The table lists the logical channels of the GSM;
 +
*These differ from the logical ISDN channels by an additional&nbsp; "m"&nbsp; for&nbsp; "mobile".
 +
 +
*For example,&nbsp; the&nbsp; "Bm channel"&nbsp; is comparable to the&nbsp; "B channel"&nbsp; of ISDN.
 
<br clear=all>
 
<br clear=all>
==Uplink– und Downlink–Parameter ==
+
==Uplink and downlink parameters ==
 
<br>
 
<br>
Die logischen Kanäle werden auf ''physikalische Kanäle'' abgebildet, die alle physikalischen Aspekte des Datentransportes beschreiben:
+
The logical channels are mapped to&nbsp; &raquo;'''physical channels'''&laquo;&nbsp; which describe all physical aspects of data transport:
*die Frequenzbereiche für '''Uplink''' (Funkstrecke Mobilstation &rarr; Basisstation) und  '''Downlink''' (Funkstrecke Basisstation &rarr; Mobilstation),
+
[[File:EN_Bei_T_3_2_S2.png|right|frame|Frequency ranges of the standardized GSM systems]]
*die Aufteilung zwischen ''Time Division Multiple Access'' (TDMA) und ''Frequency Division Multiple Access'' (FDMA),
+
*the frequency ranges for&nbsp; &raquo;'''uplink'''&laquo;&nbsp; $($radio link mobile station &nbsp; &rArr; &nbsp; base station$)$&nbsp; and&nbsp; &raquo;'''downlink'''&laquo;&nbsp; $($radio link base station &nbsp; &rArr; &nbsp; mobile station$)$,
*die ''Burststruktur'', also die Belegung eines TDMA-Zeitschlitzes bei verschiedenen Anwendungen (Benutzer- und Signalisierungsdaten, Synchronisationsmarken, usw.), sowie
+
 
*das Modulationsverfahren ''Gaussian Minimum Shift Keying'' (GMSK), eine Variante von ''Continuous Phase Frequency Shift Keying'' (CP–FSK) mit großer Bandbreiteneffizienz.
+
*the division between&nbsp; &raquo;'''Time Division Multiple Access'''&laquo;&nbsp; $\rm (TDMA)$&raquo; and&nbsp; &raquo;'''Frequency Division Multiple Access'''&laquo;&nbsp; $\rm (FDMA)$,
 +
 
 +
*the&nbsp; &raquo;'''burst structure'''&laquo;,&nbsp; i.e. the occupancy of a TDMA time slot in different applications&nbsp; $($user and signaling data,&nbsp; synchronization marks,&nbsp; etc.$)$,
 +
 
 +
*the&nbsp; &raquo;'''modulation method'''&laquo;&nbsp; "Gaussian Minimum Shift Keying"&nbsp; $\rm (GMSK)$,&nbsp; a variant of&nbsp; "Continuous Phase &ndash; Frequency Shift Keying"&nbsp; $\text{(CP-FSK)}$&nbsp; with large bandwidth efficiency.
  
  
Die folgende Tabelle zeigt die Frequenzbereiche der standardisierten GSM–Systeme. Damit zwischen den beiden Richtungen keine Intermodulationsstörungen auftreten, liegt zwischen den Bändern für Uplink und Downlink ein Sicherheitsband, der so genannte ''Duplexabstand''.
+
The table shows the frequency ranges of the standardized GSM systems:
 +
* To prevent intermodulation interference between the two directions,&nbsp; there is a&nbsp; "guard band"&nbsp; between the bands for uplink and downlink,&nbsp; the so-called&nbsp; "duplex spacing".
  
[[File:P_ID1193__Bei_T_3_2_S2.png|center|frame|Frequenzbereiche der standardisierten GSM–Systeme]]
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
*Beim $\text{System GSM 900}$ (in Deutschland: D–Netz) beginnt der Uplink bei 890 MHz und der Downlink bei 935 MHz. Der Duplexabstand beträgt somit 45 MHz. Sowohl der Uplink als auch der Downlink besitzen eine Bandbreite von 25 MHz. Abzüglich der Guard–Bänder an den beiden Rändern von jeweils 100 kHz verbleiben 24.8 MHz, die in $124$ FDMA-Kanäle zu je 200 kHz unterteilt sind.
+
With system&nbsp; $\text{GSM 900}$&nbsp; $($"D-network"$)$&nbsp; the uplink starts at&nbsp; $\text{890 MHz}$&nbsp; and the downlink at&nbsp; $\text{935 MHz}$.  
 +
*The duplex spacing is thus&nbsp; $\text{45 MHz}$.
 +
 +
*Both the uplink and the downlink have a bandwidth of&nbsp; $\text{25 MHz}$.
 +
 +
*After subtracting the guard bands of&nbsp; $\text{100 kHz}$&nbsp; at each of the two edges there remain&nbsp; $\text{24.8 MHz}$,&nbsp; which are divided into&nbsp; $124$&nbsp; FDMA channels of&nbsp; $\text{200 kHz}$&nbsp; each.
 +
 
  
*Das $\text{DCS–Band}$ (E–Netz) im Bereich um 1800 MHz hat einen Duplexabstand von 95 MHz und eine jeweilige Bandbreite von 75 MHz. Unter Berücksichtigung der Guard–Bänder ergeben sich hier $374$ FDMA–Kanäle zu je 200 kHz.}}
+
&rArr; &nbsp; The $\text{DCS band}$&nbsp; $($"E-network"$)$&nbsp; in the range around&nbsp; $\text{1800 MHz}$&nbsp; has a duplex spacing of&nbsp; $\text{95 MHz}$&nbsp; and a respective bandwidth of&nbsp; $\text{75 MHz}$.
 +
 +
*Taking into account the guard bands,&nbsp; this results in&nbsp; $374$&nbsp; FDMA channels at&nbsp; $\text{200 kHz}$&nbsp; each.}}
 
   
 
   
  
== Realisierung von FDMA und TDMA==   
+
== Realization of FDMA and TDMA==   
 
<br>
 
<br>
Beim GSM–System werden zwei Vielfachzugriffsverfahren parallel verwendet:
+
[[File:EN_Bei_T_3_2_S3.png|right|frame|Interaction between FDMA and TDMA in GSM]]
*Frequenzmultiplex (''Frequency Division Multiple Access'', FDMA) und
+
 
*Zeitmultiplex (''Time Division Multiple Access'', TDMA).
+
In the GSM system,&nbsp; two multiple access methods are used in parallel:
 +
#Frequency Division Multiple Access&nbsp; $\rm (FDMA)$,&nbsp; and
 +
#Time division multiple access&nbsp; $\rm (TDMA)$.
 +
 
 +
 
 +
The graphic and description apply to the $\text{GSM 900}$ system.&nbsp; Comparable statements apply to the other GSM systems.&nbsp; We also refer here to the section&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#GSM_frame_structure|"GSM frame structure"]]&nbsp; and&nbsp; [[Aufgaben:Aufgabe_3.3:_GSM–Rahmenstruktur|"Exercise 3.3"]].
 +
 
 +
*In both the uplink and downlink,&nbsp; the transmission of signaling and traffic data occurs in parallel in&nbsp; $124$&nbsp; frequency channels,&nbsp; designated&nbsp; "RFCH1"&nbsp; to&nbsp; "RFCH124".
  
[[File:P_ID1194__Bei_T_3_2_S3_v1.png|center|frame|Zusammenspiel zwischen FDMA und TDMA bei GSM]]
+
*The center frequency of the uplink channel&nbsp; $n \ (  = 1$, ... , $124)$&nbsp; is at
 +
:$$f_n= 890 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
 +
*At the upper and lower ends of the&nbsp; $25 \ {\rm MHz}$&nbsp; band,&nbsp; there are guard bands of&nbsp; $100 \ {\rm kHz}$&nbsp; each.
  
Die Grafik und die Beschreibung gilt für das System $\text{System GSM 900}$, in Deutschland bekannt als D–Netz. Bei den anderen GSM–Systemen gelten vergleichbare Aussagen. Wir verweisen hier auch auf die Seite [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle#GSM.E2.80.93Rahmenstruktur|GSM–Rahmenstruktur]] und die [[Aufgaben:Aufgabe_3.3:_GSM–Rahmenstruktur|Aufgabe 3.3]].
+
*The channel&nbsp; $n$&nbsp; in the downlink is above the channel&nbsp; $n$&nbsp; in the uplink  by the duplex spacing of&nbsp; $45 \ {\rm MHz}$.&nbsp; The channels are designated in the same way as those in the uplink.&nbsp; Center frequencies:
 +
:$$f_n =935 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
 +
*Each cell is assigned some frequencies per&nbsp; "cell allocation"&nbsp; $\rm (CA)$.&nbsp; In adjacent cells one uses different frequencies.  
  
*Sowohl im Uplink als auch im Downlink geschieht die Übertragung der Signalisierungs– und Verkehrsdaten parallel in $124$ Frequenzkanälen, bezeichnet mit &bdquo;RFCH1&rdquo; bis &bdquo;RFCH124&rdquo;.
+
*A subset of the CAs is reserved for logical channels.&nbsp; The remaining channels are allocated to a mobile station as&nbsp; "mobile allocation"&nbsp; $\rm (MA)$.
*Die Mittenfrequenz des Uplink–Kanals $n$ liegt bei $890 \ {\rm MHz} + n · 0.2 \ {\rm MHz}  \ ( n = 1$, ... , $124)$. Am oberen und unteren Ende des $25 \ {\rm MHz}$–Bandes gibt es Schutzbereiche von je $100 \ {\rm kHz}$.
+
 
*Der Kanal $n$ im Downlink liegt um den Duplexabstand von $45 \ {\rm MHz}$ über dem Kanal $n$ im Uplink bei $890 \ {\rm MHz} + n · 0.2 \ {\rm MHz}$. Die Kanäle werden ebenso bezeichnet wie in der Aufwärtsstrecke.
+
*This is used,&nbsp; for example,&nbsp; for&nbsp; "frequency hopping",&nbsp; where the data is sent over different frequency channels.&nbsp; This makes the transmission more stable against channel fluctuations.&nbsp; In most cases,&nbsp; frequency hopping is performed in packets.
*Jeder Zelle werden einige Frequenzen per ''Cell Allocation'' (CA) zugewiesen. In benachbarten Zellen verwendet man verschiedene Frequenzen. Eine Teilmenge der CA ist für logische Kanäle reserviert. Die verbleibenden Kanäle werden einer Mobilstation zu ''Mobile Allocation'' (MA) zugewiesen.
+
 
*Diese wendet man zum Beispiel bei Frequenzsprungverfahren (''Frequency Hopping'') an, wobei die Daten über verschiedene Frequenzkanäle gesendet werden. Die Übertragung wird dadurch stabiler gegenüber Kanalschwankungen. Meist erfolgt der Frequenzwechsel paketweise.
+
*The individual GSM frequency channels are further subdivided by time division multiplexing&nbsp; $\rm (TDMA)$.&nbsp; Each FDMA channel is periodically divided into so-called&nbsp; "TDMA frames"&nbsp; which in turn each comprise eight time slots.
*Die einzelnen GSM–Frequenzkanäle werden durch Zeitmultiplex (TDMA) noch weiter unterteilt. Jeder FDMA–Kanal wird periodisch in so genannte ''TDMA–Rahmen'' aufgeteilt, die ihrerseits jeweils acht Zeitschlitze (Time–Slots) umfassen.
+
 
*Die ''Zeitschlitze'' (TDMA–Kanäle) werden zyklisch den einzelnen Teilnehmern zugeordnet und beinhalten jeweils einen so genannten  ''Burst'' von $156.25$ Bitperioden Länge. Jedem GSM-Nutzer steht in jedem TDMA–Rahmen genau einer der acht Zeitschlitze zur Verfügung.
+
*The&nbsp; "time slots"&nbsp; $($"TDMA channels"$)$&nbsp; are cyclically assigned to the individual subscribers and each contain a so-called&nbsp; "burst"&nbsp; of&nbsp; $156.25$&nbsp; bit periods in length.&nbsp; Each GSM user has exactly one of the eight time slots available in each TDMA frame.
*Die TDMA–Rahmen des Uplinks werden gegenüber denen des Downlinks mit drei Zeitschlitzen Verzögerung gesendet. Dies hat den Vorteil, dass die gleiche Hardware einer Mobilstation sowohl zum Senden als auch zum Empfangen einer Nachricht eingesetzt werden kann.
+
 
*Die Dauer eines Zeitschlitzes beträgt $T_{\rm Z} ≈ 577 ß \rm &micro; s$, die eines TDMA–Rahmens $4.615 \ \rm ms$. Diese Werte ergeben sich aus der GSM–Rahmenstruktur. Insgesamt $26$ TDMA–Rahmen werden zu einem so genannten Multiframe der Dauer $120 \ \rm ms$ zusammengefasst:
+
*The TDMA frames of the uplink are sent with three time slots delay compared to those of the downlink.&nbsp; This has the advantage that the same hardware of a mobile station can be used for both sending and receiving a message.
 +
 
