Difference between revisions of "Examples of Communication Systems/Radio Interface"

From LNTwww
 
(90 intermediate revisions by 9 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=GSM – Global System for Mobile Communications
 
|Untermenü=GSM – Global System for Mobile Communications
|Vorherige Seite=Allgemeine Beschreibung von GSM
+
|Vorherige Seite=General Description of GSM
|Nächste Seite=Sprachcodierung
+
|Nächste Seite=Voice Coding
 
}}
 
}}
  
  
==Logische Kanäle des GSM  ==  
+
==Logical channels of GSM  ==  
 +
<br>
 +
The&nbsp; &raquo;'''radio interface'''&laquo;&nbsp; is crucial for the proper operation of the GSM network and the exchange of information between mobile and base station.&nbsp;
 +
*This is also called the&nbsp; "air interface"&nbsp; or&nbsp; "physical layer"&nbsp; and defines all physical channels of the GSM system as well as their assignment to the logical channels.&nbsp;
  
Entscheidend für den ordnungsgemäßen Betrieb des GSM–Netzes und den Informationsaustausch zwischen Mobil– und Basisstation ist die '''Funkschnittstelle'''. Diese wird auch „Luftschnittstelle” oder „Physical Layer” genannt und definiert alle physikalischen Kanäle des GSM–Systems sowie deren Zuordnung zu den logischen Kanälen. Weiterhin ist die Funkschnittstelle für weitere Funktionalitäten wie zum Beispiel das ''Radio Subsystem Link Control'' zuständig.
+
*Furthermore,&nbsp; the radio interface is responsible for other functionalities such as the&nbsp; "radio subsystem link control".
  
Beginnen wir mit den '''logischen Kanälen'''. Diese können einen ganzen physikalischen Kanal oder auch nur einen Teil eines physikalischen Kanals belegen und unterteilen sich in zwei Kategorien:
+
[[File:EN_Bei_T_3_2_S1_v4.png|right|frame|Compilation of the logical channels of GSM]]
*'''Traffic Channels''' (deutsch: Verkehrskanäle) werden ausschließlich für die Übertragung von Benutzerdatenströmen wie Sprache, Fax und Daten genutzt. Diese Kanäle sind für beide Richtungen (MS ⇔ BSS) ausgelegt und können entweder durch einen Vollraten–Verkehrskanal (13 kbit/s) oder von zwei Halbratenkanälen (je 5.6 kbit/s) belegt werden.
 
*'''Control Channels''' (deutsch: Signalisierungskanäle) versorgen über die Funkschnittstelle alle aktiven Mobilstationen durch einen paketorientierten Signalisierungsdienst, um jederzeit Nachrichten von der BTS empfangen bzw. Nachrichten an die BTS senden zu können.
 
  
Die Tabelle listet die logischen Kanäle des GSM auf. Diese unterscheiden sich von den logischen ISDN–Kanälen durch ein zusätzliches „m” für „mobile”. Beispielsweise ist der Bm–Kanal vergleichbar mit dem B–Kanal des ISDN.
+
Let's start with the&nbsp; &raquo;'''logical channels'''&laquo;.&nbsp; These can occupy either an entire physical channel or only a portion of a physical channel and fall into two categories:
+
*&raquo;'''Traffic Channels'''&laquo;&nbsp; are used exclusively for the transmission of user data streams such as voice,&nbsp; fax and data.&nbsp; These channels are for both directions
 +
 
 +
:: mobile station&nbsp; $\rm (MS)$ &nbsp; ⇔ &nbsp; base station subsystem&nbsp; $\rm  (BSS)$
 +
 
 +
:designed and can be occupied either by a full rate traffic channel&nbsp; $\text{(13 kbit/s)}$&nbsp; or by two half rate channels&nbsp; $\text{(5.6 kbit/s)}$&nbsp;  each.
 +
 
 +
*&raquo;'''Control Channels'''&laquo;&nbsp; supply all active mobile stations via the radio interface by means of packet-oriented signaling in order to be able to receive messages from the&nbsp; base transceiver station&nbsp; $\rm (BTS )$&raquo; or send messages to the BTS at any time.
 +
 
 +
<br>The table lists the logical channels of the GSM;
 +
*These differ from the logical ISDN channels by an additional&nbsp; "m"&nbsp; for&nbsp; "mobile".
 +
 +
*For example,&nbsp; the&nbsp; "Bm channel"&nbsp; is comparable to the&nbsp; "B channel"&nbsp; of ISDN.
 +
<br clear=all>
 +
==Uplink and downlink parameters ==
 +
<br>
 +
The logical channels are mapped to&nbsp; &raquo;'''physical channels'''&laquo;&nbsp; which describe all physical aspects of data transport:
 +
[[File:EN_Bei_T_3_2_S2.png|right|frame|Frequency ranges of the standardized GSM systems]]
 +
*the frequency ranges for&nbsp; &raquo;'''uplink'''&laquo;&nbsp; $($radio link mobile station &nbsp; &rArr; &nbsp; base station$)$&nbsp; and&nbsp; &raquo;'''downlink'''&laquo;&nbsp; $($radio link base station &nbsp; &rArr; &nbsp; mobile station$)$,
 +
 
 +
*the division between&nbsp; &raquo;'''Time Division Multiple Access'''&laquo;&nbsp; $\rm (TDMA)$&raquo; and&nbsp; &raquo;'''Frequency Division Multiple Access'''&laquo;&nbsp; $\rm (FDMA)$,
 +
 
 +
*the&nbsp; &raquo;'''burst structure'''&laquo;,&nbsp; i.e. the occupancy of a TDMA time slot in different applications&nbsp; $($user and signaling data,&nbsp; synchronization marks,&nbsp; etc.$)$,
 +
 
 +
*the&nbsp; &raquo;'''modulation method'''&laquo;&nbsp; "Gaussian Minimum Shift Keying"&nbsp; $\rm (GMSK)$,&nbsp; a variant of&nbsp; "Continuous Phase &ndash; Frequency Shift Keying"&nbsp; $\text{(CP-FSK)}$&nbsp; with large bandwidth efficiency.
  
==Uplink– und Downlink–Parameter ==
 
  
Die logischen Kanäle werden auf '''physikalische Kanäle''' abgebildet, die alle physikalischen Aspekte des Datentransportes beschreiben:
+
The table shows the frequency ranges of the standardized GSM systems:
*die Frequenzbereiche für den '''Uplink''' (Funkstrecke von der Mobil– zur Basisstation) und den '''Downlink''' (Funkstrecke von der Basis– zur Mobilstation),
+
* To prevent intermodulation interference between the two directions,&nbsp; there is a&nbsp; "guard band"&nbsp; between the bands for uplink and downlink,&nbsp; the so-called&nbsp; "duplex spacing".
*die Aufteilung zwischen '''Time Division Multiple Access''' (TDMA) und '''Frequency Division Multiple Access''' (FDMA),
 
*die '''Burststruktur''', also die Belegung eines TDMA-Zeitschlitzes bei verschiedenen Anwendungen (Benutzer- und Signalisierungsdaten, Synchronisationsmarken, usw.), sowie
 
*das '''Modulationsverfahren''' ''Gaussian Minimum Shift Keying'' (GMSK), eine Variante von ''Continuous Phase – Frequency Shift Keying'' (CP–FSK) mit großer Bandbreiteneffizienz.
 
  
Die nachfolgende Tabelle zeigt die Frequenzbereiche der standardisierten GSM–Systeme.
 
  
Damit zwischen den beiden Richtungen keine Intermodulationsstörungen auftreten, liegt zwischen den Bändern für Uplink und Downlink ein Sicherheitsband, der sog. '''Duplexabstand'''.
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp;
 +
With system&nbsp; $\text{GSM 900}$&nbsp; $($"D-network"$)$&nbsp; the uplink starts at&nbsp; $\text{890 MHz}$&nbsp; and the downlink at&nbsp; $\text{935 MHz}$.
 +
*The duplex spacing is thus&nbsp; $\text{45 MHz}$.
 +
 +
*Both the uplink and the downlink have a bandwidth of&nbsp; $\text{25 MHz}$.
 +
 +
*After subtracting the guard bands of&nbsp; $\text{100 kHz}$&nbsp; at each of the two edges there remain&nbsp; $\text{24.8 MHz}$,&nbsp; which are divided into&nbsp; $124$&nbsp; FDMA channels of&nbsp; $\text{200 kHz}$&nbsp; each.
  
{{Beispiel}}
 
Beim System GSM 900 (in Deutschland: D–Netz) beginnt der Uplink bei 890 MHz und der Downlink bei 935 MHz. Der Duplexabstand beträgt somit 45 MHz. Sowohl der Uplink als auch der Downlink besitzen eine Bandbreite von 25 MHz. Abzüglich der Guard–Bänder an den beiden Rändern von jeweils 100 kHz verbleiben 24.8 MHz, die in 124 FDMA-Kanäle zu je 200 kHz unterteilt sind.
 
Das DCS–Band (E–Netz) im Bereich um 1800 MHz hat einen Duplexabstand von 95 MHz und eine jeweilige Bandbreite von 75 MHz. Unter Berücksichtigung der Guard–Bänder ergeben sich hier 374 FDMA–Kanäle zu je 200 kHz.
 
  
{{end}}
+
&rArr; &nbsp; The $\text{DCS band}$&nbsp; $($"E-network"$)$&nbsp; in the range around&nbsp; $\text{1800 MHz}$&nbsp; has a duplex spacing of&nbsp; $\text{95 MHz}$&nbsp; and a respective bandwidth of&nbsp; $\text{75 MHz}$.
 +
 +
*Taking into account the guard bands,&nbsp; this results in&nbsp; $374$&nbsp; FDMA channels at&nbsp; $\text{200 kHz}$&nbsp; each.}}
 
   
 
   
  
== Realisierung von FDMA und TDMA==   
+
== Realization of FDMA and TDMA==   
 +
<br>
 +
[[File:EN_Bei_T_3_2_S3.png|right|frame|Interaction between FDMA and TDMA in GSM]]
 +
 
 +
In the GSM system,&nbsp; two multiple access methods are used in parallel:
 +
#Frequency Division Multiple Access&nbsp; $\rm (FDMA)$,&nbsp; and
 +
#Time division multiple access&nbsp; $\rm (TDMA)$.
 +
 
 +
 
 +
The graphic and description apply to the $\text{GSM 900}$ system.&nbsp; Comparable statements apply to the other GSM systems.&nbsp; We also refer here to the section&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#GSM_frame_structure|"GSM frame structure"]]&nbsp; and&nbsp; [[Aufgaben:Aufgabe_3.3:_GSM–Rahmenstruktur|"Exercise 3.3"]].
 +
 
 +
*In both the uplink and downlink,&nbsp; the transmission of signaling and traffic data occurs in parallel in&nbsp; $124$&nbsp; frequency channels,&nbsp; designated&nbsp; "RFCH1"&nbsp; to&nbsp; "RFCH124".
 +
 
 +
*The center frequency of the uplink channel&nbsp; $n \ (  = 1$, ... , $124)$&nbsp; is at
 +
:$$f_n= 890 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
 +
*At the upper and lower ends of the&nbsp; $25 \ {\rm MHz}$&nbsp; band,&nbsp; there are guard bands of&nbsp; $100 \ {\rm kHz}$&nbsp; each.
 +
 
 +
*The channel&nbsp; $n$&nbsp; in the downlink is above the channel&nbsp; $n$&nbsp; in the uplink  by the duplex spacing of&nbsp; $45 \ {\rm MHz}$.&nbsp; The channels are designated in the same way as those in the uplink.&nbsp; Center frequencies:
 +
:$$f_n =935 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
 +
*Each cell is assigned some frequencies per&nbsp; "cell allocation"&nbsp; $\rm (CA)$.&nbsp; In adjacent cells one uses different frequencies.
 +
 
 +
*A subset of the CAs is reserved for logical channels.&nbsp; The remaining channels are allocated to a mobile station as&nbsp; "mobile allocation"&nbsp; $\rm (MA)$.
 +
 
 +
*This is used,&nbsp; for example,&nbsp; for&nbsp; "frequency hopping",&nbsp; where the data is sent over different frequency channels.&nbsp; This makes the transmission more stable against channel fluctuations.&nbsp; In most cases,&nbsp; frequency hopping is performed in packets.
 +
 
 +
*The individual GSM frequency channels are further subdivided by time division multiplexing&nbsp; $\rm (TDMA)$.&nbsp; Each FDMA channel is periodically divided into so-called&nbsp; "TDMA frames"&nbsp; which in turn each comprise eight time slots.
 +
 
 +
*The&nbsp; "time slots"&nbsp; $($"TDMA channels"$)$&nbsp; are cyclically assigned to the individual subscribers and each contain a so-called&nbsp; "burst"&nbsp; of&nbsp; $156.25$&nbsp; bit periods in length.&nbsp; Each GSM user has exactly one of the eight time slots available in each TDMA frame.
  
Beim GSM–System werden zwei Vielfachzugriffsverfahren parallel verwendet:
+
*The TDMA frames of the uplink are sent with three time slots delay compared to those of the downlink.&nbsp; This has the advantage that the same hardware of a mobile station can be used for both sending and receiving a message.
*Frequenzmultiplex (''Frequency Division Multiple Access'', FDMA) und
 
*Zeitmultiplex (''Time Division Multiple Access'', TDMA).
 
  
Die Grafik und die nachfolgende Beschreibung gilt für das System GSM 900, in Deutschland bekannt als D–Netz. Bei den anderen GSM–Systemen gelten vergleichbare Aussagen.
+
*The duration of a&nbsp; "time slot"&nbsp; $($German:&nbsp; "Zeitschlitz" &nbsp; &rArr; &nbsp; subscript&nbsp; "Z"$)$&nbsp; is&nbsp; $T_{\rm Z} ≈ 577 \rm &micro; s$, that of a TDMA frame&nbsp; $4.615 \rm ms$.&nbsp; These values result from the GSM frame structure.&nbsp; In total&nbsp; $26$&nbsp; TDMA frames are combined into a so-called&nbsp; "multiframe"&nbsp; of duration&nbsp; $120 \ \rm ms$:
 +
:$$T_{\rm Z} = \frac{120\,{\rm ms}}{8 \cdot 26} \approx 576.9\,{\rm &micro; s }\hspace{0.05cm}. $$
 +
 
  
*Sowohl im Uplink als auch im Downlink geschieht die Übertragung der Signalisierungs– und Verkehrsdaten parallel in 124 Frequenzkanälen, bezeichnet mit RFCH1 bis RFCH124.
+
==The different burst types in GSM==
*Die Mittenfrequenz des Uplink–Kanals $n$ liegt bei 890 MHz + $n$ · 0.2 MHz ( $n$ = 1, ... , 124 ). Am oberen und unteren Ende des 25 MHz–Bandes gibt es Schutzbereiche von je 100 kHz.
+
<br>
*Der Kanal $n$ im Downlink liegt um den Duplexabstand von 45 MHz über dem Kanal $n$ im Uplink bei 935 MHz + $n$ · 0.2 MHz. Die Kanäle werden ebenso bezeichnet wie in der Aufwärtsstrecke.
+
[[File:EN_Bei_T_3_2_S4_v5.png|right|frame|The different burst types with GSM]]
*Jeder Zelle wird eine Teilmenge dieser Frequenzen per '''Cell Allocation''' (CA) zugewiesen. Mobilstationen in benachbarten Zellen arbeiten meist bei unterschiedlichen Frequenzen.
+
As just shown,&nbsp; a&nbsp; &raquo;'''burst'''&laquo;&nbsp; contains&nbsp; $156.25$&nbsp; bits each and has duration&nbsp;
*Eine Teilmenge der CA ist für die logischen Kanäle reserviert. Die verbleibenden Kanäle können einer Mobilstation zur '''Mobile Allocation''' (MA) zugewiesen werden.
+
:$$T_{\rm burst} = T_{\rm Z} ≈ 577 \rm &micro; s.$$
*Diese wendet man zum Beispiel bei '''Frequenzsprungverfahren''' (''Frequency Hopping'') an, wobei die Daten über verschiedene Frequenzkanäle gesendet werden. Die Übertragung wird dadurch stabiler gegenüber Kanalschwankungen. Meist erfolgt der Frequenzwechsel paketweise.
+
From this,&nbsp; the bit duration is calculated to&nbsp;
*Die einzelnen GSM–Frequenzkanäle werden durch Zeitmultiplex (TDMA) noch weiter unterteilt. Jeder FDMA–Kanal wird periodisch in so genannte '''TDMA–Rahmen''' aufgeteilt, die ihrerseits jeweils acht Zeitschlitze (Time–Slots) umfassen.
+
:$$T_{\rm B} ≈ \frac{T_{\rm burst} }{156.25} \approx3.69 \rm &micro; s.$$
*Die '''Zeitschlitze''' (TDMA–Kanäle) werden zyklisch den einzelnen Teilnehmern zugeordnet und beinhalten jeweils einen sog. Burst von 156.25 Bitperioden Länge. Jedem GSM-Nutzer steht in jedem TDMA–Rahmen genau einer der acht Zeitschlitze zur Verfügung.
 
*Die TDMA–Rahmen des Uplinks werden gegenüber denen des Downlinks mit drei Zeitschlitzen Verzögerung gesendet. Dies hat den Vorteil, dass die gleiche Hardware einer Mobilstation sowohl zum Senden als auch zum Empfangen einer Nachricht eingesetzt werden kann.
 
*Die Dauer eines Zeitschlitzes beträgt $T_{\rm Z}$ ≈ 577 µs, die eines TDMA–Rahmens 4.615 ms. Diese Werte ergeben sich aus der GSM–Rahmenstruktur. Insgesamt 26 TDMA–Rahmen werden zu einem so genannten Multiframe der Dauer 120 ms zusammengefasst:
 
 
Wir verweisen hier auch auf die Seite GSM–Rahmenstruktur und die Aufgabe A3.3.
 
 
  
==Die verschiedenen Arten von Bursts== 
+
To avoid overlapping of bursts due to different propagation times between mobile and base station, a&nbsp; &raquo;'''Guard Period'''&laquo;&nbsp; $\rm (GP)$&raquo; is inserted at the end of each burst.&nbsp; This guard period is&nbsp; $8.25$&nbsp; bit durations,&nbsp; so&nbsp;
 +
:$$T_{\rm GP}= 8.25 \cdot \cdot T_{\rm B} = 8.25 \cdot 3.69 \ {\rm &micro; s} \approx  30.5 \ {\rm &micro; s}.$$
  
Wie gerade gezeigt wurde, beinhaltet ein '''Burst''' jeweils 156.25 Bit und hat die Dauer $T_{\rm Z}$ ≈ 577 µs. Daraus berechnet sich die Bitdauer zu $T_{\rm B}$ ≈ 3.69 µs. Zur Vermeidung von Überlappungen von Bursts aufgrund unterschiedlicher Laufzeiten zwischen Mobil– und Basisstation ist am Ende eines jeden Bursts eine '''Guard Period''' (GP) eingefügt. Dieser Sicherheitsabstand beträgt meist 8.25 Bitdauern, also 8.25 · 3.69 µs ≈ 30.5 µs.
+
&rArr; &nbsp; There are five different types of bursts,&nbsp; as shown in the figure on the right:
 +
#Normal Burst&nbsp; $\rm (NB)$,<br>
 +
#Frequency Correction Burst&nbsp; $\rm (FB)$,<br>
 +
#Synchronization Burst&nbsp; $\rm (SB)$,<br>
 +
#Dummy Burst&nbsp; $\rm (DB)$,<br>
 +
#Access Burst&nbsp; $\rm (AB)$.<br>
 +
<br clear=all>
 +
'''(1)''' &nbsp; The&nbsp; &raquo;'''Normal Burst'''&laquo;&nbsp; is used to transmit data from traffic and signaling channels.&nbsp; The error protection encoded user data&nbsp; $($blue,&nbsp; two times&nbsp; $57$&nbsp; bits$)$&nbsp; together with three tail bits each&nbsp; $($red,&nbsp; during this time the  transmitted power is regulated$)$,&nbsp; two signaling bits&nbsp; $($green) and&nbsp; $26$&nbsp; bits for the training sequence&nbsp; $($yellow,&nbsp; required for channel estimation and synchronization$)$&nbsp; result in a total of&nbsp; $148$&nbsp; bits.&nbsp; Added to this is the Guard Period of&nbsp; $8.25$ bits&nbsp; $($gray$)$.
  
Man unterscheidet fünf verschiedene Arten von Bursts, wie aus obigem Bild hervorgeht:
+
The two&nbsp; $($green$)$&nbsp; signaling bits &ndash; also called&nbsp; "stealing flags"&nbsp; &ndash;&nbsp; indicate whether the burst transports only user data or high-priority signaling information,&nbsp; which is always to be transmitted without delay.&nbsp; The&nbsp; "training sequence"&nbsp; is used to estimate the channel,&nbsp; which is a prerequisite for applying an equalizer to reduce intersymbol interference.
*Normal Burst,
 
*Frequency Correction Burst,
 
*Synchronization Burst,
 
*Dummy Burst,
 
*Access Burst.
 
  
Der '''Normal Burst''' (NB) wird eingesetzt, um Daten von Verkehrs– und Signalisierungskanälen zu übertragen. Die fehlerschutzcodierten Nutzdaten (blau, zwei mal 57 Bits) ergeben zusammen mit je drei Tailbits (rot, in dieser Zeit wird die Sendeleistung geregelt), zwei Signalisierungsbits (grün) und 26 Bits für die Trainingssequenz (gelb, erforderlich für die Kanalschätzung und Synchronisation) insgesamt 148 Bit. Dazu kommt die Guard Period von 8.25 Bit (grau).
+
<b>(2)</b> &nbsp; The&nbsp; &raquo;<b>Frequency Correction Burst</b>&laquo;&nbsp; is used to frequency synchronize a mobile station.&nbsp; All bits except the tail bits and the guard period are here set to logical&nbsp; "$0$".&nbsp; The repeated broadcast of such a burst on the&nbsp; "frequency correction channel"&nbsp; $\rm (FCCH)$&nbsp; corresponds to an unmodulated carrier signal with frequency&nbsp; $f_{\rm T} + Δf_{\rm A}$&nbsp; $($carrier frequency + frequency deviation$)$.&nbsp; This value results from the fact that the modulation method&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Gaussian_Minimum_Shift_Keying_.28GMSK.29|$\text{Gaussian Minimum Shift Keying}$]]&nbsp; is a FSK special case.
  