 +
*The duration of a&nbsp; "time slot"&nbsp; $($German:&nbsp; "Zeitschlitz" &nbsp; &rArr; &nbsp; subscript&nbsp; "Z"$)$&nbsp; is&nbsp; $T_{\rm Z} ≈ 577 \rm &micro; s$, that of a TDMA frame&nbsp; $4.615 \rm ms$.&nbsp; These values result from the GSM frame structure.&nbsp; In total&nbsp; $26$&nbsp; TDMA frames are combined into a so-called&nbsp; "multiframe"&nbsp; of duration&nbsp; $120 \ \rm ms$:
 
:$$T_{\rm Z} = \frac{120\,{\rm ms}}{8 \cdot 26} \approx 576.9\,{\rm &micro; s }\hspace{0.05cm}. $$
 
:$$T_{\rm Z} = \frac{120\,{\rm ms}}{8 \cdot 26} \approx 576.9\,{\rm &micro; s }\hspace{0.05cm}. $$
 
    
 
    
  
==Die verschiedenen Burstarten bei GSM == 
+
==The different burst types in GSM== 
 
<br>
 
<br>
Wie gerade gezeigt wurde, beinhaltet ein ''Burst'' jeweils $156.25$ Bit und hat die Dauer $T_{\rm Z} ≈ 577 \ \rm &micro; s$.  
+
[[File:EN_Bei_T_3_2_S4_v5.png|right|frame|The different burst types with GSM]]
[[File:P_ID1195__Bei_T_3_2_S4_v1.png|right|frame|Die verschiedenen Burstarten bei GSM]]
+
As just shown,&nbsp; a&nbsp; &raquo;'''burst'''&laquo;&nbsp; contains&nbsp; $156.25$&nbsp; bits each and has duration&nbsp;
*Daraus berechnet sich die Bitdauer zu $T_{\rm B} 3.69 \  \rm &micro; s$.  
+
:$$T_{\rm burst} = T_{\rm Z} ≈ 577 \rm &micro; s.$$
 +
From this,&nbsp; the bit duration is calculated to&nbsp;
 +
:$$T_{\rm B} ≈ \frac{T_{\rm burst} }{156.25} \approx3.69 \rm &micro; s.$$
 +
 
 +
To avoid overlapping of bursts due to different propagation times between mobile and base station, a&nbsp; &raquo;'''Guard Period'''&laquo;&nbsp; $\rm (GP)$&raquo; is inserted at the end of each burst.&nbsp; This guard period is&nbsp; $8.25$&nbsp; bit durations,&nbsp; so&nbsp;
 +
:$$T_{\rm GP}= 8.25 \cdot \cdot T_{\rm B} = 8.25 \cdot 3.69 \ {\rm &micro; s} \approx 30.5 \ {\rm &micro; s}.$$
 +
 
 +
&rArr; &nbsp; There are five different types of bursts,&nbsp; as shown in the figure on the right:
 +
#Normal Burst&nbsp; $\rm (NB)$,<br>
 +
#Frequency Correction Burst&nbsp; $\rm (FB)$,<br>
 +
#Synchronization Burst&nbsp; $\rm (SB)$,<br>
 +
#Dummy Burst&nbsp; $\rm (DB)$,<br>
 +
#Access Burst&nbsp; $\rm (AB)$.<br>
 +
<br clear=all>
 +
'''(1)''' &nbsp; The&nbsp; &raquo;'''Normal Burst'''&laquo;&nbsp; is used to transmit data from traffic and signaling channels.&nbsp; The error protection encoded user data&nbsp; $($blue,&nbsp; two times&nbsp; $57$&nbsp; bits$)$&nbsp; together with three tail bits each&nbsp; $($red,&nbsp; during this time the  transmitted power is regulated$)$,&nbsp; two signaling bits&nbsp; $($green) and&nbsp; $26$&nbsp; bits for the training sequence&nbsp; $($yellow,&nbsp; required for channel estimation and synchronization$)$&nbsp; result in a total of&nbsp; $148$&nbsp; bits.&nbsp; Added to this is the Guard Period of&nbsp; $8.25$ bits&nbsp; $($gray$)$.
  
 +
The two&nbsp; $($green$)$&nbsp; signaling bits &ndash; also called&nbsp; "stealing flags"&nbsp; &ndash;&nbsp; indicate whether the burst transports only user data or high-priority signaling information,&nbsp; which is always to be transmitted without delay.&nbsp; The&nbsp; "training sequence"&nbsp; is used to estimate the channel,&nbsp; which is a prerequisite for applying an equalizer to reduce intersymbol interference.
  
*Zur Vermeidung von Überlappungen von Bursts aufgrund unterschiedlicher Laufzeiten zwischen Mobil– und Basisstation ist am Ende eines jeden Bursts eine '''Guard Period''' (GP) eingefügt.  
+
<b>(2)</b> &nbsp; The&nbsp; &raquo;<b>Frequency Correction Burst</b>&laquo;&nbsp; is used to frequency synchronize a mobile station.&nbsp; All bits except the tail bits and the guard period are here set to logical&nbsp; "$0$".&nbsp; The repeated broadcast of such a burst on the&nbsp; "frequency correction channel"&nbsp; $\rm (FCCH)$&nbsp; corresponds to an unmodulated carrier signal with frequency&nbsp; $f_{\rm T} + Δf_{\rm A}$&nbsp; $($carrier frequency + frequency deviation$)$.&nbsp; This value results from the fact that the modulation method&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Gaussian_Minimum_Shift_Keying_.28GMSK.29|$\text{Gaussian Minimum Shift Keying}$]]&nbsp; is a FSK special case.
  
 +
<b>(3)</b> &nbsp; The&nbsp; &raquo;<b>Synchronization Burst</b>&laquo;&nbsp; is used to transmit information that helps a mobile station synchronize in time with the base transceiver station.&nbsp; Besides a long midamble of&nbsp; $64$&nbsp; bits, the synchronization burst contains the TDMA frame number and the&nbsp; "base transceiver station identity code"&nbsp; $\rm (BSIC)$.&nbsp; When such a burst is repeatedly broadcast,&nbsp; it is referred to as the&nbsp; "synchronization channel"&nbsp; $\rm (SCH)$.
  
*Dieser Sicherheitsabstand beträgt $8.25$ Bitdauern, also $8.25 · 3.69 \ {\rm &micro; s} ≈ 30.5 \  {\rm &micro; s}$.
+
<b>(4)</b> &nbsp; The&nbsp; &raquo;<b>Dummy Burst</b>&laquo;&nbsp; is transmitted by each&nbsp; base transceiver station&nbsp; $\rm (BTS)$&nbsp; on a frequency specially allocated to it&nbsp; $($"cell allocation"$)$&nbsp; when there are no other bursts to be transmitted.&nbsp; This ensures that a mobile station can always take power measurements.
  
 +
<b>(5)</b> &nbsp; The&nbsp; &raquo;<b>Access Burst</b>&laquo;&nbsp; is used for random multiple access on the&nbsp; "random access channel"&nbsp; $\rm (RACH)$.&nbsp; To keep the probability of collisions on the RACH low, the&nbsp; "access burst"&nbsp; has a substantially longer&nbsp; "guard period"&nbsp; of&nbsp; $68.25$&nbsp; bit durations than the other bursts.
  
Man unterscheidet fünf verschiedene Arten von Bursts, wie aus obigem Bild hervorgeht:
+
*Normal Burst (NB),
+
==GSM frame structure ==
*Frequency Correction Burst  (FB),
+
<br>
*Synchronization Burst  (SB),
+
[[File:EN_Bei_T_3_2_S5_v3.png|right|frame|The GSM frame structure]]
*Dummy Burst  (DB),
+
The GSM frame structure is used to map logical channels to physical channels.&nbsp; Here a distinction is made between
*Access Burst (AB).
+
*the&nbsp; &raquo;'''mapping in frequency'''&laquo;,&nbsp; based on&nbsp;
<br clear=all>
+
#"cell allocation"&nbsp; $\rm (CA)$,  
*Der '''Normal Burst''' wird eingesetzt, um Daten von Verkehrs– und Signalisierungskanälen zu übertragen. Die fehlerschutzcodierten Nutzdaten (blau, zwei mal $57$ Bits) ergeben zusammen mit je drei Tailbits (rot, in dieser Zeit wird die Sendeleistung geregelt), zwei Signalisierungsbits (grün) und $26$ Bits für die Trainingssequenz (gelb, erforderlich für die Kanalschätzung und Synchronisation) insgesamt $148$ Bit. Dazu kommt die Guard Period von $8.25$ Bit (grau).
+
#"mobile allocation"&nbsp; $\rm (MA)$,  
 +
#the&nbsp; "TDMA frame number"&nbsp; $\rm (FN)$,&nbsp; and
 +
#the rules for the $($optional$)$&nbsp; "frequency hopping";
 +
 
 +
*the&nbsp; &raquo;'''mapping in time'''&laquo;,&nbsp; where the TDMA frames are grouped into
 +
#multiframes,  
 +
#superframes,&nbsp; and
 +
#hyperframes,  
  
:Die zwei (grünen) Signalisierungsbits – auch ''Stealing Flags'' genannt – zeigen an, ob der Burst lediglich Nutzdaten oder hochpriorisierte Signalisierungsinformationen transportiert, die immer verzögerungsfrei zu übertragen sind. Mit Hilfe der ''Trainingssequenz'' kann der Kanal geschätzt werden, was eine Voraussetzung für die Anwendung eines Entzerrers zur Verminderung von Impulsinterferenzen ist.
 
  
*Der '''Frequency Correction Burst''' wird zur Frequenzsynchronisierung einer Mobilstation verwendet. Alle Bits außer den Tailbits und der Guard Period sind hier auf logisch $0$ gesetzt. Die wiederholte Ausstrahlung eines solchen Bursts auf dem ''Frequency Correction Channel'' (FCCH) entspricht einem unmodulierten Trägersignal mit der Frequenz $f_{\rm T} + Δf_{\rm A}$ (Trägerfrequenz + Frequenzhub). Dieser Wert ergibt sich aus der Tatsache, dass das Modulationsverfahren [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle#Gaussian_Minimum_Shift_Keying_.28GMSK.29|Gaussian Minimum Shift Keying]] ein FSK–Sonderfall ist.
+
each with eight time slots for transmitting the bursts.
  
*Mit dem '''Synchronization Burst''' werden Informationen übertragen, mit deren Hilfe sich eine MS zeitlich mit der BTS synchronisiert. Neben einer langen Midambel von 64 Bit enthält der ''Synchronization Burst'' die TDMA–Rahmen–Nummer und den ''Base Transceiver Station Identity Code'' (BSIC). Bei wiederholter Ausstrahlung eines solchen Bursts spricht man vom ''Synchronization Channel'' (SCH).
 
  
*Der '''Dummy Burst''' (DB) wird von jeder ''Base Transceiver Station'' (BTS) auf einer speziell ihr zugeteilten Frequenz (''Cell Allocation'') ausgesandt, wenn keine anderen Bursts zu versenden sind. Damit ist sichergestellt, dass eine Mobilstation stets Leistungsmessungen durchführen kann.
+
&rArr;  &nbsp; According to this graphic,&nbsp;  the following statements are valid:
  
*Der '''Access Burst''' wird für wahlfreien Vielfachzugriff auf dem ''Random Access Channel'' (RACH) eingesetzt. Um die Wahrscheinlichkeit von Kollisionen auf dem RACH gering zu halten, besitzt der ''Access Burst'' eine wesentliche längere ''Guard Period'' von $68.25$ Bitdauern als die übrigen Bursts.
+
<b>(1)</b> &nbsp; &raquo;'''Multiframes'''&laquo;&nbsp; are used for mapping logical channels to physical channels.&nbsp; Two types can be distinguished here,&nbsp;
 +
*those with&nbsp; $26$&nbsp; TDMA frames and a cycle duration of&nbsp; $120 \ \rm ms$, and
 +
 +
*those with&nbsp; $51$&nbsp; TDMA frames and a duration of&nbsp; $235.4 \ \rm ms$.
  
 
==GSM–Rahmenstruktur ==
 
<br>
 
Durch die GSM–Rahmenstruktur erfolgt die Abbildung der logischen Kanäle auf physikalische Kanäle. Hierbei wird unterschieden zwischen
 
*der '''Abbildung in der Frequenz''', basierend auf ''Cell Allocation'' (CA), ''Mobile Allocation'' (MA), die TDMA–Rahmennummer (FN) und den Vorschriften für das (optionale) ''Frequency Hopping'',
 
*der '''Abbildung in der Zeit''', wobei die TDMA–Rahmen mit jeweils acht Zeitschlitzen zur Übertragung der Bursts in Multiframes, Superframes und Hyperframes zusammengefasst werden.
 
  
 +
&rArr;  &nbsp; The bursts of the traffic channels&nbsp; $\rm (TCH)$&nbsp; and the associated control channels&nbsp; $\rm (SACCH,&nbsp; FACCH)$&nbsp; are transmitted in&nbsp; $26$&nbsp; successive TDMA frames each.&nbsp; Only one time slot per TDMA frame is always considered for the respective multiframe.
 +
 +
&rArr;  &nbsp; Of the gross data rate&nbsp; $\text{(approx. 33.9 kbit/s)}$&nbsp; per user are&nbsp; $\text{9.2 kbit/s}$&nbsp; reserved for synchronization,&nbsp; signaling and&nbsp; guard period&nbsp; and&nbsp; $\text{1.9 kbit/s}$&nbsp; for&nbsp; $\rm SACCH$&nbsp; and&nbsp; $\rm IDLE$.&nbsp; The&nbsp; $($encoded and encrypted$)$&nbsp; user data occupy here only&nbsp; $\text{22.8 kbit/s}$.
  
[[File:P_ID1196__Bei_T_3_2_S5_v1.png|center|frame|Die GSM–Rahmenstruktur ]]
+
&rArr;  &nbsp; The multiframe structure with&nbsp; $51$&nbsp; frames&nbsp; $($right half of the graph$)$&nbsp; is used to multiplex several logical channels onto one physical channel.&nbsp; In&nbsp; $51$&nbsp; consecutive TDMA frames,&nbsp; all data of the signaling channels&nbsp; $($except&nbsp; $\rm FACCH$&nbsp; and&nbsp; $\rm SACCH)$&nbsp; are transmitted respectively.
  
Entsprechend diesem Bild gelten folgende Aussagen:
 
'''Multiframes''' werden für die Abbildung von logischen Kanälen auf physikalische Kanäle genutzt. Hierbei sind zwei Arten zu unterscheiden, solche mit $26$ TDMA–Rahmen und einer Zyklusdauer von $120 \ \rm ms$ und solche mit $51$ TDMA–Rahmen und einer Dauer von $235.4  \ \rm ms$.
 
*Die Bursts der Verkehrskanäle (TCH) und der zugeordneten Steuerungskanäle (SACCH, FACCH) werden in jeweils 26 aufeinander folgenden TDMA-Rahmen übertragen. Dabei wird stets nur ein Zeitschlitz je TDMA-Rahmen für den jeweiligen Multiframe berücksichtigt.
 
*Von der Brutto–Datenrate pro Nutzer (≈ 33.9 kbit/s) sind 9.2 kbit/s für Synchronisierung, Signalisierung und ''Guard Period'' reserviert und 1.9 kbit/s für SACCH und IDLE. Die (codierten und verschlüsselten) Nutzdaten belegen bei Multiframe-Struktur mit 26 Rahmen nur 22.8 kbit/s.
 
*Die Multiframe-Struktur mit 51 Rahmen (rechte Bildhälfte) dient dazu, mehrere logische Kanäle auf einen physikalischen Kanal zu multiplexen. In 51 aufeinander folgenden TDMA–Rahmen werden jeweils alle Daten der Signalisierungskanäle (außer FACCH und SACCH) übertragen.
 
  
 +
<b>(2)</b> &nbsp; One&nbsp; &raquo;'''superframe'''&laquo;&nbsp; consists of&nbsp; $1326$&nbsp; consecutive TDMA frames&nbsp; $(51$&nbsp; multiframes with each&nbsp; $26$&nbsp;TDMA frame or&nbsp; $26$&nbsp; multiframes with each&nbsp; $51$&nbsp; TDMA frame$)$&nbsp; and lasts approximately&nbsp; $T_{\rm superframe}=6.12$&nbsp; seconds.
  
Ein '''Superframe''' besteht aus $1326$ aufeinander folgenden TDMA-Rahmen ($51$ Multiframes mit je $26$ bzw. aus $26$ Multiframes mit je $51$ TDMA–Rahmen) und dauert ca. $6.12$ Sekunden.
 
  
Ein '''Hyperframe''' fasst jeweils $2048$ Superframes (bzw. $2\hspace{0.08cm}715{0.08cm}648$ TDMA–Rahmen) zusammen und wird mit seiner langen Zyklusdauer von $\text{3 Stunden, 28 Minuten und 53.760 Sekunden}$ zur Synchronisierung der Nutzdatenverschlüsselung verwendet.
+
<b>(3)</b> &nbsp;A&nbsp; &raquo;'''hyperframe'''&laquo;&nbsp; groups&nbsp; $2048$&nbsp; superframes&nbsp; $(2\hspace{0.08cm}715{\hspace0.08cm}648$&nbsp; TDMA frames$)$&nbsp; together and is used with its long cycle duration to synchronize the payload encryption.&nbsp; This is:
 +
:$$T_{\rm hyperframe}=\text{3 hours, 28 minutes and 53.760 seconds}.$$  
 
 
 
   
 
   
==Modulation bei GSM–Systemen== 
+
==Modulation in GSM systems== 
 
<br>
 
<br>
Entsprechend den Aussagen der letzten Seite müssen in einem Frequenzkanal $156.25$ Bit pro Zeitschlitz $(0.5769 \ \rm ms)$ übertragen werden. Dies entspricht einer Gesamtbitrate (für acht TDMA–Nutzer inkl. Kanalcodierung, Signalisierungs– und Synchronisationsinformation, etc.) von $R_{\rm ges} = 270\hspace{0.08cm}833 \ \rm bit/s$. Für diese Bitrate steht bei GSM eine Bandbreite von $B = 200 \ \rm kHz$ zur Verfügung. Man benötigt deshalb ein Modulationsverfahren mit einer Bandbreiteneffizienz von mindestens $ = $R_{\rm ges}/B = 1.35$.
+
According to the statements of the last sections,&nbsp; $156.25$&nbsp; bits per time slot&nbsp; $(0.5769 \ \rm ms)$&nbsp; must be transmitted in one frequency channel.  
 +
#This corresponds to a total bit rate&nbsp; $($for eight TDMA users including channel coding,&nbsp; signaling and synchronization information,&nbsp; etc.$)$ of&nbsp; $R_{\rm total} = 270\hspace{0.08cm}833 \rm bit/s$.  
 +
#For this bit rate,&nbsp; a bandwidth of&nbsp; $B = 200 \ \rm kHz$&nbsp; is available for GSM &nbsp; &rArr; &nbsp;  required is a modulation method with a bandwidth efficiency of at least&nbsp; $β =R_{\rm ges}/B = 1.35$.
 +
#In GSM mobile radio,&nbsp; the modulation method&nbsp; &raquo;'''Gaussian Minimum Shift Keying'''&laquo;&nbsp; $\rm (GMSK)$&nbsp; is used. 
 +
 
 +
 
 +
Here follows a brief,&nbsp; bullet-point description:
 +
*GMSK is a modified form of&nbsp; "Frequency Shift Keying"&nbsp; $\rm (FSK)$.&nbsp; This results from driving a&nbsp; [[Modulation_Methods/Frequency_Modulation_(FM)#Realization_of_a_FM_modulator|$\text{Frequency Modulator}$]]&nbsp; with a binary bipolar rectangular input signal.
  
Beim GSM–Mobilfunk findet das Modulationsverfahren '''Gaussian Minimum Shift Keying''' (GMSK) Anwendung. Dieses wurde schon im Kapitel [[Modulationsverfahren/Nichtlineare_digitale_Modulation#GMSK_.E2.80.93_Gaussian_Minimum_Shift_Keying|Nichtlineare digitale Modulation]] des Buches &bdquo;Modulationsverfahren&rdquo; ausführlich behandelt. Hier folgt eine kurze, stichpunktartige Beschreibung:
+
*Such an FSK signal&nbsp; $s(t)$&nbsp; contains within each symbol duration&nbsp; $T$&nbsp; only a single instantaneous frequency at a time;&nbsp; $f_{\rm A}(t) = \rm const. $
*GMSK ist eine abgewandelte Form von '''Frequency Shift Keying''' (FSK). Diese ergibt sich, wenn man einen [[Modulationsverfahren/Frequenzmodulation_(FM)#Realisierung_eines_FM.E2.80.93Modulators|Frequenzmodulator]] mit einem binären bipolaren rechteckförmigen Eingangssignal betreibt.
 
*Ein solches FSK-Signal $s(t)$ beinhaltet innerhalb einer jeden Symboldauer $T$ jeweils nur eine einzige Augenblicksfrequenz $f_{\rm A}(t) = \rm const.$ Ist das (normierte) Eingangssignal gleich $+1$, so ist $f_{\rm A}(t)$ gleich der Summe aus der Trägerfrequenz $f_{\rm T}$ und dem Frequenzhub $Δf_{\rm A}$. Entsprechend gilt für den Amplitudenwert $-1$:  &nbsp; $f_{\rm A}(t) = f_{\rm T} - Δf_A$.
 
*Um eine einfache Demodulation zu ermöglichen, sollten die beiden Signale mit den Frequenzen $f_{\rm T} ± Δf$ innerhalb der Symboldauer $T$ orthogonal zueinander sein. Demzufolge muss gelten:
 
  
:$$\int^{T} _{0} \cos (2 \pi t \cdot (f_{\rm T}+ \Delta f_{\rm A} ))\cdot \cos (2 \pi t \cdot (f_{\rm T}- \Delta f_{\rm A} ))\,{\rm
+
* If the&nbsp; $($normalized$)$&nbsp; input signal is equal&nbsp; $+1$, then&nbsp; $f_{\rm A}(t)$&nbsp; is equal to the sum of the carrier frequency&nbsp; $f_{\rm T}$&nbsp; and the frequency deviation&nbsp; $Δf_{\rm A}$.
d}t= 0\hspace{0.05cm}. $$
 
 
   
 
   
:Daraus ergibt sich für den '''Frequenzhub''' die Anforderung:
+
*Correspondingly,&nbsp; for the normalized input signal&nbsp; $-1$: &nbsp; $f_{\rm A}(t) = f_{\rm T} - Δf_{\rm A}$.
  
:$$\Delta f_{\rm A} = \frac{k}{4 \cdot T}\hspace{0.2cm}{\rm
+
*To allow easy demodulation,&nbsp; the two signals with frequencies&nbsp; $f_{\rm T} ± Δf$&nbsp; should be orthogonal to each other within the symbol duration&nbsp; $T$.&nbsp; Consequently:
  mit}\hspace{0.2cm}k = 1, 2, 3, \text{...}$$
+
:$$\int^{T} _{0} \cos \big(2 \pi t \cdot (f_{\rm T}+ \Delta f_{\rm A} )\big)\cdot \cos \big(2 \pi t \cdot (f_{\rm T}- \Delta f_{\rm A} )\big)\,{\rm
 +
d}t= 0\hspace{0.05cm}. $$
 +
*This results in the requirement for the&nbsp; "frequency deviation":
 +
:$$\Delta f_{\rm A} = \frac{k}{4 \cdot T}\hspace{0.4cm}{\rm
 +
  with}\hspace{0.4cm}k = 1,\ 2,\ 3,\ \text{...}$$  
 +
*In FSK systems the&nbsp; "modulation index"&nbsp; is defined to&nbsp; $h = 2 \cdot Δf_{\rm A} \cdot T$,&nbsp; it follows&nbsp; $h = k/2$.
 +
 +
*Thus,&nbsp; the smallest modulation index under compliance with the orthogonality conditions is&nbsp; $h_{\rm mim} = 0.5$.
 
   
 
   
*Da bei FSK–Systemen der '''Modulationsindex''' zu $h = 2 · Δf_{\rm A} · T$ definiert ist, folgt $h = k/2$. Der kleinste Wert unter Einhaltung der Orthogonalitätsbedingungen ist somit $h_{\rm min} = 0.5$.
+
*An FSK system with&nbsp; $h = 0.5$ &nbsp; &rArr; &nbsp; $Δf_{\rm A}$ = ${1}/{4T}$&nbsp; is called&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Minimum_Shift_Keying_.28MSK.29|$\text{Minimum Shift Keying}$]]&nbsp; $\rm (MSK)$.&nbsp;
*Ein FSK–System mit $h = 0.5$ bzw. $Δf_{\rm A}$ = $\frac{1}{4T}$ bezeichnet man als [[Modulationsverfahren/Nichtlineare_digitale_Modulation#MSK_.E2.80.93_Minimum_Shift_Keying|Minimum Shift Keying]] – kurz MSK. Dieses wird in allen GSM-Systemen eingesetzt, da ein größerer Modulationindex als $h = 0.5$ eine deutlich größere Bandbreite beanspruchen würde.
+
 
*Ein sehr schmales Spektrum ergibt sich allerdings nur dann, wenn an den Symbolgrenzen Phasensprünge durch Phasenwertanpassung vermieden werden. MSK gehört somit zu den ''Continuous Phase Frequency Shift Keying''–Verfahren (CP–FSK, siehe nächste Seite).
+
*This is used in all GSM systems,&nbsp; because a larger modulation index than&nbsp; $h = 0.5$&nbsp; would require a significantly larger bandwidth.
*Vor dem Frequenzmodulator wird zusätzlich noch ein Tiefpass mit Gauß–Charakteristik eingefügt, wodurch die GSM–Bandbreite weiter verringert wird. Man nennt diese Modulationsart [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle#Gaussian_Minimum_Shift_Keying_.28GMSK.29|Gaussian Minimum Shift Keying]] (GMSK).
+
 
 +
*A very narrow spectrum results,&nbsp;  if phase jumps are avoided at the symbol boundaries by phase matching &nbsp; &rArr; &nbsp;  MSK belongs to the&nbsp; "continuous phase FSK"&nbsp; techniques.
 +
 
 +
*An additional low-pass filter with Gaussian characteristics is inserted before the frequency modulator &nbsp; &rArr; &nbsp; further reducing the GSM bandwidth.  
 +
 
 +
*This modulation type is called&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Gaussian_Minimum_Shift_Keying_.28GMSK.29|$\text{Gaussian Minimum Shift Keying}$]]&nbsp; $\rm (GMSK)$.
 