Die zwei (grünen) Signalisierungsbits – auch ''Stealing Flags'' genannt – zeigen an, ob der Burst lediglich Nutzdaten oder hochpriorisierte Signalisierungsinformationen transportiert, die immer verzögerungsfrei zu übertragen sind. Mit Hilfe der ''Trainingssequenz'' kann der Kanal geschätzt werden, was eine Voraussetzung für die Anwendung eines Entzerrers zur Verminderung von Impulsinterferenzen ist.
+
<b>(3)</b> &nbsp; The&nbsp; &raquo;<b>Synchronization Burst</b>&laquo;&nbsp; is used to transmit information that helps a mobile station synchronize in time with the base transceiver station.&nbsp; Besides a long midamble of&nbsp; $64$&nbsp; bits, the synchronization burst contains the TDMA frame number and the&nbsp; "base transceiver station identity code"&nbsp; $\rm (BSIC)$.&nbsp; When such a burst is repeatedly broadcast,&nbsp; it is referred to as the&nbsp; "synchronization channel"&nbsp; $\rm (SCH)$.
  
Die vier anderen Burstarten werden auf der nächsten Seite erklärt.
+
<b>(4)</b> &nbsp; The&nbsp; &raquo;<b>Dummy Burst</b>&laquo;&nbsp; is transmitted by each&nbsp; base transceiver station&nbsp; $\rm (BTS)$&nbsp; on a frequency specially allocated to it&nbsp; $($"cell allocation"$)$&nbsp; when there are no other bursts to be transmitted.&nbsp; This ensures that a mobile station can always take power measurements.
  
Die vier weiteren Burstarten haben folgende Bedeutung:
+
<b>(5)</b> &nbsp; The&nbsp; &raquo;<b>Access Burst</b>&laquo;&nbsp; is used for random multiple access on the&nbsp; "random access channel"&nbsp; $\rm (RACH)$.&nbsp; To keep the probability of collisions on the RACH low, the&nbsp; "access burst"&nbsp; has a substantially longer&nbsp; "guard period"&nbsp; of&nbsp; $68.25$&nbsp; bit durations than the other bursts.
*Der '''Frequency Correction Burst''' (FB) wird zur Frequenzsynchronisierung einer MS verwendet. Alle Bits außer den Tailbits und der Guard Period sind hier auf logisch 0 gesetzt. Die wiederholte Ausstrahlung eines solchen Bursts auf dem ''Frequency Correction Channel'' (FCCH) entspricht einem unmodulierten Trägersignal mit der Frequenz $f_{\rm T} + Δf_{\rm A}$ (Trägerfrequenz + Frequenzhub). Dieser Wert ergibt sich aus der Tatsache, dass das Modulationsverfahren Gaussian Minimum Shift Keying ein FSK–Sonderfall ist.
 
*Mit dem '''Synchronization Burst''' (SB) werden Informationen übertragen, mit deren Hilfe sich eine MS zeitlich mit der BTS synchronisiert. Neben einer langen Midambel von 64 Bit enthält der ''Synchronization Burst'' die TDMA–Rahmen–Nummer und den ''Base Transceiver Station Identity Code'' (BSIC). Bei wiederholter Ausstrahlung eines solchen Bursts spricht man vom ''Synchronization Channel'' (SCH).
 
*Der '''Dummy Burst''' (DB) wird von jeder ''Base Transceiver Station'' (BTS) auf einer speziell ihr zugeteilten Frequenz (''Cell Allocation'') ausgesandt, wenn keine anderen Bursts zu versenden sind. Damit ist sichergestellt, dass eine Mobilstation stets Leistungsmessungen durchführen kann.
 
*Der '''Access Burst''' (AB) wird für wahlfreien Vielfachzugriff auf dem ''Random Access Channel'' (RACH) eingesetzt. Um die Wahrscheinlichkeit von Kollisionen auf dem RACH gering zu halten, besitzt der ''Access Burst'' eine wesentliche längere ''Guard Period'' von 68.25 Bitdauern als die übrigen Bursts.
 
  
 
 
 
 
==GSM–Rahmenstruktur ==  
+
==GSM frame structure ==  
 +
<br>
 +
[[File:EN_Bei_T_3_2_S5_v3.png|right|frame|The GSM frame structure]]
 +
The GSM frame structure is used to map logical channels to physical channels.&nbsp; Here a distinction is made between
 +
*the&nbsp; &raquo;'''mapping in frequency'''&laquo;,&nbsp; based on&nbsp;
 +
#"cell allocation"&nbsp; $\rm (CA)$,
 +
#"mobile allocation"&nbsp; $\rm (MA)$,
 +
#the&nbsp; "TDMA frame number"&nbsp; $\rm (FN)$,&nbsp; and
 +
#the rules for the $($optional$)$&nbsp; "frequency hopping";
  
Durch die GSM–Rahmenstruktur erfolgt die Abbildung der logischen Kanäle auf physikalische Kanäle. Hierbei wird unterschieden zwischen
+
*the&nbsp; &raquo;'''mapping in time'''&laquo;,&nbsp; where the TDMA frames are grouped into
*der '''Abbildung in der Frequenz''', basierend auf ''Cell Allocation'' (CA), ''Mobile Allocation'' (MA), die TDMA–Rahmennummer (FN) und den Vorschriften für das (optionale) ''Frequency Hopping'',
+
#multiframes,  
*der '''Abbildung in der Zeit''', wobei die TDMA–Rahmen mit jeweils acht Zeitschlitzen zur Übertragung der Bursts in Multiframes, Superframes und Hyperframes zusammengefasst werden.
+
#superframes,&nbsp; and
 +
#hyperframes,  
  
Entsprechend diesem Bild gelten folgende Aussagen:
+
 
*'''Multiframes''' werden für die Abbildung von logischen Kanälen auf physikalische Kanäle genutzt. Hierbei sind zwei Arten zu unterscheiden, solche mit 26 TDMA–Rahmen und einer Zyklusdauer von 120 ms und solche mit 51 TDMA–Rahmen und einer Dauer von 235.4 ms.
+
each with eight time slots for transmitting the bursts.
*Die Bursts der Verkehrskanäle (TCH) und der zugeordneten Steuerungskanäle (SACCH, FACCH) werden in jeweils 26 aufeinander folgenden TDMA-Rahmen übertragen. Dabei wird stets nur ein Zeitschlitz je TDMA-Rahmen für den jeweiligen Multiframe berücksichtigt.
+
 
*Von der Brutto–Datenrate pro Nutzer (33.9 kbit/s) sind 9.2 kbit/s für Synchronisierung, Signalisierung und ''Guard Period'' reserviert und 1.9 kbit/s für SACCH und IDLE. Die (codierten & verschlüsselten) Nutzdaten belegen bei Multiframe-Struktur mit 26 Rahmen nur 22.8 kbit/s.
+
 
*Die Multiframe-Struktur mit 51 Rahmen (rechte Bildhälfte) dient dazu, mehrere logische Kanäle auf einen physikalischen Kanal zu multiplexen. In 51 aufeinander folgenden TDMA–Rahmen werden jeweils alle Daten der Signalisierungskanäle (außer FACCH und SACCH) übertragen.
+
&rArr;  &nbsp; According to this graphic,&nbsp;  the following statements are valid:
*Ein '''Superframe''' besteht aus 1326 aufeinander folgenden TDMA-Rahmen (51 Multiframes mit je 26 bzw. aus 26 Multiframes mit je 51 TDMA–Rahmen) und dauert ca. 6.12 Sekunden.
+
 
*Ein '''Hyperframe''' fasst jeweils 2048 Superframes (bzw. 2'715'648 TDMA–Rahmen) zusammen und wird mit seiner langen Zyklusdauer von 3 Stunden, 28 Minuten und 53.760 Sekunden zur Synchronisierung der Nutzdatenverschlüsselung verwendet.
+
<b>(1)</b> &nbsp; &raquo;'''Multiframes'''&laquo;&nbsp; are used for mapping logical channels to physical channels.&nbsp; Two types can be distinguished here,&nbsp;
 +
*those with&nbsp; $26$&nbsp; TDMA frames and a cycle duration of&nbsp; $120 \ \rm ms$, and
 +
 +
*those with&nbsp; $51$&nbsp; TDMA frames and a duration of&nbsp; $235.4 \ \rm ms$.
 +
 
 +
 
 +
&rArr;  &nbsp; The bursts of the traffic channels&nbsp; $\rm (TCH)$&nbsp; and the associated control channels&nbsp; $\rm (SACCH,&nbsp; FACCH)$&nbsp; are transmitted in&nbsp; $26$&nbsp; successive TDMA frames each.&nbsp; Only one time slot per TDMA frame is always considered for the respective multiframe.
 +
 
 +
&rArr;  &nbsp; Of the gross data rate&nbsp; $\text{(approx. 33.9 kbit/s)}$&nbsp; per user are&nbsp; $\text{9.2 kbit/s}$&nbsp; reserved for synchronization,&nbsp; signaling and&nbsp; guard period&nbsp; and&nbsp; $\text{1.9 kbit/s}$&nbsp; for&nbsp; $\rm SACCH$&nbsp; and&nbsp; $\rm IDLE$.&nbsp; The&nbsp; $($encoded and encrypted$)$&nbsp; user data occupy here only&nbsp; $\text{22.8 kbit/s}$.
 +
 
 +
&rArr;  &nbsp; The multiframe structure with&nbsp; $51$&nbsp; frames&nbsp; $($right half of the graph$)$&nbsp; is used to multiplex several logical channels onto one physical channel.&nbsp; In&nbsp; $51$&nbsp; consecutive TDMA frames,&nbsp; all data of the signaling channels&nbsp; $($except&nbsp; $\rm FACCH$&nbsp; and&nbsp; $\rm SACCH)$&nbsp; are transmitted respectively.
 +
 
 +
 
 +
<b>(2)</b> &nbsp; One&nbsp; &raquo;'''superframe'''&laquo;&nbsp; consists of&nbsp; $1326$&nbsp; consecutive TDMA frames&nbsp; $(51$&nbsp; multiframes with each&nbsp; $26$&nbsp;TDMA frame or&nbsp; $26$&nbsp; multiframes with each&nbsp; $51$&nbsp; TDMA frame$)$&nbsp; and lasts approximately&nbsp; $T_{\rm superframe}=6.12$&nbsp; seconds.
 +
 
 +
 
 +
<b>(3)</b> &nbsp;A&nbsp; &raquo;'''hyperframe'''&laquo;&nbsp; groups&nbsp; $2048$&nbsp; superframes&nbsp; $(2\hspace{0.08cm}715{\hspace0.08cm}648$&nbsp; TDMA frames$)$&nbsp; together and is used with its long cycle duration to synchronize the payload encryption.&nbsp; This is:
 +
:$$T_{\rm hyperframe}=\text{3 hours, 28 minutes and 53.760 seconds}.$$
 
 
 
   
 
   
==Modulation bei GSM–Systemen== 
+
==Modulation in GSM systems== 
 +
<br>
 +
According to the statements of the last sections,&nbsp; $156.25$&nbsp; bits per time slot&nbsp; $(0.5769 \ \rm ms)$&nbsp; must be transmitted in one frequency channel.
 +
#This corresponds to a total bit rate&nbsp; $($for eight TDMA users including channel coding,&nbsp; signaling and synchronization information,&nbsp; etc.$)$ of&nbsp; $R_{\rm total} = 270\hspace{0.08cm}833 \rm bit/s$.
 +
#For this bit rate,&nbsp; a bandwidth of&nbsp; $B = 200 \ \rm kHz$&nbsp; is available for GSM &nbsp; &rArr; &nbsp;  required is a modulation method with a bandwidth efficiency of at least&nbsp; $β =R_{\rm ges}/B = 1.35$.
 +
#In GSM mobile radio,&nbsp; the modulation method&nbsp; &raquo;'''Gaussian Minimum Shift Keying'''&laquo;&nbsp; $\rm (GMSK)$&nbsp; is used. 
 +
 