   
 
   
  
==Kontinuierliche Phasenanpassung bei FSK  ==
+
==Continuous phase adjustment with FSK  ==
 
<br>
 
<br>
Ausgehend vom Rechtecksignal $q(t)$ und der Trägerfrequenz $f_{\rm T} = 4/T$ betrachten wir die FSK–Signale $s_{\rm A}(t)$, ... , $s_{\rm D}(t)$ bei unterschiedlichem Frequenzhub $Δf_{\rm A}$ &nbsp; ⇒ &nbsp; Modulationindex $h = 2 · Δf_{\rm A} · T$.  
+
Starting from the rectangular wave signal&nbsp; $q(t)$&nbsp; and the carrier frequency&nbsp; $f_{\rm T} = 4/T$&nbsp; we consider the FSK signals&nbsp; $s_{\rm A}(t)$, ... ,&nbsp; $s_{\rm D}(t)$&nbsp; at different frequency deviation&nbsp; $Δf_{\rm A}$ &nbsp; ⇒ &nbsp; modulation index&nbsp; $h = 2 \cdot Δf_{\rm A} \cdot T$.  
  
[[File:P_ID1197__Bei_T_3_2_S7_v2.png|center|frame|Beispielhafte Signale zur kontinuierlichen Phasenanpassung]]
+
[[File:EN_Bei_T_3_2_S7.png|right|frame|Example signals for continuous phase adjustment]]
 
+
Regarding the signal characteristics shown on the right,&nbsp; it is to be noted&nbsp; $($we also refer to the&nbsp; $($German language$)$&nbsp; SWF  applet&nbsp; [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|"Frequency Shift Keying & Continuous Phase Modulation"]]):
Zu den Signalverläufen ist anzumerken (wir verweisen auch auf das interaktive Applet [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|Frequency Shift Keying & Continuous Phase Modulation]]):
+
#The signal&nbsp; $s_{\rm A}(t)$&nbsp; results in&nbsp; $Δf_{\rm A} = 1/T$ &nbsp; &nbsp; modulation index&nbsp; $h = 2$.&nbsp; One can see the higher frequency&nbsp; $f_1 = 5/T$&nbsp; $($for&nbsp; $a_ν = +1)$&nbsp; compared to the frequency&nbsp; $f_2 = 3/T$ &nbsp;$($for&nbsp; $a_ν = -1)$.
*Das Signal $s_{\rm A}(t)$ ergibt sich mit $Δf_{\rm A} = 1/T$ Modulationsindex $h = 2$. Man erkennt die höhere Frequenz $f_1 = 5/T$ (für $a_ν = +1$) gegenüber der Frequenz $f_2 = 3/T$ (für $a_ν = -1$).
+
#With&nbsp; $Δf_{\rm A} = 0.5/T$&nbsp; $($signal&nbsp; $s_{\rm {\rm B}}(t)$,&nbsp; $h = 1)$&nbsp; holds&nbsp; $f_1 = 4.5/T$&nbsp; and&nbsp; $f_2 = 3.5/T$.&nbsp; At each symbol boundary,&nbsp; a phase jump of&nbsp; $π$&nbsp; occurs if no phase adjustment is made as for the signal&nbsp; $s_{\rm C}(t)$.
*Mit $Δf_{\rm A} = 0.5/T$ (Signal $s_{\rm {\rm B}}(t)$, $h = 1$) gilt $f_1 = 4.5/T$ und $f_2 = 3.5/T$. An jeder Symbolgrenze tritt ein Phasensprung um $π$ auf, wenn keine Phasenanpassung wie bei $s_{\rm C}(t)$ vorgenommen wird.
+
#When&nbsp; $s_{\rm C}(t)$&nbsp; is applied in the range&nbsp; $0$ ... $T$&nbsp; the coefficient&nbsp; $a_1 = +1$&nbsp; is represented by&nbsp; $\cos(2π-f_1-t)$&nbsp; while&nbsp; $a_2 = +1$&nbsp; in the range&nbsp; $T$ ... $2T$&nbsp; leads to the signal&nbsp; $-\cos(2π-f_1\hspace{0.01cm}-\hspace{0.01cm}(t-T))$.&nbsp; Phase jumps are thus avoided by this adjustment.
*Bei $s_{\rm C}(t)$ wird im Bereich $0$ ... $T$ der Koeffizient $a_1 = +1$ durch $\cos(2π·f_1·t)$ repräsentiert, während der ebenfalls positive Koeffizient $a_2 = +1$ im Bereich $T$ ... $2T$ zum Signal $-\cos(2π·f_1\hspace{0.01cm}·\hspace{0.01cm}(t-T))$ führt. Durch diese Anpassung werden somit Phasensprünge vermieden.
+
#The signal&nbsp; $s_{\rm D}(t)$&nbsp; describes the MSK signal&nbsp; $($frequency deviation&nbsp; $Δf_{\rm A} = 0.25/T$ &nbsp; ⇒ &nbsp; modulation index&nbsp; $h = 0.5)$&nbsp; with phase adjustment.&nbsp; Here,&nbsp; at each symbol boundary  four different initial phases are possible &ndash; depending on the previous symbols.
*Das Signal $s_{\rm D}(t)$ beschreibt das MSK-Signal (Frequenzhub $Δf_{\rm A} = 0.25/T$ &nbsp; ⇒ &nbsp; Modulationsindex $h = 0.5$), ebenfalls mit Phasenanpassung. Hier sind bei jeder Symbolgrenze – je nach den vorherigen Symbolen – vier unterschiedliche Anfangsphasen möglich.
+
#For the&nbsp; $\rm GSM \ 900$&nbsp; system the carrier frequency is&nbsp; $f_{\rm T} = 900\ \rm MHz$&nbsp; and the symbol duration is&nbsp; $T ≈ 3.7 \ \rm &micro; s$.&nbsp; With the modulation index&nbsp; $h = 0.5$ &nbsp; &rArr; &nbsp; $Δf_{\rm A} ≈ 68 \ \rm kHz$.&nbsp; Thus,&nbsp; the two&nbsp;  frequencies&nbsp; are very close to each other:&nbsp;$f_1 = 900.068\ \rm MHz$,&nbsp; $f_2 = 899.932\ \rm MHz$.
*Bei $\rm GSM \ 900$ beträgt die Trägerfrequenz $f_{\rm T}$ = 900 MHz und die Symboldauer ist $T ≈ 3.7 \rm &micro; s$. Mit dem Modulationsindex $h = 0.5$ ergibt sich daraus $Δf_{\rm A} ≈ 68 \ \rm kHz$. Die beiden Frequenzen $f_1 = 900.068\ \rm MHz$ und $f_2 = 899.932 \ \rm   MHz$ liegen somit sehr eng beieinander.
+
<br clear=all>
  
  
Line 161: Line 225:
 
== Minimum Shift Keying (MSK) ==  
 
== Minimum Shift Keying (MSK) ==  
 
<br>
 
<br>
Die Grafik zeigt das Modell zur Erzeugung einer MSK–Modulation und typische Signalverläufe. Man erkennt
+
The diagram shows the model for generating an MSK modulation and typical signal characteristics.&nbsp; One recognizes:
  
[[File:P_ID2190__Bei_T_3_2_S6_v1.png|right|frame|Blockschaltbild zur Erzeugung eines MSK–Signals]]
+
[[File:EN_Bei_T_3_2_S6_v2.png|right|frame|Block diagram for generating an MSK and corresponding signal characteristics]]
*am Punkt '''1''' das digitale Quellensignal, bestehend aus einer Folge von Diracimpulsen im Abstand $T$, gewichtet mit den Amplitudenkoeffizienten $a_ν ∈ \{-1, +1\}$:
 
  
 +
*At point &nbsp;<b>(1)</b>&nbsp; the digital source signal consisting of a sequence of Dirac delta pulses at distance&nbsp; $T$ weighted by the amplitude coefficients&nbsp; $a_ν ∈ \{-1, +1\}$:
 
:$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu
 
:$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu
\cdot T)\hspace{0.05cm}, $$
+
\cdot T)\hspace{0.05cm}; $$
+
*at point &nbsp;<b>(2)</b>:&nbsp; the rectangular source signal&nbsp; $q_{\rm R}(t)$&nbsp; after convolution with the rectangular pulse&nbsp; $g(t)$&nbsp; the duration&nbsp; $T$&nbsp; and the height&nbsp; $1/T$&nbsp; $($the amplitude was chosen this way for compatibility with later sections$)$:
*am Punkt '''2''' das Rechtecksignal $q_{\rm R}(t)$ nach Faltung mit dem Rechteckimpuls $g(t)$ der Dauer $T$ und der Höhe $1/T$ (die Amplitude wurde aus Kompatibilitätsgründen zu späteren Seiten so gewählt):
+
:$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu
 +
\cdot T)\hspace{0.05cm}; $$
 +
*at point &nbsp;<b>(3)</b>:&nbsp; the frequency modulator,&nbsp; which can be realized according to the description in chapter&nbsp; [[Modulation_Methods/Frequency_Modulation_(FM)#Signal_characteristics_with_frequency_modulation|"Signal characteristics in FM"]]&nbsp;  as an integrator followed by a phase modulator.&nbsp; For the signal at point&nbsp;<b>(3)</b>&nbsp; holds:
 +
:$$\phi(t) = \frac{\pi}{2}\cdot \int_{0}^{t}
 +
q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
 +
 
 +
:The phase values at&nbsp; $\nu \cdot T$&nbsp; are multiples of&nbsp; $π/2 \ (90^\circ)$,&nbsp; taking into account the modulation index&nbsp; $h = 0.5$&nbsp; valid for MSK.&nbsp; The phase response is linear.
  
:$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu
+
*From this,&nbsp; at the point &nbsp;<b>(4)</b>&nbsp; of the block diagram,&nbsp; the MSK signal is given by
\cdot T)\hspace{0.05cm}, $$
 
 
*den Frequenzmodulator, der sich gemäß dem Kapitel [[Modulationsverfahren/Frequenzmodulation_(FM)#Signalverl.C3.A4ufe_bei_Frequenzmodulation|Signalverläufe bei FM]] als Integrator und nachgeschalteten Phasenmodulator realisieren lässt. Für das Signal am Punkt '''3''' gilt dann:
 
  
:$$\phi(t) = \frac{\pi}{2}\cdot \int_{0}^{t}
+
:$$s(t) = s_0 \cdot \cos \big(2 \pi f_{\rm T}  \hspace{0.05cm}t +
q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
+
\phi(t)\big) = s_0 \cdot \cos \big(2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )\big) \hspace{0.05cm}.$$
  
Die Phasenwerte bei der Symboldauer $T$ sind Vielfache von $π/2 \ (90^\circ)$, wobei der für MSK gültige Modulationsindex $h = 0.5$ berücksichtigt ist. Der Phasenverlauf ist linear. Daraus ergibt sich am Punkt '''4''' des Blockschaltbildes das MSK–Signal zu
+
<u>Note:</u>
  
:$$s(t)  =  s_0 \cdot \cos (2 \pi  f_{\rm T}  \hspace{0.05cm}t +
+
The realization of&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$&nbsp; by a special variant of&nbsp; "Offset-QPSK"&nbsp; is illustrated by the&nbsp; (German language)&nbsp; SWF applet&nbsp; [[Applets:QPSK_und_Offset-QPSK_(Applet)|"QPSK and Offset-QPSK"]].
\phi(t)) =  s_0 \cdot \cos (2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )) \hspace{0.05cm}.$$
 
  
Die Realisierung von ''Minimum Shift Keying'' (MSK)  durch eine spezielle Variante von ''Offset–QPSK'' wird durch das interaktive Applet [[Applets:QPSK_und_Offset-QPSK_(Applet)|QPSK und Offset–QPSK]] verdeutlicht:
 
  
 
   
 
   
Line 190: Line 255:
 
==Gaussian Minimum Shift Keying (GMSK)==   
 
==Gaussian Minimum Shift Keying (GMSK)==   
 
<br>
 
<br>
Ein Vorteil von MSK gegenüber anderen Modulationsarten ist der geringere Bandbreitenbedarf. Durch geringfügige Modifikationen hin zum [[Modulationsverfahren/Nichtlineare_digitale_Modulation#GMSK_.E2.80.93_Gaussian_Minimum_Shift_Keying|Gaussian Minimum Shift Keying – abgekürzt GMSK– ergibt sich nochmals eine schmaleres Spektrum.
+
One advantage of MSK over other modulation types is the lower bandwidth requirement.&nbsp; Minor modifications to the&nbsp; [[Modulation_Methods/Non-Linear_Digital_Modulation#GMSK_.E2.80.93_Gaussian_Minimum_Shift_Keying|$\text{Gaussian Minimum Shift Keying}$]]&nbsp; - $\rm (GMSK)$&nbsp; result in a narrower spectrum.
  