 +
 
 +
Here follows a brief,&nbsp; bullet-point description:
 +
*GMSK is a modified form of&nbsp; "Frequency Shift Keying"&nbsp; $\rm (FSK)$.&nbsp; This results from driving a&nbsp; [[Modulation_Methods/Frequency_Modulation_(FM)#Realization_of_a_FM_modulator|$\text{Frequency Modulator}$]]&nbsp; with a binary bipolar rectangular input signal.
 +
 
 +
*Such an FSK signal&nbsp; $s(t)$&nbsp; contains within each symbol duration&nbsp; $T$&nbsp; only a single instantaneous frequency at a time;&nbsp; $f_{\rm A}(t) = \rm const. $
  
Entsprechend den Aussagen der letzten Seite müssen in einem Frequenzkanal 156.25 Bit pro Zeitschlitz (0.5769 ms) übertragen werden. Dies entspricht einer Gesamtbitrate (für acht TDMA–Nutzer inkl. Kanalcodierung, Signalisierungs– und Synchronisationsinformation, etc.) von $R_{\rm ges}$ = 270 833 bit/s. Für diese Bitrate steht bei GSM eine Bandbreite von $B$ = 200 kHz zur Verfügung. Man benötigt deshalb ein Modulationsverfahren mit einer Bandbreiteneffizienz von mindestens $β$ = $R_{\rm ges}/B$ = 1.35.
+
* If the&nbsp; $($normalized$)$&nbsp; input signal is equal&nbsp; $+1$, then&nbsp; $f_{\rm A}(t)$&nbsp; is equal to the sum of the carrier frequency&nbsp; $f_{\rm T}$&nbsp; and the frequency deviation&nbsp; $Δf_{\rm A}$.
 +
 +
*Correspondingly,&nbsp; for the normalized input signal&nbsp; $-1$:  &nbsp; $f_{\rm A}(t) = f_{\rm T} - Δf_{\rm A}$.
  
Beim GSM–Mobilfunk findet das Modulationsverfahren '''Gaussian Minimum Shift Keying''' (GMSK) Anwendung. Dieses wurde schon im Kapitel 4.4 des Buches „Modulationsverfahren” ausführlich behandelt. Hier folgt eine kurze, stichpunktartige Beschreibung:
+
*To allow easy demodulation,&nbsp; the two signals with frequencies&nbsp; $f_{\rm T} ± Δf$&nbsp; should be orthogonal to each other within the symbol duration&nbsp; $T$.&nbsp; Consequently:
*GMSK ist eine abgewandelte Form von '''Frequency Shift Keying''' (FSK). Diese ergibt sich, wenn man einen Frequenzmodulator (gemäß Kapitel 3.2 im Buch „Modulationsverfahren”) mit einem binären bipolaren rechteckförmigen Eingangssignal betreibt.
+
:$$\int^{T} _{0} \cos \big(2 \pi t \cdot (f_{\rm T}+ \Delta f_{\rm A} )\big)\cdot \cos \big(2 \pi t \cdot (f_{\rm T}- \Delta f_{\rm A} )\big)\,{\rm
*Ein solches FSK-Signal $s(t)$ beinhaltet innerhalb einer jeden Symboldauer $T$ jeweils nur eine einzige Augenblicksfrequenz $f_A(t)$ = const. Ist das (normierte) Eingangssignal gleich „+1”, so ist $f_A(t)$ gleich der Summe aus der Trägerfrequenz $f_T$ und dem Frequenzhub $Δf_A$. Entsprechend gilt für den Amplitudenwert „–1”:  $f_A(t) = f_T – Δf_A$.
+
d}t= 0\hspace{0.05cm}. $$  
*Um eine einfache Demodulation zu ermöglichen, sollten die beiden Signale mit den Frequenzen $f_T ± Δf$ innerhalb der Symboldauer $T$ orthogonal zueinander sein. Demzufolge muss gelten:
+
*This results in the requirement for the&nbsp; "frequency deviation":
 +
:$$\Delta f_{\rm A} = \frac{k}{4 \cdot T}\hspace{0.4cm}{\rm
 +
with}\hspace{0.4cm}k = 1,\ 2,\ 3,\ \text{...}$$  
 +
*In FSK systems the&nbsp; "modulation index"&nbsp; is defined to&nbsp; $h = 2 \cdot Δf_{\rm A} \cdot T$,&nbsp; it follows&nbsp; $h = k/2$.
 
   
 
   
Daraus ergibt sich für den '''Frequenzhub''' die Anforderung:
+
*Thus,&nbsp; the smallest modulation index under compliance with the orthogonality conditions is&nbsp; $h_{\rm mim} = 0.5$.
 
   
 
   
*Da bei FSK–Systemen der '''Modulationsindex''' zu $h = 2 · Δf_A · T$ definiert ist, folgt $h = k/2$. Der kleinste Wert unter Einhaltung der Orthogonalitätsbedingungen ist somit $h_{\rm min}$ = 0.5.
+
*An FSK system with&nbsp; $h = 0.5$ &nbsp; &rArr; &nbsp; $Δf_{\rm A}$ = ${1}/{4T}$&nbsp; is called&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Minimum_Shift_Keying_.28MSK.29|$\text{Minimum Shift Keying}$]]&nbsp; $\rm (MSK)$.&nbsp;
*Ein FSK–System mit $h$ = 0.5 bzw. $Δf_A$ = $\frac{1}{4T}$ bezeichnet man als '''Minimum Shift Keying''' – kurz MSK. Dieses wird in allen GSM-Systemen eingesetzt, da ein größerer Modulationindex als $h$ = 0.5 eine deutlich größere Bandbreite beanspruchen würde.
+
 
*Ein sehr schmales Spektrum ergibt sich allerdings nur dann, wenn an den Symbolgrenzen Phasensprünge durch Phasenwertanpassung vermieden werden. MSK gehört somit zu den ''Continuous Phase Frequency Shift Keying''–Verfahren (CP–FSK, siehe nächste Seite).
+
*This is used in all GSM systems,&nbsp; because a larger modulation index than&nbsp; $h = 0.5$&nbsp; would require a significantly larger bandwidth.
*Vor dem Frequenzmodulator wird zusätzlich noch ein Tiefpass mit Gauß–Charakteristik eingefügt, wodurch die GSM–Bandbreite weiter verringert wird. Diese Modulationsart '''GMSK''' wird auf Seite 9 dieses Kapitels 3.2 im Detail beschrieben.
+
 
 +
*A very narrow spectrum results,&nbsp;  if phase jumps are avoided at the symbol boundaries by phase matching &nbsp; &rArr; &nbsp;  MSK belongs to the&nbsp; "continuous phase FSK"&nbsp; techniques.
 +
 
 +
*An additional low-pass filter with Gaussian characteristics is inserted before the frequency modulator &nbsp; &rArr; &nbsp; further reducing the GSM bandwidth.  
 +
 
 +
*This modulation type is called&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Gaussian_Minimum_Shift_Keying_.28GMSK.29|$\text{Gaussian Minimum Shift Keying}$]]&nbsp; $\rm (GMSK)$.
 
   
 
   
  
==Kontinuierliche Phasenanpassung bei FSK  ==
+
==Continuous phase adjustment with FSK  ==
 +
<br>
 +
Starting from the rectangular wave signal&nbsp; $q(t)$&nbsp; and the carrier frequency&nbsp; $f_{\rm T} = 4/T$&nbsp; we consider the FSK signals&nbsp; $s_{\rm A}(t)$, ... ,&nbsp; $s_{\rm D}(t)$&nbsp; at different frequency deviation&nbsp; $Δf_{\rm A}$ &nbsp; ⇒ &nbsp; modulation index&nbsp; $h = 2 \cdot Δf_{\rm A} \cdot T$.
  
Ausgehend vom Rechtecksignal $q(t)$ und der Trägerfrequenz $f_T = 4/T$ betrachten wir die FSK–Signale $s_A(t), ... , s_D(t)$ bei unterschiedlichem Frequenzhub $Δf_A$ ⇒  Modulationindex $h = 2 · Δf_A · T$.
+
[[File:EN_Bei_T_3_2_S7.png|right|frame|Example signals for continuous phase adjustment]]
 +
Regarding the signal characteristics shown on the right,&nbsp; it is to be noted&nbsp; $($we also refer to the&nbsp; $($German language$)$&nbsp; SWF  applet&nbsp; [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|"Frequency Shift Keying & Continuous Phase Modulation"]]):
 +
#The signal&nbsp; $s_{\rm A}(t)$&nbsp; results in&nbsp; $Δf_{\rm A} = 1/T$ &nbsp; ⇒ &nbsp; modulation index&nbsp; $h = 2$.&nbsp; One can see the higher frequency&nbsp; $f_1 = 5/T$&nbsp; $($for&nbsp; $a_ν = +1)$&nbsp; compared to the frequency&nbsp; $f_2 = 3/T$ &nbsp;$($for&nbsp; $a_ν = -1)$.
 +
#With&nbsp; $Δf_{\rm A} = 0.5/T$&nbsp; $($signal&nbsp; $s_{\rm {\rm B}}(t)$,&nbsp; $h = 1)$&nbsp; holds&nbsp; $f_1 = 4.5/T$&nbsp; and&nbsp; $f_2 = 3.5/T$.&nbsp; At each symbol boundary,&nbsp; a phase jump of&nbsp; $π$&nbsp; occurs if no phase adjustment is made as for the signal&nbsp; $s_{\rm C}(t)$.
 +
#When&nbsp; $s_{\rm C}(t)$&nbsp; is applied in the range&nbsp; $0$ ... $T$&nbsp; the coefficient&nbsp; $a_1 = +1$&nbsp; is represented by&nbsp; $\cos(2π-f_1-t)$&nbsp; while&nbsp; $a_2 = +1$&nbsp; in the range&nbsp; $T$ ... $2T$&nbsp; leads to the signal&nbsp; $-\cos(2π-f_1\hspace{0.01cm}-\hspace{0.01cm}(t-T))$.&nbsp; Phase jumps are thus avoided by this adjustment.
 +
#The signal&nbsp; $s_{\rm D}(t)$&nbsp; describes the MSK signal&nbsp; $($frequency deviation&nbsp; $Δf_{\rm A} = 0.25/T$ &nbsp; &nbsp; modulation index&nbsp; $h = 0.5)$&nbsp; with phase adjustment.&nbsp; Here,&nbsp; at each symbol boundary four different initial phases are possible &ndash; depending on the previous symbols.
 +
#For the&nbsp; $\rm GSM \ 900$&nbsp; system the carrier frequency is&nbsp; $f_{\rm T} = 900\ \rm MHz$&nbsp; and the symbol duration is&nbsp; $T ≈ 3.7 \ \rm &micro; s$.&nbsp; With the modulation index&nbsp; $h = 0.5$ &nbsp; &rArr; &nbsp; $Δf_{\rm A} ≈ 68 \ \rm kHz$.&nbsp; Thus,&nbsp; the two&nbsp;  frequencies&nbsp; are very close to each other:&nbsp;$f_1 = 900.068\ \rm MHz$,&nbsp; $f_2 = 899.932\ \rm MHz$.
 +
<br clear=all>
  
Zu den Signalverläufen ist Folgendes anzumerken:
 
*Das Signal $s_A(t)$ ergibt sich mit $Δf_A = 1/T$  ⇒  Modulationsindex $h = 2$. Man erkennt die höhere Frequenz $f_1 = 5/T$ (für $a_ν$ = +1) gegenüber der Frequenz $f_2 = 3/T$ (für $a_ν$ = –1).
 