Man erkennt aus dem Blockschaltbild folgende Unterschiede zum MSK (wir verweisen wieder auf das interaktive Applet [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|Frequency Shift Keying & Continuous Phase Modulation]]):
+
One can see from the block diagram the following differences to&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$:
*Der Frequenzimpuls g(t) ist nun nicht mehr rechteckförmig wie der Impuls $g_{\rm R}(t)$, sondern weist flachere Flanken auf. Demzufolge ergibt sich auch ein weicherer Phasenverlauf (Punkt 3) als beim MSK–Verfahren (siehe letzte Seite), bei dem $ϕ(t)$ symbolweise linear ansteigt bzw. abfällt.
 
*Man erreicht diese sanfteren Phasenübergänge bei GMSK durch ein '''Gaußtiefpassfilter''' mit dem Frequenzgang bzw. der Impulsantwort
 
  
:$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 \cdot f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
+
[[File:EN_Mod_T_4_4_S9_v3.png|right|frame|Block diagram for generating a GMSK and corresponding signal characteristics|class=fit]]
h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 \cdot f_{\rm G}\cdot t)^2}\hspace{0.05cm}.$$
+
 
 +
*The frequency pulse&nbsp; $g(t)$&nbsp; is now no longer rectangular like the pulse&nbsp; $g_{\rm R}(t)$,&nbsp; but has flatter edges.
 +
 
 +
*Consequently,&nbsp; there is also a smoother phase progression at point &nbsp;<b>(3)</b>&nbsp; than with the MSK method&nbsp; $($see last section$)$,&nbsp; where&nbsp; $ϕ(t)$&nbsp; symbolically rises or falls linearly.
 +
 
 +
*These smoother phase transitions in GMSK are achieved by a&nbsp; &raquo;'''Gaussian low-pass filter'''&laquo;&nbsp;
 +
:*with&nbsp; "frequency response"
 +
::$$H_{\rm G}(f) = {\rm e}^{-\pi \hspace{0.05cm} \cdot \hspace{0.05cm} \big({f}/(2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G})\big)^2}$$
 +
:*and&nbsp; "impulse response"
 +
::$$ h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm} \cdot \hspace{0.05cm} (2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G}\hspace{0.05cm} \cdot \hspace{0.05cm} t)^2}\hspace{0.05cm}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, H_{\rm G}(f)\hspace{0.2cm}.$$
 +
*For GSM,&nbsp; the 3dB cutoff frequency is set to&nbsp; $f_{\rm 3dB} = 0.3/T$.&nbsp; Thus,&nbsp; as shown in&nbsp; [[Aufgaben:Exercise_3.4:_GMSK_Modulation|"Exercise 3.4"]],&nbsp; the system theoretic cutoff frequency:
 +
:$$f_{\rm G} ≈ 1.5 - f_{\rm 3dB} = 0.45/T.$$
 +
*The resulting frequency impulse&nbsp; $g(t)$&nbsp; at point &nbsp;<b>(2)'</b>&nbsp; of the block diagram results from the convolution of the rectangular  pulse&nbsp; $g_{\rm R}(t)$&nbsp; with the impulse response&nbsp; $h_{\rm G}(t)$&nbsp; of the Gaussian low-pass:
 +
 
 +
:$$g(t) = g_{\rm R}(t) \star h_{\rm G}(t)\hspace{0.05cm}. $$
 
   
 
   
*Bei GSM ist die 3dB–Grenzfrequenz zu $f_{\rm 3dB} = 0.3/T$ festgelegt. Wie in Aufgabe A3.4 gezeigt wird, gilt somit für die systemtheoretische Grenzfrequenz $f_{\rm G} ≈ 1.5 · f_{\rm 3dB} = 0.45/T$.
+
*The GMSK-modulated signal&nbsp; $s(t)$&nbsp; now no longer exhibits a constant frequency section by section&nbsp; $($per symbol duration$)$.&nbsp; However,&nbsp; it is difficult to see this difference from MSK from the signal waveform at point&nbsp; '''(4)''' &nbsp;of the block diagram.
*Der resultierende Frequenzimpuls $g(t)$ am Punkt 2 des Blockschaltbildes ergibt sich aus der Faltung des Recheckimpulses $g_{\rm R}(t)$ mit der Impulsantwort $h_{\rm G}(t)$ des Gaußtiefpasses zu
+
 
 +
 
 +
<u>Note:</u> &nbsp; We refer here to  the&nbsp; (German language)&nbsp; SWF applet&nbsp; [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|"Frequency Shift Keying & Continuous Phase Modulation"]].
 +
 
 +
==Advantages and disadvantages of GMSK==
 +
<br>
 +
Here,&nbsp; the main features of the modulation method&nbsp; "Gaussian Minimum Shift Keying"&nbsp; are summarized.&nbsp; The following graphic was taken from the book&nbsp; [Kam04]<ref name ='Kam04'>Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4th edition, 2004.</ref>&nbsp;.  
  
:$$g(t) =  g_{\rm R}(t) \star h_{\rm G}(t)\hspace{0.05cm}. $$
+
[[File:EN_Bei_T_3_2_S10.png|right|frame|Power-spectral densities of QPSK and MSK]]
 
   
 
   
*Das GMSK–modulierte Signal $s(t)$ weist nun nicht mehr abschnittsweise (je Symboldauer) eine konstante Frequenz auf. Diesen Unterschied zur MSK kann man allerdings aus dem Signalverlauf am Punkt '''4''' des Blockschaltbildes nur schwer erkennen.
+
&rArr; &nbsp; The left graph shows the log power-spectral density&nbsp; $10 \cdot \text{lg} \ {\it Φ}_s(f)/{\it Φ}_0$&nbsp; of&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$&nbsp; compared to&nbsp; "Quaternary Phase Shift Keying"&nbsp; $\rm (QPSK)$,&nbsp; where&nbsp; ${\it Φ}_0$&nbsp; was chosen&nbsp; "suitable".&nbsp;
 +
 +
On the abscissa is plotted the normalized frequency&nbsp; $f \cdot T_{\rm B}$.&nbsp; For MSK,&nbsp; the bit duration&nbsp; $T_{\rm B}$&nbsp; is equal to the symbol duration&nbsp; $T$,&nbsp; while for QPSK holds:&nbsp; $T_{\rm B} = T/2$.
 +
 +
One recognizes from this left representation:
 +
#The first zero in the power-spectral density&nbsp; $\rm (PSD)$&nbsp; occurs at the normalized abscissa value&nbsp; $f \cdot T_{\rm B} = 0.5$&nbsp; for QPSK&nbsp; $($dashed curve$)$,&nbsp; but for MSK only at&nbsp; $f\cdot T_{\rm B} = 0.75$.
 +
#In the further course,&nbsp; however,&nbsp; MSK results in a much faster PSD decay than the asymptotic&nbsp; $f^{-2}$&nbsp; decay for QPSK.  
 +
#Note that for MSK a cosine pulse is used for spectral shaping and for QPSK a rectangular pulse.
  
==Vor– und Nachteile von GMSK==
 
<br>
 
Hier werden die wichtigsten Merkmale des Modulationsverfahren ''Gaussian Minimum Shift Keying'' zusammenfassend aufgeführt. Ein wesentlicher Vorteil von GMSK ist der sehr geringe Bandbreitenbedarf. Die linke Grafik zeigt das logarithmierte Leistungsdichtespektrum $10 · \text{lg} ß {\it Φ}_s(f)/{\it Φ}_0$ des Verfahrens Minimum Shift Keying (MSK) im Vergleich zu ''Quaternary Phase Shift Keying'' (QPSK), wobei ${\it Φ}_0$ „geeignet” gewählt wurde.
 
  
[[File:P_ID1200__Bei_T_3_2_S10_v2.png|center|frame|Leistungsdichtespektren von QPSK und MSK]]
+
&rArr; &nbsp; The right plot shows the influence of Gaussian pulse shaping in GMSK on the power-spectral density&nbsp; ${\it Φ}_s(f)$,&nbsp; where the normalized 3dB cutoff frequency is used as parameter.&nbsp;
  
Man erkennt aus dieser dem Buch [Kam04]<ref name ='Kam04'>Kammeyer, K.D.: ''Nachrichtenübertragung''. Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref> entnommenen Darstellung. Auf der Abszisse ist die normierte Frequenz $f · T_{\rm B}$ aufgetragen. Bei MSK ist die Bitdauer $T_{\rm B}$ gleich der Symboldauer $T$, während bei QPSK $T_{\rm B} = T/2$ gilt. Im rechten Diagramm, das sich ausschließlich auf (G)MSK bezieht, könnte die Abszisse auch mit $f · T$ beschriftet werden.
+
In this diagram,&nbsp; which refers exclusively to&nbsp; $\rm (G)MSK$,&nbsp; the abscissa could also be labeled&nbsp; $f \cdot T$.
*Betrachten wir zunächst die linke Grafik: Die erste Nullstelle im Leistungsdichtespektrum (LDS) tritt bei der QPSK (gestrichelte Kurve) beim normierten Abszissenwert $f · T_{\rm B} = 0.5$ auf, bei der MSK dagegen erst bei $f · T_{\rm B} = 0.75$.
+
*Im weiteren Verlauf ergibt sich jedoch bei MSK ein deutlich schnellerer LDS–Abfall als der asymptotische $f^{-2}$–Abfall bei QPSK. Zu beachten ist, dass für die MSK ein Cosinusimpuls zur Spektralformung zugrunde liegt und für die QPSK ein Rechteckimpuls.
+
#The smaller&nbsp; $f_{\rm 3\ dB}$&nbsp; is, the more narrowband is the power-spectral density.&nbsp; In the GSM standard&nbsp; $f_{\rm 3\ dB} \cdot T$ = 0.3&nbsp; has been specified.&nbsp; With this value,&nbsp; the bandwidth is already decisively reduced,&nbsp; resulting in lower interferences for adjacent channels.
 +
#On the other hand,&nbsp; with this cutoff frequency&nbsp; "intersymbol interferences"&nbsp; already have a serious effect.&nbsp; The eye opening is smaller than&nbsp; $50\%$&nbsp; and a suitable equalization has to be provided.
 +
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusions:}$ &nbsp; &nbsp;
 +
'''The main advantage of GMSK is its very low bandwidth requirements'''.
  
Die rechte Darstellung zeigt den Einfluss der gaußförmigen Impulsformung bei GMSK auf das Leistungsdichtespektrum ${\it Φ}_s(f)$, wobei als Parameter die normierte 3dB–Grenzfrequenz verwendet wird.
+
Furthermore,&nbsp; it should be noted:
*Je kleiner $f_{\rm 3\ dB}$ ist, desto schmalbandiger ist das Leistungsdichtespektrum. Im GSM–Standard wurde $f_{\rm 3\ dB} · T$ = 0.3 festgelegt. Mit diesem Wert wird die Bandbreite bereits entscheidend reduziert, was zu geringeren ''Nachbarkanalinterferenzen'' führt.
+
*Binary FSK &ndash; even with continuous phase matching &ndash; generally represents a nonlinear modulation process.&nbsp; Therefore,&nbsp; coherent demodulation is actually not possible.
*Andererseits wirken sich mit dieser Grenzfrequenz die ''Impulsinterferenzen'' schon gravierend aus. Die Augenöffnung ist kleiner als $50\%$ und es ist eine geeignete Entzerrung vorzusehen.
 
  
 +
*An exception is the MSK as a special case for the modulation index&nbsp; $h = 0.5$,&nbsp; which can be realized linearly as&nbsp; "Offset-QPSK"&nbsp; and thus can also be demodulated coherently.
  