*Mit $Δf_A = 0.5/T$ (Signal $s_{\rm B}(t)$, $h$ = 1) gilt $f_1 = 4.5/T$ und $f_2 = 3.5/T$. An jeder Symbolgrenze tritt ein Phasensprung um $π$ auf, wenn keine Phasenanpassung wie bei $s_{\rm C}(t)$ vorgenommen wird.
 
*Bei $s_{\rm C}(t)$ wird im Bereich 0 ... $T$ der Koeffizient $a_1$ = +1 durch $\cos(2π·f_1·t)$ repräsentiert, während der ebenfalls positive Koeffizient $a_2$ = +1 im Bereich $T$ ... $2T$ zum Signal $–\cos(2π·f_1·(t–T))$ führt. Durch diese Anpassung werden somit Phasensprünge vermieden.
 
*Das Signal $s_{\rm D}(t)$ beschreibt das MSK-Signal (Frequenzhub $Δf_A = 0.25/T$ ⇒ $h = 0.5$), ebenfalls mit Phasenanpassung. Hier sind bei jeder Symbolgrenze – je nach den vorherigen Symbolen – vier unterschiedliche Anfangsphasen möglich.
 
*Bei GSM (D–Netz) beträgt die Trägerfrequenz $f_T$ = 900 MHz und die Symboldauer $T$ ≈ 3.7 μs. Mit dem Modulationsindex $h$ = 0.5 ergibt sich daraus $Δf_A$ ≈ 68 kHz. Die beiden Frequenzen $f_1$ = 900.068 MHz und $f_2$ = 899.932 MHz liegen somit sehr eng beieinander.
 
  
Wir verweisen auf das Modul Frequency Shift Keying & Continuous Phase Modulation.
 
  
 
   
 
   
== Minimum Shift Keying (MSK) ==
+
== Minimum Shift Keying (MSK) ==
==Gaussian Minimum Shift Keying (GMSK)==
+
<br>
==Vor– und Nachteile von GMSK  ==
+
The diagram shows the model for generating an MSK modulation and typical signal characteristics.&nbsp; One recognizes:
==Radio Subsystem Link Control==
+
 
== Aufgaben zu Kapitel 3.2 ==
+
[[File:EN_Bei_T_3_2_S6_v2.png|right|frame|Block diagram for generating an MSK and corresponding signal characteristics]]
 +
 
 +
*At point &nbsp;<b>(1)</b>&nbsp; the digital source signal consisting of a sequence of Dirac delta pulses at distance&nbsp; $T$ weighted by the amplitude coefficients&nbsp; $a_ν ∈ \{-1, +1\}$:
 +
:$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu
 +
\cdot T)\hspace{0.05cm}; $$
 +
*at point &nbsp;<b>(2)</b>:&nbsp; the rectangular source signal&nbsp; $q_{\rm R}(t)$&nbsp; after convolution with the rectangular pulse&nbsp; $g(t)$&nbsp; the duration&nbsp; $T$&nbsp; and the height&nbsp; $1/T$&nbsp; $($the amplitude was chosen this way for compatibility with later sections$)$:
 +
:$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu
 +
\cdot T)\hspace{0.05cm}; $$
 +
*at point &nbsp;<b>(3)</b>:&nbsp; the frequency modulator,&nbsp; which can be realized according to the description in chapter&nbsp; [[Modulation_Methods/Frequency_Modulation_(FM)#Signal_characteristics_with_frequency_modulation|"Signal characteristics in FM"]]&nbsp;  as an integrator followed by a phase modulator.&nbsp; For the signal at point&nbsp;<b>(3)</b>&nbsp; holds:
 +
:$$\phi(t) = \frac{\pi}{2}\cdot \int_{0}^{t}
 +
q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
 +
 
 +
:The phase values at&nbsp; $\nu \cdot T$&nbsp; are multiples of&nbsp; $π/2 \ (90^\circ)$,&nbsp; taking into account the modulation index&nbsp; $h = 0.5$&nbsp; valid for MSK.&nbsp; The phase response is linear.
 +
 
 +
*From this,&nbsp; at the point &nbsp;<b>(4)</b>&nbsp; of the block diagram,&nbsp; the MSK signal is given by
 +
 
 +
:$$s(t) = s_0 \cdot \cos \big(2 \pi f_{\rm T}  \hspace{0.05cm}t +
 +
\phi(t)\big) = s_0 \cdot \cos \big(2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )\big) \hspace{0.05cm}.$$
 +
 
 +
<u>Note:</u>
 +
 
 +
The realization of&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$&nbsp; by a special variant of&nbsp; "Offset-QPSK"&nbsp; is illustrated by the&nbsp; (German language)&nbsp; SWF applet&nbsp; [[Applets:QPSK_und_Offset-QPSK_(Applet)|"QPSK and Offset-QPSK"]].
 +
 
 +
 
 +
 +
 
 +
==Gaussian Minimum Shift Keying (GMSK)==
 +
<br>
 +
One advantage of MSK over other modulation types is the lower bandwidth requirement.&nbsp; Minor modifications to the&nbsp; [[Modulation_Methods/Non-Linear_Digital_Modulation#GMSK_.E2.80.93_Gaussian_Minimum_Shift_Keying|$\text{Gaussian Minimum Shift Keying}$]]&nbsp; - $\rm (GMSK)$&nbsp; result in a narrower spectrum.
 +
 
 +
One can see from the block diagram the following differences to&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$:
 +
 
 +
[[File:EN_Mod_T_4_4_S9_v3.png|right|frame|Block diagram for generating a GMSK and corresponding signal characteristics|class=fit]]
 +
 
 +
*The frequency pulse&nbsp; $g(t)$&nbsp; is now no longer rectangular like the pulse&nbsp; $g_{\rm R}(t)$,&nbsp; but has flatter edges.
 +
 
 +
*Consequently,&nbsp; there is also a smoother phase progression at point &nbsp;<b>(3)</b>&nbsp; than with the MSK method&nbsp; $($see last section$)$,&nbsp; where&nbsp; $ϕ(t)$&nbsp; symbolically rises or falls linearly.
 +
 
 +
*These smoother phase transitions in GMSK are achieved by a&nbsp; &raquo;'''Gaussian low-pass filter'''&laquo;&nbsp;
 +
:*with&nbsp; "frequency response"
 +
::$$H_{\rm G}(f) = {\rm e}^{-\pi \hspace{0.05cm} \cdot \hspace{0.05cm} \big({f}/(2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G})\big)^2}$$
 +
:*and&nbsp; "impulse response"
 +
::$$ h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm} \cdot \hspace{0.05cm} (2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G}\hspace{0.05cm} \cdot \hspace{0.05cm} t)^2}\hspace{0.05cm}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, H_{\rm G}(f)\hspace{0.2cm}.$$
 +
*For GSM,&nbsp; the 3dB cutoff frequency is set to&nbsp; $f_{\rm 3dB} = 0.3/T$.&nbsp; Thus,&nbsp; as shown in&nbsp; [[Aufgaben:Exercise_3.4:_GMSK_Modulation|"Exercise 3.4"]],&nbsp; the system theoretic cutoff frequency:
 +
:$$f_{\rm G} ≈ 1.5 - f_{\rm 3dB} = 0.45/T.$$
 +
*The resulting frequency impulse&nbsp; $g(t)$&nbsp; at point &nbsp;<b>(2)'</b>&nbsp; of the block diagram results from the convolution of the rectangular  pulse&nbsp; $g_{\rm R}(t)$&nbsp; with the impulse response&nbsp; $h_{\rm G}(t)$&nbsp; of the Gaussian low-pass:
 +
 
 +
:$$g(t) = g_{\rm R}(t) \star h_{\rm G}(t)\hspace{0.05cm}. $$
 +
 +
*The GMSK-modulated signal&nbsp; $s(t)$&nbsp; now no longer exhibits a constant frequency section by section&nbsp; $($per symbol duration$)$.&nbsp; However,&nbsp; it is difficult to see this difference from MSK from the signal waveform at point&nbsp; '''(4)''' &nbsp;of the block diagram.
 +
 
 +
 
 +
<u>Note:</u> &nbsp; We refer here to the&nbsp; (German language)&nbsp; SWF applet&nbsp; [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|"Frequency Shift Keying & Continuous Phase Modulation"]].
 +
 
 +
==Advantages and disadvantages of GMSK==
 +
<br>
 +
Here,&nbsp; the main features of the modulation method&nbsp; "Gaussian Minimum Shift Keying"&nbsp; are summarized.&nbsp; The following graphic was taken from the book&nbsp; [Kam04]<ref name ='Kam04'>Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4th edition, 2004.</ref>&nbsp;.
 +
 
 +
[[File:EN_Bei_T_3_2_S10.png|right|frame|Power-spectral densities of QPSK and MSK]]
 +
 +
&rArr; &nbsp; The left graph shows the log power-spectral density&nbsp; $10 \cdot \text{lg} \ {\it Φ}_s(f)/{\it Φ}_0$&nbsp; of&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$&nbsp; compared to&nbsp; "Quaternary Phase Shift Keying"&nbsp; $\rm (QPSK)$,&nbsp; where&nbsp; ${\it Φ}_0$&nbsp; was chosen&nbsp; "suitable".&nbsp;
 +
 +
On the abscissa is plotted the normalized frequency&nbsp; $f \cdot T_{\rm B}$.&nbsp; For MSK,&nbsp; the bit duration&nbsp; $T_{\rm B}$&nbsp; is equal to the symbol duration&nbsp; $T$,&nbsp; while for QPSK holds:&nbsp; $T_{\rm B} = T/2$.
 +
 +
One recognizes from this left representation:
 +
#The first zero in the power-spectral density&nbsp; $\rm (PSD)$&nbsp; occurs at the normalized abscissa value&nbsp; $f \cdot T_{\rm B} = 0.5$&nbsp; for QPSK&nbsp; $($dashed curve$)$,&nbsp; but for MSK only at&nbsp; $f\cdot T_{\rm B} = 0.75$.
 +
#In the further course,&nbsp; however,&nbsp; MSK results in a much faster PSD decay than the asymptotic&nbsp; $f^{-2}$&nbsp; decay for QPSK.
 +
#Note that for MSK a cosine pulse is used for spectral shaping and for QPSK a rectangular pulse.
 +
 
 +
 
 +
&rArr; &nbsp; The right plot shows the influence of Gaussian pulse shaping in GMSK on the power-spectral density&nbsp; ${\it Φ}_s(f)$,&nbsp; where the normalized 3dB cutoff frequency is used as parameter.&nbsp;
 +
 
 +
In this diagram,&nbsp; which refers exclusively to&nbsp; $\rm (G)MSK$,&nbsp; the abscissa could also be labeled&nbsp; $f \cdot T$.
 +
 +
#The smaller&nbsp; $f_{\rm 3\ dB}$&nbsp; is, the more narrowband is the power-spectral density.&nbsp; In the GSM standard&nbsp; $f_{\rm 3\ dB} \cdot T$ = 0.3&nbsp; has been specified.&nbsp; With this value,&nbsp; the bandwidth is already decisively reduced,&nbsp; resulting in lower interferences for adjacent channels.
 +
#On the other hand,&nbsp; with this cutoff frequency&nbsp; "intersymbol interferences"&nbsp; already have a serious effect.&nbsp; The eye opening is smaller than&nbsp; $50\%$&nbsp; and a suitable equalization has to be provided.
 +
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusions:}$ &nbsp; &nbsp;
 +
'''The main advantage of GMSK is its very low bandwidth requirements'''.
 +
 