Des Weiteren ist zu vermerken:
+
*Without taking intersymbol interference into account,&nbsp; the&nbsp; &raquo;'''bit error probability'''&laquo;&nbsp; is as follows:
*Die binäre FSK stellt – auch bei kontinuierlicher Phasenanpassung – allgemein ein nichtlineares Modulationsverfahren dar. Deshalb ist eine kohärente Demodulation eigentlich nicht möglich.
+
::$$p_{\rm B} = {\rm Q} \left(\sqrt{ {E_{\rm B} }/{N_0} }\hspace{0.09cm}\right) =
*Eine Ausnahme bildet die MSK als Sonderfall für den Modulationsindex $h = 0.5$, die sich als ''Offset–QPSK'' linear realisieren lässt und somit auch kohärent demoduliert werden kann.
+
{1}/{2}\cdot{\rm erfc} \left(\sqrt{ {E_{\rm B} }/{2N_0} }\hspace{0.09cm}\right)
*Ohne Berücksichtigung der Impulsinterferenzen beträgt die ''Bitfehlerwahrscheinlichkeit''
 
:$$p_{\rm B} = {\rm Q} \left(\sqrt{{E_{\rm B}}/{N_0}}\hspace{0.09cm}\right) =
 
{1}/{2}\cdot{\rm erfc} \left(\sqrt{{E_{\rm B}}/{2N_0}}\hspace{0.09cm}\right)
 
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
:&rArr; &nbsp; Compared to the QPSK,&nbsp; there is a degradation of&nbsp; $3\ \rm dB$. &nbsp;  <u>Note:</u>&nbsp; The HTML5/JavaScript applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]]&nbsp; provides the numerical values of the functions &nbsp; ${\rm Q}(x)$&nbsp; resp.&nbsp; $1/2 \cdot {\rm erfc}(x)$&nbsp; used here.
 
   
 
   
*Gegenüber der QPSK ergibt sich eine Degradation um $3\ \rm dB$. Das interaktive applet [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(Applet)|Komplementäre Gaußsche Fehlerfunktionen]] liefert die Zahlenwerte der hier verwendeten Funktionen ${\rm Q}(x)$ bzw. $1/2 \cdot {\rm erfc}(x)$.  
+
*An advantage of GMSK over QPSK is that a constant envelope is obtained despite the spectral shaping of the basic pulse&nbsp; $g(t)$.&nbsp; Therefore,&nbsp; nonlinearities on the channel do not play as large a role as in other modulation schemes.&nbsp; This allows the use of simple and inexpensive power amplifiers,&nbsp; lower power consumption and thus also longer operating times of battery-powered devices.}}
*Ein Vorteil der GMSK gegenüber der QPSK ist, dass sich trotz der spektralen Formung des Grundimpulses eine konstante Hüllkurve ergibt. Nichtlinearitäten auf dem Kanal spielen deshalb nicht eine so große Rolle als bei anderen Modulationsverfahren. Dies ermöglicht den Einsatz einfacher und kostengünstiger Leistungsverstärker, einen geringeren Leistungsverbrauch und damit auch längere Betriebsdauern akkubetriebener Geräte.
 
  
  
Line 238: Line 327:
 
==Radio Subsystem Link Control==   
 
==Radio Subsystem Link Control==   
 
<br>
 
<br>
Eine weitere Funktion der Funkschnittstelle ist die Steuerung der Funkverbindung. So übernimmt das so genannte ''Radio Subsystem Link Control'' folgende Aufgaben:
+
Another function of the radio interface is the control of the radio link.&nbsp; Thus,&nbsp; the so-called&nbsp; "Radio Subsystem Link Control"&nbsp; performs the following tasks:
Es ist für die Messung der Empfangsqualität zuständig. Während einer aufgebauten Verkehrs– oder Signalisierungsverbindung erfolgt in regelmäßigen Abständen die Kanalvermessung der Mobilstation hinsichtlich Empfangsfeldstärke und Bitfehlerrate  '''Quality Monitoring'''. Diese Werte werden in einem Messreport zur Basisstation über den Signalisierungskanal SACCH übertragen und von dieser für die Leistungsregelung und das Handover verwendet.
+
#It is responsible for the measurement of the reception quality. During an established traffic or signaling connection, the channel measurement of the mobile station is performed at regular intervals with regard to received field strength and bit error rate &nbsp; &nbsp; &raquo;'''Quality Monitoring'''&laquo;. These values are transmitted in a measurement report to the base station via the signaling channel SACCH and used by it for power control and handover.<br><br>
Die '''Power Control''' (deutsch: Leistungsregelung) ist erforderlich, damit alle Mobilstationen nur mit der minimal erforderlichen Energie abstrahlen. Die Sendeleistung kann adaptiv in Schritten von 2 dBm zwischen 43 dBm (Stufe 0: 20 W) und 13 dBm (Stufe 15: 20 mW) geregelt werden.
+
#The&nbsp; "Power Control"&nbsp; is necessary to ensure that all mobile stations only radiate with the minimum required power.&nbsp; The transmitted power can be adaptively controlled in steps of&nbsp; $2 \ \rm dBm$&nbsp; between&nbsp; $43 \ \rm dBm$&nbsp; $\text{(level 0:}$&nbsp; $20\ \rm W)$&nbsp; and&nbsp; $13 \ \rm dBm$&nbsp; $\text{(level 15:}$&nbsp; $20\ \rm mW)$.<br><br> 
Auch die Sendeleistung der Basisstationen wird in Schritten von 2 dBm geregelt, um optimale Netzkapazität zu erzielen. Eine Ausnahme bildet der BCCH–Träger mit konstanter Sendeleistung, um den Mobilstationen eine vergleichende Messung benachbarter BCCH–Träger zu ermöglichen.
+
#Base station transmitted power is also adjusted in steps of&nbsp; $2 \rm dBm$&nbsp; to achieve optimum network capacity.&nbsp; An exception is the BCCH carrier with constant transmitted power to allow mobile stations to make comparative measurements of neighboring BCCH carriers.<br><br>
 +
#The&nbsp; &raquo;'''Adaptive Frame Alignment'''&laquo;&nbsp; &ndash; i.e. adaptive frame synchronization &ndash; is used to avoid collisions between uplink and downlink data to be transmitted or received by the mobile station offset by three time slots.<br>
 +
 
 +
[[File:EN_Bei_T_3_2_S11.png|right|frame|Adaptive Frame Alignment]]
 +
<br>
 +
This is shown in the adjacent graph.&nbsp; The downlink is represented in the middle area with a yellow background,&nbsp; where the data arrives at the mobile station&nbsp; $\rm (MS)$&nbsp; by the time&nbsp; $T_{\rm R}$&nbsp; $($"Round Trip Delay Time", by the time&nbsp; $T_{\rm R}$&nbsp; $($"Round Trip Delay Time",&nbsp; green marking$)$&nbsp;later than it was sent by the&nbsp; base transceiver station&nbsp; $\rm (BTS)$.
  
Das '''Adaptive Frame Alignment''' – also die adaptive Rahmensynchronisation – dient dazu, Kollisionen zwischen Uplink– und Downlinkdaten zu vermeiden, die von der Mobilstation um drei Zeitschlitze versetzt gesendet bzw. empfangen werden sollen. Dies zeigt nebenstehende Grafik.
+
In the upper area,&nbsp; the uplink is shown without&nbsp; "Timing Advance".
 +
#The MS starts sending exactly three time slots after reception&nbsp; $($blue marker$)$.
 +
#Due to the delays in downlink and uplink,&nbsp; the time slot&nbsp; "$0$"&nbsp; does not reach the BTS at the time&nbsp; $3T_{\rm burst}$&nbsp; as required,&nbsp; but by&nbsp; $2T_{\rm R}$&nbsp; later&nbsp; $($red mark$)$.  
 +
#With the&nbsp; "Timing Advance"&nbsp; uplink $($lower sketch$)$&nbsp; this delay is already compensated by the mobile station by sending the data by the time&nbsp; $ 2T_{\rm R}$&nbsp; earlier and thus they arrive exactly time synchronized at the BTS.
  
Im mittleren, gelb hinterlegten Bereich ist der Downlink dargestellt, wobei die Daten um die Zeit $T_{\rm R}$ (''Round Trip Delay Time'') später bei der MS ankommen, als sie von der ''Base Transceiver Station'' (BTS) gesendet wurden (grüne Markierung).
 
  
Im oberen Bereich ist der Uplink ohne ''Timing Advance'' dargestellt. Die MS beginnt genau 3 Zeitschlitze nach dem Empfang mit dem Senden (blaue Markierung). Aufgrund der Verzögerungen im Downlink und Uplink erreicht der Zeitschlitz 0 die BTS nicht wie gefordert zu der Zeit $3T_{\rm Z}$, sondern um $2T_{\rm Z}$ später (rote Markierung). Beim ''Timing Advance'' Uplink (untere Skizze) wird diese Verzögerung bereits von der MS kompensiert, indem die Daten um die Zeit $T_{\rm A} = 2T_{\rm R}$ früher versandt werden und diese somit genau zeitsynchron bei der BTS ankommen.
+
The stages&nbsp; $0 - 63$&nbsp; are available for &nbsp; "Timing Advance",&nbsp; where each stage corresponds to one bit duration&nbsp; $T_{\rm B}$.  
  
Für das ''Timing Advance'' stehen 64 Stufen (0 – 63) zur Verfügung, wobei jede Stufe einer Bitdauer TB entspricht. Das maximale ''Timing Advance'' beträgt somit 63 · 3.7 µs ≈ 233 µs, so dass sich die maximale zulässige Laufzeit in einer Richtung zu $T_{\rm R}$ ≈ 116 µs ergibt. Dies entspricht einer Entfernung zwischen BTS und MS von 116 μs · 3 · 10<sup>8</sup> m/s ≈ 35 km. Diesen Wert gibt GSM als den erlaubten Zellenradius an.
+
#The maximum&nbsp; timing advance&nbsp; is thus&nbsp; $\rm 63 \cdot 3.7 \ &micro; s ≈ 233 \ &micro;s$,&nbsp; giving the maximum allowable runtime in one direction to&nbsp; $T_{\rm R} ≈ 116\ {\rm &micro; s}$.  
 +
#From this,&nbsp; the allowed cell radius of GSM&nbsp; $($distance between BTS and MS$)$ can be calculated:&nbsp;
 +
::$$116\ \rm  &micro; s · 3 · 10^8 \ m/s ≈ 35 \ km.$$
  
 
 
 
 
== Aufgaben zum Kapitel==  
+
== Exercises for the chapter==  
 
<br>
 
<br>
[[Aufgaben:3.3_GSM–Rahmenstruktur|Aufgabe 3.3: GSM–Rahmenstruktur]]
+
[[Aufgaben:Exercise_3.3:_GSM_Frame_Structure|Exercise 3.3: GSM Frame Structure]]
  
[[Aufgaben:3.3Z_GSM_900_und_GSM_1800|Zusatzaufgabe 3.3Z: GSM 900 und GSM 1800]]
+
[[Aufgaben:Exercise_3.3Z:_GSM_900_and_GSM_1800|Exercise 3.3Z: GSM 900 and GSM 1800]]
  
[[Aufgaben:3.4_GMSK–Modulation|Aufgabe 3.4: GMSK–Modulation]]
+
[[Aufgaben:Exercise_3.4:_GMSK_Modulation|Exercise 3.4: GMSK Modulation]]
  
[[Aufgaben:3.4Z_Continuous_Phase_FSK|Zusatzaufgabe 3.4Z: Continuous Phase FSK]]
+
[[Aufgaben:Exercise_3.4Z:_Continuous_Phase_Frequency_Shift_Keying|Exercise 3.4Z: Continuous Phase Frequency Shift Keying]]
  
==Quellenverzeichnis==
+
==References==
 
<references />
 
<references />
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:48, 20 February 2023


Logical channels of GSM


The  »radio interface«  is crucial for the proper operation of the GSM network and the exchange of information between mobile and base station. 

  • This is also called the  "air interface"  or  "physical layer"  and defines all physical channels of the GSM system as well as their assignment to the logical channels. 
  • Furthermore,  the radio interface is responsible for other functionalities such as the  "radio subsystem link control".
Compilation of the logical channels of GSM

Let's start with the  »logical channels«.  These can occupy either an entire physical channel or only a portion of a physical channel and fall into two categories:

  • »Traffic Channels«  are used exclusively for the transmission of user data streams such as voice,  fax and data.  These channels are for both directions
mobile station  $\rm (MS)$   ⇔   base station subsystem  $\rm (BSS)$
designed and can be occupied either by a full rate traffic channel  $\text{(13 kbit/s)}$  or by two half rate channels  $\text{(5.6 kbit/s)}$  each.
  • »Control Channels«  supply all active mobile stations via the radio interface by means of packet-oriented signaling in order to be able to receive messages from the  base transceiver station  $\rm (BTS )$» or send messages to the BTS at any time.


The table lists the logical channels of the GSM;

  • These differ from the logical ISDN channels by an additional  "m"  for  "mobile".
  • For example,  the  "Bm channel"  is comparable to the  "B channel"  of ISDN.


Uplink and downlink parameters


The logical channels are mapped to  »physical channels«  which describe all physical aspects of data transport:

Frequency ranges of the standardized GSM systems
  • the frequency ranges for  »uplink«  $($radio link mobile station   ⇒   base station$)$  and  »downlink«  $($radio link base station   ⇒   mobile station$)$,
  • the division between  »Time Division Multiple Access«  $\rm (TDMA)$» and  »Frequency Division Multiple Access«  $\rm (FDMA)$,
  • the  »burst structure«,  i.e. the occupancy of a TDMA time slot in different applications  $($user and signaling data,  synchronization marks,  etc.$)$,
  • the  »modulation method«  "Gaussian Minimum Shift Keying"  $\rm (GMSK)$,  a variant of  "Continuous Phase – Frequency Shift Keying"  $\text{(CP-FSK)}$  with large bandwidth efficiency.