 +
Furthermore,&nbsp; it should be noted:
 +
*Binary FSK &ndash; even with continuous phase matching &ndash; generally represents a nonlinear modulation process.&nbsp; Therefore,&nbsp; coherent demodulation is actually not possible.
 +
 
 +
*An exception is the MSK as a special case for the modulation index&nbsp; $h = 0.5$,&nbsp; which can be realized linearly as&nbsp; "Offset-QPSK"&nbsp; and thus can also be demodulated coherently.
 +
 
 +
*Without taking intersymbol interference into account,&nbsp; the&nbsp; &raquo;'''bit error probability'''&laquo;&nbsp; is as follows:
 +
::$$p_{\rm B} = {\rm Q} \left(\sqrt{ {E_{\rm B} }/{N_0} }\hspace{0.09cm}\right) =
 +
{1}/{2}\cdot{\rm erfc} \left(\sqrt{ {E_{\rm B} }/{2N_0} }\hspace{0.09cm}\right)
 +
\hspace{0.05cm}.$$
 +
:&rArr; &nbsp; Compared to the QPSK,&nbsp; there is a degradation of&nbsp; $3\ \rm dB$. &nbsp;  <u>Note:</u>&nbsp; The HTML5/JavaScript applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]]&nbsp; provides the numerical values of the functions &nbsp; ${\rm Q}(x)$&nbsp; resp.&nbsp; $1/2 \cdot {\rm erfc}(x)$&nbsp; used here.
 +
 +
*An advantage of GMSK over QPSK is that a constant envelope is obtained despite the spectral shaping of the basic pulse&nbsp; $g(t)$.&nbsp; Therefore,&nbsp; nonlinearities on the channel do not play as large a role as in other modulation schemes.&nbsp; This allows the use of simple and inexpensive power amplifiers,&nbsp; lower power consumption and thus also longer operating times of battery-powered devices.}}
 +
 
 +
 
 +
 
 +
 +
==Radio Subsystem Link Control==
 +
<br>
 +
Another function of the radio interface is the control of the radio link.&nbsp; Thus,&nbsp; the so-called&nbsp; "Radio Subsystem Link Control"&nbsp; performs the following tasks:
 +
#It is responsible for the measurement of the reception quality. During an established traffic or signaling connection, the channel measurement of the mobile station is performed at regular intervals with regard to received field strength and bit error rate &nbsp; ⇒ &nbsp; &raquo;'''Quality Monitoring'''&laquo;. These values are transmitted in a measurement report to the base station via the signaling channel SACCH and used by it for power control and handover.<br><br>
 +
#The&nbsp; "Power Control"&nbsp; is necessary to ensure that all mobile stations only radiate with the minimum required power.&nbsp; The transmitted power can be adaptively controlled in steps of&nbsp; $2 \ \rm dBm$&nbsp; between&nbsp; $43 \ \rm dBm$&nbsp; $\text{(level 0:}$&nbsp; $20\ \rm W)$&nbsp; and&nbsp; $13 \ \rm dBm$&nbsp; $\text{(level 15:}$&nbsp; $20\ \rm mW)$.<br><br> 
 +
#Base station transmitted power is also adjusted in steps of&nbsp; $2 \rm dBm$&nbsp; to achieve optimum network capacity.&nbsp; An exception is the BCCH carrier with constant transmitted power to allow mobile stations to make comparative measurements of neighboring BCCH carriers.<br><br>
 +
#The&nbsp; &raquo;'''Adaptive Frame Alignment'''&laquo;&nbsp; &ndash; i.e. adaptive frame synchronization &ndash; is used to avoid collisions between uplink and downlink data to be transmitted or received by the mobile station offset by three time slots.<br>
 +
 
 +
[[File:EN_Bei_T_3_2_S11.png|right|frame|Adaptive Frame Alignment]]
 +
<br>
 +
This is shown in the adjacent graph.&nbsp; The downlink is represented in the middle area with a yellow background,&nbsp; where the data arrives at the mobile station&nbsp; $\rm (MS)$&nbsp; by the time&nbsp; $T_{\rm R}$&nbsp; $($"Round Trip Delay Time", by the time&nbsp; $T_{\rm R}$&nbsp; $($"Round Trip Delay Time",&nbsp; green marking$)$&nbsp;later than it was sent by the&nbsp; base transceiver station&nbsp; $\rm (BTS)$.
 +
 
 +
In the upper area,&nbsp; the uplink is shown without&nbsp; "Timing Advance".
 +
#The MS starts sending exactly three time slots after reception&nbsp; $($blue marker$)$.
 +
#Due to the delays in downlink and uplink,&nbsp; the time slot&nbsp; "$0$"&nbsp; does not reach the BTS at the time&nbsp; $3T_{\rm burst}$&nbsp; as required,&nbsp; but by&nbsp; $2T_{\rm R}$&nbsp; later&nbsp; $($red mark$)$.
 +
#With the&nbsp; "Timing Advance"&nbsp; uplink $($lower sketch$)$&nbsp; this delay is already compensated by the mobile station by sending the data by the time&nbsp; $ 2T_{\rm R}$&nbsp; earlier and thus they arrive exactly time synchronized at the BTS.
 +
 
 +
 
 +
The stages&nbsp; $0 - 63$&nbsp; are available for &nbsp; "Timing Advance",&nbsp; where each stage corresponds to one bit duration&nbsp; $T_{\rm B}$.
 +
 
 +
#The maximum&nbsp; timing advance&nbsp; is thus&nbsp; $\rm 63 \cdot 3.7 \ &micro; s ≈ 233 \ &micro;s$,&nbsp; giving the maximum allowable runtime in one direction to&nbsp; $T_{\rm R} ≈ 116\ {\rm &micro; s}$.
 +
#From this,&nbsp; the allowed cell radius of GSM&nbsp; $($distance between BTS and MS$)$ can be calculated:&nbsp;
 +
::$$116\ \rm  &micro; s · 3 · 10^8 \ m/s ≈ 35 \ km.$$
 +
 
 +
 +
== Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_3.3:_GSM_Frame_Structure|Exercise 3.3: GSM Frame Structure]]
 +
 
 +
[[Aufgaben:Exercise_3.3Z:_GSM_900_and_GSM_1800|Exercise 3.3Z: GSM 900 and GSM 1800]]
 +
 
 +
[[Aufgaben:Exercise_3.4:_GMSK_Modulation|Exercise 3.4: GMSK Modulation]]
  
 +
[[Aufgaben:Exercise_3.4Z:_Continuous_Phase_Frequency_Shift_Keying|Exercise 3.4Z: Continuous Phase Frequency Shift Keying]]
  
 +
==References==
 +
<references />
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:48, 20 February 2023


Logical channels of GSM


The  »radio interface«  is crucial for the proper operation of the GSM network and the exchange of information between mobile and base station. 

  • This is also called the  "air interface"  or  "physical layer"  and defines all physical channels of the GSM system as well as their assignment to the logical channels. 
  • Furthermore,  the radio interface is responsible for other functionalities such as the  "radio subsystem link control".
Compilation of the logical channels of GSM

Let's start with the  »logical channels«.  These can occupy either an entire physical channel or only a portion of a physical channel and fall into two categories:

  • »Traffic Channels«  are used exclusively for the transmission of user data streams such as voice,  fax and data.  These channels are for both directions
mobile station  $\rm (MS)$   ⇔   base station subsystem  $\rm (BSS)$
designed and can be occupied either by a full rate traffic channel  $\text{(13 kbit/s)}$  or by two half rate channels  $\text{(5.6 kbit/s)}$  each.
  • »Control Channels«  supply all active mobile stations via the radio interface by means of packet-oriented signaling in order to be able to receive messages from the  base transceiver station  $\rm (BTS )$» or send messages to the BTS at any time.


The table lists the logical channels of the GSM;

  • These differ from the logical ISDN channels by an additional  "m"  for  "mobile".
  • For example,  the  "Bm channel"  is comparable to the  "B channel"  of ISDN.


Uplink and downlink parameters


The logical channels are mapped to  »physical channels«  which describe all physical aspects of data transport:

Frequency ranges of the standardized GSM systems
  • the frequency ranges for  »uplink«  $($radio link mobile station   ⇒   base station$)$  and  »downlink«  $($radio link base station   ⇒   mobile station$)$,
  • the division between  »Time Division Multiple Access«  $\rm (TDMA)$» and  »Frequency Division Multiple Access«  $\rm (FDMA)$,
  • the  »burst structure«,  i.e. the occupancy of a TDMA time slot in different applications  $($user and signaling data,  synchronization marks,  etc.$)$,
  • the  »modulation method«  "Gaussian Minimum Shift Keying"  $\rm (GMSK)$,  a variant of  "Continuous Phase – Frequency Shift Keying"  $\text{(CP-FSK)}$  with large bandwidth efficiency.


The table shows the frequency ranges of the standardized GSM systems:

  • To prevent intermodulation interference between the two directions,  there is a  "guard band"  between the bands for uplink and downlink,  the so-called  "duplex spacing".


$\text{Example 1:}$  With system  $\text{GSM 900}$  $($"D-network"$)$  the uplink starts at  $\text{890 MHz}$  and the downlink at  $\text{935 MHz}$.

  • The duplex spacing is thus  $\text{45 MHz}$.
  • Both the uplink and the downlink have a bandwidth of  $\text{25 MHz}$.
  • After subtracting the guard bands of  $\text{100 kHz}$  at each of the two edges there remain  $\text{24.8 MHz}$,  which are divided into  $124$  FDMA channels of  $\text{200 kHz}$  each.


⇒   The $\text{DCS band}$  $($"E-network"$)$  in the range around  $\text{1800 MHz}$  has a duplex spacing of  $\text{95 MHz}$  and a respective bandwidth of  $\text{75 MHz}$.

  • Taking into account the guard bands,  this results in  $374$  FDMA channels at  $\text{200 kHz}$  each.


Realization of FDMA and TDMA


Interaction between FDMA and TDMA in GSM

In the GSM system,  two multiple access methods are used in parallel:

  1. Frequency Division Multiple Access  $\rm (FDMA)$,  and
  2. Time division multiple access  $\rm (TDMA)$.


The graphic and description apply to the $\text{GSM 900}$ system.  Comparable statements apply to the other GSM systems.  We also refer here to the section  "GSM frame structure"  and  "Exercise 3.3".

  • In both the uplink and downlink,  the transmission of signaling and traffic data occurs in parallel in  $124$  frequency channels,  designated  "RFCH1"  to  "RFCH124".
  • The center frequency of the uplink channel  $n \ ( = 1$, ... , $124)$  is at
$$f_n= 890 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
  • At the upper and lower ends of the  $25 \ {\rm MHz}$  band,  there are guard bands of  $100 \ {\rm kHz}$  each.
  • The channel  $n$  in the downlink is above the channel  $n$  in the uplink by the duplex spacing of  $45 \ {\rm MHz}$.  The channels are designated in the same way as those in the uplink.  Center frequencies:
$$f_n =935 \ {\rm MHz} + n \cdot 0.2 \ {\rm MHz}.$$
  • Each cell is assigned some frequencies per  "cell allocation"  $\rm (CA)$.  In adjacent cells one uses different frequencies.
  • A subset of the CAs is reserved for logical channels.  The remaining channels are allocated to a mobile station as  "mobile allocation"  $\rm (MA)$.
  • This is used,  for example,  for  "frequency hopping",  where the data is sent over different frequency channels.  This makes the transmission more stable against channel fluctuations.  In most cases,  frequency hopping is performed in packets.
  • The individual GSM frequency channels are further subdivided by time division multiplexing  $\rm (TDMA)$.  Each FDMA channel is periodically divided into so-called  "TDMA frames"  which in turn each comprise eight time slots.
  • The  "time slots"  $($"TDMA channels"$)$  are cyclically assigned to the individual subscribers and each contain a so-called  "burst"  of  $156.25$  bit periods in length.  Each GSM user has exactly one of the eight time slots available in each TDMA frame.
  • The TDMA frames of the uplink are sent with three time slots delay compared to those of the downlink.  This has the advantage that the same hardware of a mobile station can be used for both sending and receiving a message.
  • The duration of a  "time slot"  $($German:  "Zeitschlitz"   ⇒   subscript  "Z"$)$  is  $T_{\rm Z} ≈ 577 \rm µ s$, that of a TDMA frame  $4.615 \rm ms$.  These values result from the GSM frame structure.  In total  $26$  TDMA frames are combined into a so-called  "multiframe"  of duration  $120 \ \rm ms$:
$$T_{\rm Z} = \frac{120\,{\rm ms}}{8 \cdot 26} \approx 576.9\,{\rm µ s }\hspace{0.05cm}. $$


The different burst types in GSM


The different burst types with GSM

As just shown,  a  »burst«  contains  $156.25$  bits each and has duration 

$$T_{\rm burst} = T_{\rm Z} ≈ 577 \rm µ s.$$

From this,  the bit duration is calculated to 

$$T_{\rm B} ≈ \frac{T_{\rm burst} }{156.25} \approx3.69 \rm µ s.$$

To avoid overlapping of bursts due to different propagation times between mobile and base station, a  »Guard Period«  $\rm (GP)$» is inserted at the end of each burst.  This guard period is  $8.25$  bit durations,  so 

$$T_{\rm GP}= 8.25 \cdot \cdot T_{\rm B} = 8.25 \cdot 3.69 \ {\rm µ s} \approx 30.5 \ {\rm µ s}.$$

⇒   There are five different types of bursts,  as shown in the figure on the right:

  1. Normal Burst  $\rm (NB)$,
  2. Frequency Correction Burst  $\rm (FB)$,
  3. Synchronization Burst  $\rm (SB)$,
  4. Dummy Burst  $\rm (DB)$,
  5. Access Burst  $\rm (AB)$.


(1)   The  »Normal Burst«  is used to transmit data from traffic and signaling channels.  The error protection encoded user data  $($blue,  two times  $57$  bits$)$  together with three tail bits each  $($red,  during this time the transmitted power is regulated$)$,  two signaling bits  $($green) and  $26$  bits for the training sequence  $($yellow,  required for channel estimation and synchronization$)$  result in a total of  $148$  bits.  Added to this is the Guard Period of  $8.25$ bits  $($gray$)$.

The two  $($green$)$  signaling bits – also called  "stealing flags"  –  indicate whether the burst transports only user data or high-priority signaling information,  which is always to be transmitted without delay.  The  "training sequence"  is used to estimate the channel,  which is a prerequisite for applying an equalizer to reduce intersymbol interference.

(2)   The  »Frequency Correction Burst«  is used to frequency synchronize a mobile station.  All bits except the tail bits and the guard period are here set to logical  "$0$".  The repeated broadcast of such a burst on the  "frequency correction channel"  $\rm (FCCH)$  corresponds to an unmodulated carrier signal with frequency  $f_{\rm T} + Δf_{\rm A}$  $($carrier frequency + frequency deviation$)$.  This value results from the fact that the modulation method  $\text{Gaussian Minimum Shift Keying}$  is a FSK special case.

(3)   The  »Synchronization Burst«  is used to transmit information that helps a mobile station synchronize in time with the base transceiver station.  Besides a long midamble of  $64$  bits, the synchronization burst contains the TDMA frame number and the  "base transceiver station identity code"  $\rm (BSIC)$.  When such a burst is repeatedly broadcast,  it is referred to as the  "synchronization channel"  $\rm (SCH)$.

(4)   The  »Dummy Burst«  is transmitted by each  base transceiver station  $\rm (BTS)$  on a frequency specially allocated to it  $($"cell allocation"$)$  when there are no other bursts to be transmitted.  This ensures that a mobile station can always take power measurements.

(5)   The  »Access Burst«  is used for random multiple access on the  "random access channel"  $\rm (RACH)$.  To keep the probability of collisions on the RACH low, the  "access burst"  has a substantially longer  "guard period"  of  $68.25$  bit durations than the other bursts.


GSM frame structure


The GSM frame structure

The GSM frame structure is used to map logical channels to physical channels.  Here a distinction is made between

  • the  »mapping in frequency«,  based on 
  1. "cell allocation"  $\rm (CA)$,
  2. "mobile allocation"  $\rm (MA)$,
  3. the  "TDMA frame number"  $\rm (FN)$,  and
  4. the rules for the $($optional$)$  "frequency hopping";
  • the  »mapping in time«,  where the TDMA frames are grouped into
  1. multiframes,
  2. superframes,  and
  3. hyperframes,


each with eight time slots for transmitting the bursts.


⇒   According to this graphic,  the following statements are valid:

(1)   »Multiframes«  are used for mapping logical channels to physical channels.  Two types can be distinguished here, 

  • those with  $26$  TDMA frames and a cycle duration of  $120 \ \rm ms$, and
  • those with  $51$  TDMA frames and a duration of  $235.4 \ \rm ms$.


⇒   The bursts of the traffic channels  $\rm (TCH)$  and the associated control channels  $\rm (SACCH,  FACCH)$  are transmitted in  $26$  successive TDMA frames each.  Only one time slot per TDMA frame is always considered for the respective multiframe.

⇒   Of the gross data rate  $\text{(approx. 33.9 kbit/s)}$  per user are  $\text{9.2 kbit/s}$  reserved for synchronization,  signaling and  guard period  and  $\text{1.9 kbit/s}$  for  $\rm SACCH$  and  $\rm IDLE$.  The  $($encoded and encrypted$)$  user data occupy here only  $\text{22.8 kbit/s}$.

⇒   The multiframe structure with  $51$  frames  $($right half of the graph$)$  is used to multiplex several logical channels onto one physical channel.  In  $51$  consecutive TDMA frames,  all data of the signaling channels  $($except  $\rm FACCH$  and  $\rm SACCH)$  are transmitted respectively.


(2)   One  »superframe«  consists of  $1326$  consecutive TDMA frames  $(51$  multiframes with each  $26$ TDMA frame or  $26$  multiframes with each  $51$  TDMA frame$)$  and lasts approximately  $T_{\rm superframe}=6.12$  seconds.


(3)  A  »hyperframe«  groups  $2048$  superframes  $(2\hspace{0.08cm}715{\hspace0.08cm}648$  TDMA frames$)$  together and is used with its long cycle duration to synchronize the payload encryption.  This is:

$$T_{\rm hyperframe}=\text{3 hours, 28 minutes and 53.760 seconds}.$$


Modulation in GSM systems


According to the statements of the last sections,  $156.25$  bits per time slot  $(0.5769 \ \rm ms)$  must be transmitted in one frequency channel.

  1. This corresponds to a total bit rate  $($for eight TDMA users including channel coding,  signaling and synchronization information,  etc.$)$ of  $R_{\rm total} = 270\hspace{0.08cm}833 \rm bit/s$.
  2. For this bit rate,  a bandwidth of  $B = 200 \ \rm kHz$  is available for GSM   ⇒   required is a modulation method with a bandwidth efficiency of at least  $β =R_{\rm ges}/B = 1.35$.
  3. In GSM mobile radio,  the modulation method  »Gaussian Minimum Shift Keying«  $\rm (GMSK)$  is used.


Here follows a brief,  bullet-point description:

  • GMSK is a modified form of  "Frequency Shift Keying"  $\rm (FSK)$.  This results from driving a  $\text{Frequency Modulator}$  with a binary bipolar rectangular input signal.
  • Such an FSK signal  $s(t)$  contains within each symbol duration  $T$  only a single instantaneous frequency at a time;  $f_{\rm A}(t) = \rm const. $
  • If the  $($normalized$)$  input signal is equal  $+1$, then  $f_{\rm A}(t)$  is equal to the sum of the carrier frequency  $f_{\rm T}$  and the frequency deviation  $Δf_{\rm A}$.
  • Correspondingly,  for the normalized input signal  $-1$:   $f_{\rm A}(t) = f_{\rm T} - Δf_{\rm A}$.
  • To allow easy demodulation,  the two signals with frequencies  $f_{\rm T} ± Δf$  should be orthogonal to each other within the symbol duration  $T$.  Consequently:
$$\int^{T} _{0} \cos \big(2 \pi t \cdot (f_{\rm T}+ \Delta f_{\rm A} )\big)\cdot \cos \big(2 \pi t \cdot (f_{\rm T}- \Delta f_{\rm A} )\big)\,{\rm d}t= 0\hspace{0.05cm}. $$
  • This results in the requirement for the  "frequency deviation":
$$\Delta f_{\rm A} = \frac{k}{4 \cdot T}\hspace{0.4cm}{\rm with}\hspace{0.4cm}k = 1,\ 2,\ 3,\ \text{...}$$
  • In FSK systems the  "modulation index"  is defined to  $h = 2 \cdot Δf_{\rm A} \cdot T$,  it follows  $h = k/2$.
  • Thus,  the smallest modulation index under compliance with the orthogonality conditions is  $h_{\rm mim} = 0.5$.
  • This is used in all GSM systems,  because a larger modulation index than  $h = 0.5$  would require a significantly larger bandwidth.
  • A very narrow spectrum results,  if phase jumps are avoided at the symbol boundaries by phase matching   ⇒   MSK belongs to the  "continuous phase FSK"  techniques.
  • An additional low-pass filter with Gaussian characteristics is inserted before the frequency modulator   ⇒   further reducing the GSM bandwidth.


Continuous phase adjustment with FSK


Starting from the rectangular wave signal  $q(t)$  and the carrier frequency  $f_{\rm T} = 4/T$  we consider the FSK signals  $s_{\rm A}(t)$, ... ,  $s_{\rm D}(t)$  at different frequency deviation  $Δf_{\rm A}$   ⇒   modulation index  $h = 2 \cdot Δf_{\rm A} \cdot T$.

Example signals for continuous phase adjustment

Regarding the signal characteristics shown on the right,  it is to be noted  $($we also refer to the  $($German language$)$  SWF applet  "Frequency Shift Keying & Continuous Phase Modulation"):

  1. The signal  $s_{\rm A}(t)$  results in  $Δf_{\rm A} = 1/T$   ⇒   modulation index  $h = 2$.  One can see the higher frequency  $f_1 = 5/T$  $($for  $a_ν = +1)$  compared to the frequency  $f_2 = 3/T$  $($for  $a_ν = -1)$.
  2. With  $Δf_{\rm A} = 0.5/T$  $($signal  $s_{\rm {\rm B}}(t)$,  $h = 1)$  holds  $f_1 = 4.5/T$  and  $f_2 = 3.5/T$.  At each symbol boundary,  a phase jump of  $π$  occurs if no phase adjustment is made as for the signal  $s_{\rm C}(t)$.
  3. When  $s_{\rm C}(t)$  is applied in the range  $0$ ... $T$  the coefficient  $a_1 = +1$  is represented by  $\cos(2π-f_1-t)$  while  $a_2 = +1$  in the range  $T$ ... $2T$  leads to the signal  $-\cos(2π-f_1\hspace{0.01cm}-\hspace{0.01cm}(t-T))$.  Phase jumps are thus avoided by this adjustment.
  4. The signal  $s_{\rm D}(t)$  describes the MSK signal  $($frequency deviation  $Δf_{\rm A} = 0.25/T$   ⇒   modulation index  $h = 0.5)$  with phase adjustment.  Here,  at each symbol boundary four different initial phases are possible – depending on the previous symbols.
  5. For the  $\rm GSM \ 900$  system the carrier frequency is  $f_{\rm T} = 900\ \rm MHz$  and the symbol duration is  $T ≈ 3.7 \ \rm µ s$.  With the modulation index  $h = 0.5$   ⇒   $Δf_{\rm A} ≈ 68 \ \rm kHz$.  Thus,  the two  frequencies  are very close to each other: $f_1 = 900.068\ \rm MHz$,  $f_2 = 899.932\ \rm MHz$.