The table shows the frequency ranges of the standardized GSM systems:

  • To prevent intermodulation interference between the two directions,  there is a  "guard band"  between the bands for uplink and downlink,  the so-called  "duplex spacing".


$\text{Example 1:}$  With system  $\text{GSM 900}$  $($"D-network"$)$  the uplink starts at  $\text{890 MHz}$  and the downlink at  $\text{935 MHz}$.

  • The duplex spacing is thus  $\text{45 MHz}$.
  • Both the uplink and the downlink have a bandwidth of  $\text{25 MHz}$.
  • After subtracting the guard bands of  $\text{100 kHz}$  at each of the two edges there remain  $\text{24.8 MHz}$,  which are divided into  $124$  FDMA channels of  $\text{200 kHz}$  each.


⇒   The $\text{DCS band}$  $($"E-network"$)$  in the range around  $\text{1800 MHz}$  has a duplex spacing of  $\text{95 MHz}$  and a respective bandwidth of  $\text{75 MHz}$.

  • Taking into account the guard bands,  this results in  $374$  FDMA channels at  $\text{200 kHz}$  each.


Realization of FDMA and TDMA


Interaction between FDMA and TDMA in GSM

In the GSM system,  two multiple access methods are used in parallel:

  1. Frequency Division Multiple Access  $\rm (FDMA)$,  and
  2. Time division multiple access  $\rm (TDMA)$.


The graphic and description apply to the $\text{GSM 900}$ system.  Comparable statements apply to the other GSM systems.  We also refer here to the section  "GSM frame structure"  and  "Exercise 3.3".

  • In both the uplink and downlink,  the transmission of signaling and traffic data occurs in parallel in  $124$  frequency channels,  designated  "RFCH1"  to  "RFCH124".
  • The center frequency of the uplink channel  $n \ ( = 1$, ... , $124)$  is at
$$f_n= 890 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
  • At the upper and lower ends of the  $25 \ {\rm MHz}$  band,  there are guard bands of  $100 \ {\rm kHz}$  each.
  • The channel  $n$  in the downlink is above the channel  $n$  in the uplink by the duplex spacing of  $45 \ {\rm MHz}$.  The channels are designated in the same way as those in the uplink.  Center frequencies:
$$f_n =935 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
  • Each cell is assigned some frequencies per  "cell allocation"  $\rm (CA)$.  In adjacent cells one uses different frequencies.
  • A subset of the CAs is reserved for logical channels.  The remaining channels are allocated to a mobile station as  "mobile allocation"  $\rm (MA)$.
  • This is used,  for example,  for  "frequency hopping",  where the data is sent over different frequency channels.  This makes the transmission more stable against channel fluctuations.  In most cases,  frequency hopping is performed in packets.
  • The individual GSM frequency channels are further subdivided by time division multiplexing  $\rm (TDMA)$.  Each FDMA channel is periodically divided into so-called  "TDMA frames"  which in turn each comprise eight time slots.
  • The  "time slots"  $($"TDMA channels"$)$  are cyclically assigned to the individual subscribers and each contain a so-called  "burst"  of  $156.25$  bit periods in length.  Each GSM user has exactly one of the eight time slots available in each TDMA frame.
  • The TDMA frames of the uplink are sent with three time slots delay compared to those of the downlink.  This has the advantage that the same hardware of a mobile station can be used for both sending and receiving a message.
  • The duration of a  "time slot"  $($German:  "Zeitschlitz"   ⇒   subscript  "Z"$)$  is  $T_{\rm Z} ≈ 577 \rm µ s$, that of a TDMA frame  $4.615 \rm ms$.  These values result from the GSM frame structure.  In total  $26$  TDMA frames are combined into a so-called  "multiframe"  of duration  $120 \ \rm ms$:
$$T_{\rm Z} = \frac{120\,{\rm ms}}{8 \cdot 26} \approx 576.9\,{\rm µ s }\hspace{0.05cm}. $$


The different burst types in GSM


The different burst types with GSM

As just shown,  a  »burst«  contains  $156.25$  bits each and has duration 

$$T_{\rm burst} = T_{\rm Z} ≈ 577 \rm µ s.$$

From this,  the bit duration is calculated to 

$$T_{\rm B} ≈ \frac{T_{\rm burst} }{156.25} \approx3.69 \rm µ s.$$

To avoid overlapping of bursts due to different propagation times between mobile and base station, a  »Guard Period«  $\rm (GP)$» is inserted at the end of each burst.  This guard period is  $8.25$  bit durations,  so 

$$T_{\rm GP}= 8.25 \cdot \cdot T_{\rm B} = 8.25 \cdot 3.69 \ {\rm µ s} \approx 30.5 \ {\rm µ s}.$$

⇒   There are five different types of bursts,  as shown in the figure on the right:

  1. Normal Burst  $\rm (NB)$,
  2. Frequency Correction Burst  $\rm (FB)$,
  3. Synchronization Burst  $\rm (SB)$,
  4. Dummy Burst  $\rm (DB)$,
  5. Access Burst  $\rm (AB)$.


(1)   The  »Normal Burst«  is used to transmit data from traffic and signaling channels.  The error protection encoded user data  $($blue,  two times  $57$  bits$)$  together with three tail bits each  $($red,  during this time the transmitted power is regulated$)$,  two signaling bits  $($green) and  $26$  bits for the training sequence  $($yellow,  required for channel estimation and synchronization$)$  result in a total of  $148$  bits.  Added to this is the Guard Period of  $8.25$ bits  $($gray$)$.

The two  $($green$)$  signaling bits – also called  "stealing flags"  –  indicate whether the burst transports only user data or high-priority signaling information,  which is always to be transmitted without delay.  The  "training sequence"  is used to estimate the channel,  which is a prerequisite for applying an equalizer to reduce intersymbol interference.

(2)   The  »Frequency Correction Burst«  is used to frequency synchronize a mobile station.  All bits except the tail bits and the guard period are here set to logical  "$0$".  The repeated broadcast of such a burst on the  "frequency correction channel"  $\rm (FCCH)$  corresponds to an unmodulated carrier signal with frequency  $f_{\rm T} + Δf_{\rm A}$  $($carrier frequency + frequency deviation$)$.  This value results from the fact that the modulation method  $\text{Gaussian Minimum Shift Keying}$  is a FSK special case.

(3)   The  »Synchronization Burst«  is used to transmit information that helps a mobile station synchronize in time with the base transceiver station.  Besides a long midamble of  $64$  bits, the synchronization burst contains the TDMA frame number and the  "base transceiver station identity code"  $\rm (BSIC)$.  When such a burst is repeatedly broadcast,  it is referred to as the  "synchronization channel"  $\rm (SCH)$.

(4)   The  »Dummy Burst«  is transmitted by each  base transceiver station  $\rm (BTS)$  on a frequency specially allocated to it  $($"cell allocation"$)$  when there are no other bursts to be transmitted.  This ensures that a mobile station can always take power measurements.

(5)   The  »Access Burst«  is used for random multiple access on the  "random access channel"  $\rm (RACH)$.  To keep the probability of collisions on the RACH low, the  "access burst"  has a substantially longer  "guard period"  of  $68.25$  bit durations than the other bursts.


GSM frame structure


The GSM frame structure

The GSM frame structure is used to map logical channels to physical channels.  Here a distinction is made between

  • the  »mapping in frequency«,  based on 
  1. "cell allocation"  $\rm (CA)$,
  2. "mobile allocation"  $\rm (MA)$,
  3. the  "TDMA frame number"  $\rm (FN)$,  and
  4. the rules for the $($optional$)$  "frequency hopping";
  • the  »mapping in time«,  where the TDMA frames are grouped into
  1. multiframes,
  2. superframes,  and
  3. hyperframes,


each with eight time slots for transmitting the bursts.


⇒   According to this graphic,  the following statements are valid:

(1)   »Multiframes«  are used for mapping logical channels to physical channels.  Two types can be distinguished here, 

  • those with  $26$  TDMA frames and a cycle duration of  $120 \ \rm ms$, and
  • those with  $51$  TDMA frames and a duration of  $235.4 \ \rm ms$.


⇒   The bursts of the traffic channels  $\rm (TCH)$  and the associated control channels  $\rm (SACCH,  FACCH)$  are transmitted in  $26$  successive TDMA frames each.  Only one time slot per TDMA frame is always considered for the respective multiframe.

⇒   Of the gross data rate  $\text{(approx. 33.9 kbit/s)}$  per user are  $\text{9.2 kbit/s}$  reserved for synchronization,  signaling and  guard period  and  $\text{1.9 kbit/s}$  for  $\rm SACCH$  and  $\rm IDLE$.  The  $($encoded and encrypted$)$  user data occupy here only  $\text{22.8 kbit/s}$.

⇒   The multiframe structure with  $51$  frames  $($right half of the graph$)$  is used to multiplex several logical channels onto one physical channel.  In  $51$  consecutive TDMA frames,  all data of the signaling channels  $($except  $\rm FACCH$  and  $\rm SACCH)$  are transmitted respectively.


(2)   One  »superframe«  consists of  $1326$  consecutive TDMA frames  $(51$  multiframes with each  $26$ TDMA frame or  $26$  multiframes with each  $51$  TDMA frame$)$  and lasts approximately  $T_{\rm superframe}=6.12$  seconds.


(3)  A  »hyperframe«  groups  $2048$  superframes  $(2\hspace{0.08cm}715{\hspace0.08cm}648$  TDMA frames$)$  together and is used with its long cycle duration to synchronize the payload encryption.  This is:

$$T_{\rm hyperframe}=\text{3 hours, 28 minutes and 53.760 seconds}.$$


Modulation in GSM systems


According to the statements of the last sections,  $156.25$  bits per time slot  $(0.5769 \ \rm ms)$  must be transmitted in one frequency channel.

  1. This corresponds to a total bit rate  $($for eight TDMA users including channel coding,  signaling and synchronization information,  etc.$)$ of  $R_{\rm total} = 270\hspace{0.08cm}833 \rm bit/s$.
  2. For this bit rate,  a bandwidth of  $B = 200 \ \rm kHz$  is available for GSM   ⇒   required is a modulation method with a bandwidth efficiency of at least  $β =R_{\rm ges}/B = 1.35$.
  3. In GSM mobile radio,  the modulation method  »Gaussian Minimum Shift Keying«  $\rm (GMSK)$  is used.


Here follows a brief,  bullet-point description:

  • GMSK is a modified form of  "Frequency Shift Keying"  $\rm (FSK)$.  This results from driving a  $\text{Frequency Modulator}$  with a binary bipolar rectangular input signal.
  • Such an FSK signal  $s(t)$  contains within each symbol duration  $T$  only a single instantaneous frequency at a time;  $f_{\rm A}(t) = \rm const. $
  • If the  $($normalized$)$  input signal is equal  $+1$, then  $f_{\rm A}(t)$  is equal to the sum of the carrier frequency  $f_{\rm T}$  and the frequency deviation  $Δf_{\rm A}$.
  • Correspondingly,  for the normalized input signal  $-1$:   $f_{\rm A}(t) = f_{\rm T} - Δf_{\rm A}$.
  • To allow easy demodulation,  the two signals with frequencies  $f_{\rm T} ± Δf$  should be orthogonal to each other within the symbol duration  $T$.  Consequently:
$$\int^{T} _{0} \cos \big(2 \pi t \cdot (f_{\rm T}+ \Delta f_{\rm A} )\big)\cdot \cos \big(2 \pi t \cdot (f_{\rm T}- \Delta f_{\rm A} )\big)\,{\rm d}t= 0\hspace{0.05cm}. $$
  • This results in the requirement for the  "frequency deviation":
$$\Delta f_{\rm A} = \frac{k}{4 \cdot T}\hspace{0.4cm}{\rm with}\hspace{0.4cm}k = 1,\ 2,\ 3,\ \text{...}$$
  • In FSK systems the  "modulation index"  is defined to  $h = 2 \cdot Δf_{\rm A} \cdot T$,  it follows  $h = k/2$.
  • Thus,  the smallest modulation index under compliance with the orthogonality conditions is  $h_{\rm mim} = 0.5$.
  • This is used in all GSM systems,  because a larger modulation index than  $h = 0.5$  would require a significantly larger bandwidth.
  • A very narrow spectrum results,  if phase jumps are avoided at the symbol boundaries by phase matching   ⇒   MSK belongs to the  "continuous phase FSK"  techniques.
  • An additional low-pass filter with Gaussian characteristics is inserted before the frequency modulator   ⇒   further reducing the GSM bandwidth.


Continuous phase adjustment with FSK


Starting from the rectangular wave signal  $q(t)$  and the carrier frequency  $f_{\rm T} = 4/T$  we consider the FSK signals  $s_{\rm A}(t)$, ... ,  $s_{\rm D}(t)$  at different frequency deviation  $Δf_{\rm A}$   ⇒   modulation index  $h = 2 \cdot Δf_{\rm A} \cdot T$.

Example signals for continuous phase adjustment

Regarding the signal characteristics shown on the right,  it is to be noted  $($we also refer to the  $($German language$)$  SWF applet  "Frequency Shift Keying & Continuous Phase Modulation"):

  1. The signal  $s_{\rm A}(t)$  results in  $Δf_{\rm A} = 1/T$   ⇒   modulation index  $h = 2$.  One can see the higher frequency  $f_1 = 5/T$  $($for  $a_ν = +1)$  compared to the frequency  $f_2 = 3/T$  $($for  $a_ν = -1)$.
  2. With  $Δf_{\rm A} = 0.5/T$  $($signal  $s_{\rm {\rm B}}(t)$,  $h = 1)$  holds  $f_1 = 4.5/T$  and  $f_2 = 3.5/T$.  At each symbol boundary,  a phase jump of  $π$  occurs if no phase adjustment is made as for the signal  $s_{\rm C}(t)$.
  3. When  $s_{\rm C}(t)$  is applied in the range  $0$ ... $T$  the coefficient  $a_1 = +1$  is represented by  $\cos(2π-f_1-t)$  while  $a_2 = +1$  in the range  $T$ ... $2T$  leads to the signal  $-\cos(2π-f_1\hspace{0.01cm}-\hspace{0.01cm}(t-T))$.  Phase jumps are thus avoided by this adjustment.
  4. The signal  $s_{\rm D}(t)$  describes the MSK signal  $($frequency deviation  $Δf_{\rm A} = 0.25/T$   ⇒   modulation index  $h = 0.5)$  with phase adjustment.  Here,  at each symbol boundary four different initial phases are possible – depending on the previous symbols.
  5. For the  $\rm GSM \ 900$  system the carrier frequency is  $f_{\rm T} = 900\ \rm MHz$  and the symbol duration is  $T ≈ 3.7 \ \rm µ s$.  With the modulation index  $h = 0.5$   ⇒   $Δf_{\rm A} ≈ 68 \ \rm kHz$.  Thus,  the two  frequencies  are very close to each other: $f_1 = 900.068\ \rm MHz$,  $f_2 = 899.932\ \rm MHz$.




Minimum Shift Keying (MSK)


The diagram shows the model for generating an MSK modulation and typical signal characteristics.  One recognizes:

Block diagram for generating an MSK and corresponding signal characteristics
  • At point  (1)  the digital source signal consisting of a sequence of Dirac delta pulses at distance  $T$ weighted by the amplitude coefficients  $a_ν ∈ \{-1, +1\}$:
$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu \cdot T)\hspace{0.05cm}; $$
  • at point  (2):  the rectangular source signal  $q_{\rm R}(t)$  after convolution with the rectangular pulse  $g(t)$  the duration  $T$  and the height  $1/T$  $($the amplitude was chosen this way for compatibility with later sections$)$:
$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu \cdot T)\hspace{0.05cm}; $$
  • at point  (3):  the frequency modulator,  which can be realized according to the description in chapter  "Signal characteristics in FM"  as an integrator followed by a phase modulator.  For the signal at point (3)  holds:
$$\phi(t) = \frac{\pi}{2}\cdot \int_{0}^{t} q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
The phase values at  $\nu \cdot T$  are multiples of  $π/2 \ (90^\circ)$,  taking into account the modulation index  $h = 0.5$  valid for MSK.  The phase response is linear.
  • From this,  at the point  (4)  of the block diagram,  the MSK signal is given by
$$s(t) = s_0 \cdot \cos \big(2 \pi f_{\rm T} \hspace{0.05cm}t + \phi(t)\big) = s_0 \cdot \cos \big(2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )\big) \hspace{0.05cm}.$$

Note:

The realization of  "Minimum Shift Keying"  $\rm (MSK)$  by a special variant of  "Offset-QPSK"  is illustrated by the  (German language)  SWF applet  "QPSK and Offset-QPSK".



Gaussian Minimum Shift Keying (GMSK)


One advantage of MSK over other modulation types is the lower bandwidth requirement.  Minor modifications to the  $\text{Gaussian Minimum Shift Keying}$  - $\rm (GMSK)$  result in a narrower spectrum.

One can see from the block diagram the following differences to  "Minimum Shift Keying"  $\rm (MSK)$:

Block diagram for generating a GMSK and corresponding signal characteristics
  • The frequency pulse  $g(t)$  is now no longer rectangular like the pulse  $g_{\rm R}(t)$,  but has flatter edges.
  • Consequently,  there is also a smoother phase progression at point  (3)  than with the MSK method  $($see last section$)$,  where  $ϕ(t)$  symbolically rises or falls linearly.
  • These smoother phase transitions in GMSK are achieved by a  »Gaussian low-pass filter« 
  • with  "frequency response"
$$H_{\rm G}(f) = {\rm e}^{-\pi \hspace{0.05cm} \cdot \hspace{0.05cm} \big({f}/(2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G})\big)^2}$$
  • and  "impulse response"
$$ h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm} \cdot \hspace{0.05cm} (2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G}\hspace{0.05cm} \cdot \hspace{0.05cm} t)^2}\hspace{0.05cm}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, H_{\rm G}(f)\hspace{0.2cm}.$$
  • For GSM,  the 3dB cutoff frequency is set to  $f_{\rm 3dB} = 0.3/T$.  Thus,  as shown in  "Exercise 3.4",  the system theoretic cutoff frequency:
$$f_{\rm G} ≈ 1.5 - f_{\rm 3dB} = 0.45/T.$$
  • The resulting frequency impulse  $g(t)$  at point  (2)'  of the block diagram results from the convolution of the rectangular pulse  $g_{\rm R}(t)$  with the impulse response  $h_{\rm G}(t)$  of the Gaussian low-pass:
$$g(t) = g_{\rm R}(t) \star h_{\rm G}(t)\hspace{0.05cm}. $$
  • The GMSK-modulated signal  $s(t)$  now no longer exhibits a constant frequency section by section  $($per symbol duration$)$.  However,  it is difficult to see this difference from MSK from the signal waveform at point  (4)  of the block diagram.


Note:   We refer here to the  (German language)  SWF applet  "Frequency Shift Keying & Continuous Phase Modulation".

Advantages and disadvantages of GMSK


Here,  the main features of the modulation method  "Gaussian Minimum Shift Keying"  are summarized.  The following graphic was taken from the book  [Kam04][1] .

Power-spectral densities of QPSK and MSK

⇒   The left graph shows the log power-spectral density  $10 \cdot \text{lg} \ {\it Φ}_s(f)/{\it Φ}_0$  of  "Minimum Shift Keying"  $\rm (MSK)$  compared to  "Quaternary Phase Shift Keying"  $\rm (QPSK)$,  where  ${\it Φ}_0$  was chosen  "suitable". 

On the abscissa is plotted the normalized frequency  $f \cdot T_{\rm B}$.  For MSK,  the bit duration  $T_{\rm B}$  is equal to the symbol duration  $T$,  while for QPSK holds:  $T_{\rm B} = T/2$.

One recognizes from this left representation:

  1. The first zero in the power-spectral density  $\rm (PSD)$  occurs at the normalized abscissa value  $f \cdot T_{\rm B} = 0.5$  for QPSK  $($dashed curve$)$,  but for MSK only at  $f\cdot T_{\rm B} = 0.75$.
  2. In the further course,  however,  MSK results in a much faster PSD decay than the asymptotic  $f^{-2}$  decay for QPSK.
  3. Note that for MSK a cosine pulse is used for spectral shaping and for QPSK a rectangular pulse.


⇒   The right plot shows the influence of Gaussian pulse shaping in GMSK on the power-spectral density  ${\it Φ}_s(f)$,  where the normalized 3dB cutoff frequency is used as parameter. 

In this diagram,  which refers exclusively to  $\rm (G)MSK$,  the abscissa could also be labeled  $f \cdot T$.

  1. The smaller  $f_{\rm 3\ dB}$  is, the more narrowband is the power-spectral density.  In the GSM standard  $f_{\rm 3\ dB} \cdot T$ = 0.3  has been specified.  With this value,  the bandwidth is already decisively reduced,  resulting in lower interferences for adjacent channels.
  2. On the other hand,  with this cutoff frequency  "intersymbol interferences"  already have a serious effect.  The eye opening is smaller than  $50\%$  and a suitable equalization has to be provided.


$\text{Conclusions:}$     The main advantage of GMSK is its very low bandwidth requirements.

Furthermore,  it should be noted:

  • Binary FSK – even with continuous phase matching – generally represents a nonlinear modulation process.  Therefore,  coherent demodulation is actually not possible.
  • An exception is the MSK as a special case for the modulation index  $h = 0.5$,  which can be realized linearly as  "Offset-QPSK"  and thus can also be demodulated coherently.
  • Without taking intersymbol interference into account,  the  »bit error probability«  is as follows:
$$p_{\rm B} = {\rm Q} \left(\sqrt{ {E_{\rm B} }/{N_0} }\hspace{0.09cm}\right) = {1}/{2}\cdot{\rm erfc} \left(\sqrt{ {E_{\rm B} }/{2N_0} }\hspace{0.09cm}\right) \hspace{0.05cm}.$$
⇒   Compared to the QPSK,  there is a degradation of  $3\ \rm dB$.   Note:  The HTML5/JavaScript applet  "Complementary Gaussian Error Functions"  provides the numerical values of the functions   ${\rm Q}(x)$  resp.  $1/2 \cdot {\rm erfc}(x)$  used here.
  • An advantage of GMSK over QPSK is that a constant envelope is obtained despite the spectral shaping of the basic pulse  $g(t)$.  Therefore,  nonlinearities on the channel do not play as large a role as in other modulation schemes.  This allows the use of simple and inexpensive power amplifiers,  lower power consumption and thus also longer operating times of battery-powered devices.



Radio Subsystem Link Control


Another function of the radio interface is the control of the radio link.  Thus,  the so-called  "Radio Subsystem Link Control"  performs the following tasks:

  1. It is responsible for the measurement of the reception quality. During an established traffic or signaling connection, the channel measurement of the mobile station is performed at regular intervals with regard to received field strength and bit error rate   ⇒   »Quality Monitoring«. These values are transmitted in a measurement report to the base station via the signaling channel SACCH and used by it for power control and handover.

  2. The  "Power Control"  is necessary to ensure that all mobile stations only radiate with the minimum required power.  The transmitted power can be adaptively controlled in steps of  $2 \ \rm dBm$  between  $43 \ \rm dBm$  $\text{(level 0:}$  $20\ \rm W)$  and  $13 \ \rm dBm$  $\text{(level 15:}$  $20\ \rm mW)$.

  3. Base station transmitted power is also adjusted in steps of  $2 \rm dBm$  to achieve optimum network capacity.  An exception is the BCCH carrier with constant transmitted power to allow mobile stations to make comparative measurements of neighboring BCCH carriers.

  4. The  »Adaptive Frame Alignment«  – i.e. adaptive frame synchronization – is used to avoid collisions between uplink and downlink data to be transmitted or received by the mobile station offset by three time slots.
Adaptive Frame Alignment


This is shown in the adjacent graph.  The downlink is represented in the middle area with a yellow background,  where the data arrives at the mobile station  $\rm (MS)$  by the time  $T_{\rm R}$  $($"Round Trip Delay Time", by the time  $T_{\rm R}$  $($"Round Trip Delay Time",  green marking$)$ later than it was sent by the  base transceiver station  $\rm (BTS)$.

In the upper area,  the uplink is shown without  "Timing Advance".

  1. The MS starts sending exactly three time slots after reception  $($blue marker$)$.
  2. Due to the delays in downlink and uplink,  the time slot  "$0$"  does not reach the BTS at the time  $3T_{\rm burst}$  as required,  but by  $2T_{\rm R}$  later  $($red mark$)$.
  3. With the  "Timing Advance"  uplink $($lower sketch$)$  this delay is already compensated by the mobile station by sending the data by the time  $ 2T_{\rm R}$  earlier and thus they arrive exactly time synchronized at the BTS.


The stages  $0 - 63$  are available for   "Timing Advance",  where each stage corresponds to one bit duration  $T_{\rm B}$.

  1. The maximum  timing advance  is thus  $\rm 63 \cdot 3.7 \ µ s ≈ 233 \ µs$,  giving the maximum allowable runtime in one direction to  $T_{\rm R} ≈ 116\ {\rm µ s}$.
  2. From this,  the allowed cell radius of GSM  $($distance between BTS and MS$)$ can be calculated: 
$$116\ \rm µ s · 3 · 10^8 \ m/s ≈ 35 \ km.$$


Exercises for the chapter


Exercise 3.3: GSM Frame Structure

Exercise 3.3Z: GSM 900 and GSM 1800

Exercise 3.4: GMSK Modulation

Exercise 3.4Z: Continuous Phase Frequency Shift Keying

References

  1. Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4th edition, 2004.