Minimum Shift Keying (MSK)


The diagram shows the model for generating an MSK modulation and typical signal characteristics.  One recognizes:

Block diagram for generating an MSK and corresponding signal characteristics
  • At point  (1)  the digital source signal consisting of a sequence of Dirac delta pulses at distance  $T$ weighted by the amplitude coefficients  $a_ν ∈ \{-1, +1\}$:
$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu \cdot T)\hspace{0.05cm}; $$
  • at point  (2):  the rectangular source signal  $q_{\rm R}(t)$  after convolution with the rectangular pulse  $g(t)$  the duration  $T$  and the height  $1/T$  $($the amplitude was chosen this way for compatibility with later sections$)$:
$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu \cdot T)\hspace{0.05cm}; $$
  • at point  (3):  the frequency modulator,  which can be realized according to the description in chapter  "Signal characteristics in FM"  as an integrator followed by a phase modulator.  For the signal at point (3)  holds:
$$\phi(t) = \frac{\pi}{2}\cdot \int_{0}^{t} q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
The phase values at  $\nu \cdot T$  are multiples of  $π/2 \ (90^\circ)$,  taking into account the modulation index  $h = 0.5$  valid for MSK.  The phase response is linear.
  • From this,  at the point  (4)  of the block diagram,  the MSK signal is given by
$$s(t) = s_0 \cdot \cos \big(2 \pi f_{\rm T} \hspace{0.05cm}t + \phi(t)\big) = s_0 \cdot \cos \big(2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )\big) \hspace{0.05cm}.$$

Note:

The realization of  "Minimum Shift Keying"  $\rm (MSK)$  by a special variant of  "Offset-QPSK"  is illustrated by the  (German language)  SWF applet  "QPSK and Offset-QPSK".



Gaussian Minimum Shift Keying (GMSK)


One advantage of MSK over other modulation types is the lower bandwidth requirement.  Minor modifications to the  $\text{Gaussian Minimum Shift Keying}$  - $\rm (GMSK)$  result in a narrower spectrum.

One can see from the block diagram the following differences to  "Minimum Shift Keying"  $\rm (MSK)$:

Block diagram for generating a GMSK and corresponding signal characteristics
  • The frequency pulse  $g(t)$  is now no longer rectangular like the pulse  $g_{\rm R}(t)$,  but has flatter edges.
  • Consequently,  there is also a smoother phase progression at point  (3)  than with the MSK method  $($see last section$)$,  where  $ϕ(t)$  symbolically rises or falls linearly.
  • These smoother phase transitions in GMSK are achieved by a  »Gaussian low-pass filter« 
  • with  "frequency response"
$$H_{\rm G}(f) = {\rm e}^{-\pi \hspace{0.05cm} \cdot \hspace{0.05cm} \big({f}/(2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G})\big)^2}$$
  • and  "impulse response"
$$ h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm} \cdot \hspace{0.05cm} (2 \hspace{0.05cm} \cdot \hspace{0.05cm} f_{\rm G}\hspace{0.05cm} \cdot \hspace{0.05cm} t)^2}\hspace{0.05cm}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, H_{\rm G}(f)\hspace{0.2cm}.$$
  • For GSM,  the 3dB cutoff frequency is set to  $f_{\rm 3dB} = 0.3/T$.  Thus,  as shown in  "Exercise 3.4",  the system theoretic cutoff frequency:
$$f_{\rm G} ≈ 1.5 - f_{\rm 3dB} = 0.45/T.$$
  • The resulting frequency impulse  $g(t)$  at point  (2)'  of the block diagram results from the convolution of the rectangular pulse  $g_{\rm R}(t)$  with the impulse response  $h_{\rm G}(t)$  of the Gaussian low-pass:
$$g(t) = g_{\rm R}(t) \star h_{\rm G}(t)\hspace{0.05cm}. $$
  • The GMSK-modulated signal  $s(t)$  now no longer exhibits a constant frequency section by section  $($per symbol duration$)$.  However,  it is difficult to see this difference from MSK from the signal waveform at point  (4)  of the block diagram.


Note:   We refer here to the  (German language)  SWF applet  "Frequency Shift Keying & Continuous Phase Modulation".

Advantages and disadvantages of GMSK


Here,  the main features of the modulation method  "Gaussian Minimum Shift Keying"  are summarized.  The following graphic was taken from the book  [Kam04][1] .

Power-spectral densities of QPSK and MSK

⇒   The left graph shows the log power-spectral density  $10 \cdot \text{lg} \ {\it Φ}_s(f)/{\it Φ}_0$  of  "Minimum Shift Keying"  $\rm (MSK)$  compared to  "Quaternary Phase Shift Keying"  $\rm (QPSK)$,  where  ${\it Φ}_0$  was chosen  "suitable". 

On the abscissa is plotted the normalized frequency  $f \cdot T_{\rm B}$.  For MSK,  the bit duration  $T_{\rm B}$  is equal to the symbol duration  $T$,  while for QPSK holds:  $T_{\rm B} = T/2$.

One recognizes from this left representation:

  1. The first zero in the power-spectral density  $\rm (PSD)$  occurs at the normalized abscissa value  $f \cdot T_{\rm B} = 0.5$  for QPSK  $($dashed curve$)$,  but for MSK only at  $f\cdot T_{\rm B} = 0.75$.
  2. In the further course,  however,  MSK results in a much faster PSD decay than the asymptotic  $f^{-2}$  decay for QPSK.
  3. Note that for MSK a cosine pulse is used for spectral shaping and for QPSK a rectangular pulse.


⇒   The right plot shows the influence of Gaussian pulse shaping in GMSK on the power-spectral density  ${\it Φ}_s(f)$,  where the normalized 3dB cutoff frequency is used as parameter. 

In this diagram,  which refers exclusively to  $\rm (G)MSK$,  the abscissa could also be labeled  $f \cdot T$.

  1. The smaller  $f_{\rm 3\ dB}$  is, the more narrowband is the power-spectral density.  In the GSM standard  $f_{\rm 3\ dB} \cdot T$ = 0.3  has been specified.  With this value,  the bandwidth is already decisively reduced,  resulting in lower interferences for adjacent channels.
  2. On the other hand,  with this cutoff frequency  "intersymbol interferences"  already have a serious effect.  The eye opening is smaller than  $50\%$  and a suitable equalization has to be provided.


$\text{Conclusions:}$     The main advantage of GMSK is its very low bandwidth requirements.

Furthermore,  it should be noted:

  • Binary FSK – even with continuous phase matching – generally represents a nonlinear modulation process.  Therefore,  coherent demodulation is actually not possible.
  • An exception is the MSK as a special case for the modulation index  $h = 0.5$,  which can be realized linearly as  "Offset-QPSK"  and thus can also be demodulated coherently.
  • Without taking intersymbol interference into account,  the  »bit error probability«  is as follows:
$$p_{\rm B} = {\rm Q} \left(\sqrt{ {E_{\rm B} }/{N_0} }\hspace{0.09cm}\right) = {1}/{2}\cdot{\rm erfc} \left(\sqrt{ {E_{\rm B} }/{2N_0} }\hspace{0.09cm}\right) \hspace{0.05cm}.$$
⇒   Compared to the QPSK,  there is a degradation of  $3\ \rm dB$.   Note:  The HTML5/JavaScript applet  "Complementary Gaussian Error Functions"  provides the numerical values of the functions   ${\rm Q}(x)$  resp.  $1/2 \cdot {\rm erfc}(x)$  used here.
  • An advantage of GMSK over QPSK is that a constant envelope is obtained despite the spectral shaping of the basic pulse  $g(t)$.  Therefore,  nonlinearities on the channel do not play as large a role as in other modulation schemes.  This allows the use of simple and inexpensive power amplifiers,  lower power consumption and thus also longer operating times of battery-powered devices.



Radio Subsystem Link Control


Another function of the radio interface is the control of the radio link.  Thus,  the so-called  "Radio Subsystem Link Control"  performs the following tasks:

  1. It is responsible for the measurement of the reception quality. During an established traffic or signaling connection, the channel measurement of the mobile station is performed at regular intervals with regard to received field strength and bit error rate   ⇒   »Quality Monitoring«. These values are transmitted in a measurement report to the base station via the signaling channel SACCH and used by it for power control and handover.

  2. The  "Power Control"  is necessary to ensure that all mobile stations only radiate with the minimum required power.  The transmitted power can be adaptively controlled in steps of  $2 \ \rm dBm$  between  $43 \ \rm dBm$  $\text{(level 0:}$  $20\ \rm W)$  and  $13 \ \rm dBm$  $\text{(level 15:}$  $20\ \rm mW)$.

  3. Base station transmitted power is also adjusted in steps of  $2 \rm dBm$  to achieve optimum network capacity.  An exception is the BCCH carrier with constant transmitted power to allow mobile stations to make comparative measurements of neighboring BCCH carriers.

  4. The  »Adaptive Frame Alignment«  – i.e. adaptive frame synchronization – is used to avoid collisions between uplink and downlink data to be transmitted or received by the mobile station offset by three time slots.
Adaptive Frame Alignment


This is shown in the adjacent graph.  The downlink is represented in the middle area with a yellow background,  where the data arrives at the mobile station  $\rm (MS)$  by the time  $T_{\rm R}$  $($"Round Trip Delay Time", by the time  $T_{\rm R}$  $($"Round Trip Delay Time",  green marking$)$ later than it was sent by the  base transceiver station  $\rm (BTS)$.

In the upper area,  the uplink is shown without  "Timing Advance".

  1. The MS starts sending exactly three time slots after reception  $($blue marker$)$.
  2. Due to the delays in downlink and uplink,  the time slot  "$0$"  does not reach the BTS at the time  $3T_{\rm burst}$  as required,  but by  $2T_{\rm R}$  later  $($red mark$)$.
  3. With the  "Timing Advance"  uplink $($lower sketch$)$  this delay is already compensated by the mobile station by sending the data by the time  $ 2T_{\rm R}$  earlier and thus they arrive exactly time synchronized at the BTS.


The stages  $0 - 63$  are available for   "Timing Advance",  where each stage corresponds to one bit duration  $T_{\rm B}$.

  1. The maximum  timing advance  is thus  $\rm 63 \cdot 3.7 \ µ s ≈ 233 \ µs$,  giving the maximum allowable runtime in one direction to  $T_{\rm R} ≈ 116\ {\rm µ s}$.
  2. From this,  the allowed cell radius of GSM  $($distance between BTS and MS$)$ can be calculated: 
$$116\ \rm µ s · 3 · 10^8 \ m/s ≈ 35 \ km.$$


Exercises for the chapter


Exercise 3.3: GSM Frame Structure

Exercise 3.3Z: GSM 900 and GSM 1800

Exercise 3.4: GMSK Modulation

Exercise 3.4Z: Continuous Phase Frequency Shift Keying

References

  1. Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4th edition, 2004.