Difference between revisions of "Examples of Communication Systems/xDSL as Transmission Technology"

From LNTwww
 
(78 intermediate revisions by 7 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=DSL – Digital Subscriber Line
 
|Untermenü=DSL – Digital Subscriber Line
|Vorherige Seite=xDSL–Systeme
+
|Vorherige Seite=xDSL Systems
|Nächste Seite=Verfahren zur Senkung der Bitfehlerrate bei DSL
+
|Nächste Seite=Methods to Reduce the Bit Error Rate in DSL
 
}}
 
}}
  
  
==Mögliche Bandbreitenbelegungen für xDSL==   
+
==Possible bandwidth allocations for xDSL==   
 +
<br>
 +
The xDSL specifications give operators a great deal of freedom with regard to allocation.
  
Die xDSL–Spezifikationen lassen den Betreibern viele Freiheiten hinsichtlich der Belegung. Zur notwendigen Richtungstrennung der xDSL–Signalübertragung nach
+
For the necessary directional separation of the xDSL signal transmission according to
*Abwärtsrichtung vom Anbieter zum Kunden (''Downstream'' mit möglichst hoher Datenrate),
+
*the downstream direction from the provider to the customer&nbsp; $($with the highest possible data rate$)$,
*Aufwärtsrichtung vom Kunden zum Anbieter (''Upstream'' mit meist niedrigerer Datenrate)
 
wurden hierfür zwei Varianten standardisiert:
 
*Beim '''Frequenzgetrenntlageverfahren''' werden die Datenströme für die beiden Richtungen in zwei voneinander getrennten Frequenzbändern übertragen mit dem Vorteil, dass zur Trennung der Übertragungsrichtungen ein einfaches Filter genügt, was die technische Realisierung vereinfacht.
 
*Beim '''Frequenzgleichlageverfahren''' überlagern sich in einem bestimmten Teil die Spektren von Upstream und Downstream. Die Trennung erfolgt hier mit Hilfe einer Echokompensationsschaltung. Vorteile des Verfahrens sind der geringere Bandbreitenbedarf bei höheren (und damit stärker gedämpften) Frequenzen sowie eine größere Reichweite.
 
  
 +
*the upstream direction from the customer to the provider&nbsp; $($with mostly lower data rate$)$,
  
Die Grafik stellt diese beiden Möglichkeiten vergleichend gegenüber.
 
  
Grundsätzlich überlassen die Spezifikationen den Entwicklern/Betreibern die Entscheidung,
+
two variants have been standardized for this purpose:
*xDSL alleine auf der Teilnehmeranschlussleitung zu betreiben, oder
 
*einen Mischbetrieb von xDSL mit den Telefondiensten POTS (''Plain Old Telephone Service'') oder ISDN (''Integrated Services Digital Network'') zu ermöglichen, und somit
 
*den von den beiden Telefondiensten belegten unteren Frequenzbereich für xDSL auszuschließen oder auch zu belegen.
 
  
+
{{BlaueBox|TEXT=
==ADSL–Bandbreitenbelegung in Deutschland==
+
$\text{Definition:}$&nbsp;
 +
*With the&nbsp; &raquo;'''frequency separation method'''&laquo;&nbsp; the data streams for the two directions are transmitted in two separate frequency bands with the advantage that a simple filter is sufficient to separate the transmission directions,&nbsp; which simplifies the technical implementation.
 +
 
 +
*With the&nbsp; &raquo;'''frequency uniform position method'''&laquo;&nbsp; the spectra of upstream and downstream overlap in a certain part.&nbsp; The separation is done here with help of an echo cancellation circuit.&nbsp; Advantages of this method:&nbsp; The lower bandwidth requirement at higher&nbsp; $($and thus more attenuated$)$&nbsp; frequencies and longer range.}}
 +
 
 +
 
 +
[[File:EN_Bei_T_2_3_S1a_v4.png|right|frame|"Frequency separation method"&nbsp; &&nbsp; "Frequency uniform position method"]]
 +
The graph compares these two options.&nbsp; Basically,&nbsp; the specifications leave it up to the developers/operators to decide,
 +
*to operate xDSL alone on the subscriber line,&nbsp; or
 +
 
 +
*to allow mixed operation of xDSL with the telephone services&nbsp; $\rm POTS$&nbsp; $($"Plain Old Telephone Service"$)$&nbsp; or&nbsp; $\rm ISDN$&nbsp; $($"Integrated Services Digital Network"$)$,&nbsp; and
 +
*thus to exclude or also occupy the lower frequency range occupied by the two telephone services for xDSL.
 +
<br clear=all>
 +
==ADSL bandwidth allocation== 
 +
<br>
 +
Since it is technically much easier to realise, the decision in Germany for "ADSL" and "ADSL2+" was in favour of 
 +
 
 +
[[File:EN_Bei_T_2_3_S1b_v4.png|right|frame|ADSL bandwidth allocation in Germany and most of other European countries]]
 +
*of the&nbsp; "frequency separation method",&nbsp; and
 +
*the general reservation of the lower frequency range for ISDN.
 +
 
 +
 
 +
The&nbsp; "frequency uniform position method"&nbsp; is still used in some cases,&nbsp; but rather rarely.
 +
 
 +
The bandwidth available for DSL is not further decomposed for the transmission methods
 +
*[[Modulation_Methods/Quadrature_Amplitude_Modulation|$\rm QAM$]]&nbsp; $($"Quadrature Amplitude Modulation"$)$&nbsp; and
 +
 
 +
*[[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#Carrierless_Amplitude_Phase_Modulation|$\rm CAP$]]&nbsp; $($"Carrierless Amplitude Phase Modulation$)$. 
 +
 
 +
 
 +
In contrast,&nbsp;  with  the multicarrier method&nbsp; [[Modulation_Methods/Further_OFDM_Applications#A_brief_description_of_DSL_-_Digital_Subscriber_Line|$\rm DMT$]]&nbsp;  $($"Discrete Multitone Transmission"$),$&nbsp; the uplink and the downlink channel are divided into&nbsp; $N_{\rm Up}$&nbsp; resp.&nbsp; $N_{\rm Down}$&nbsp; bins of&nbsp; $4.3125\rm \ kHz $&nbsp; each.
 +
 
 +
 
 +
In addition to the above graph, it should be noted:
 +
#Phone services&nbsp;  $($POTS or ISDN$)$&nbsp; and xDSL are in different frequency bands,&nbsp; which minimizes mutual interference in the trunk cable.&nbsp; Thus,&nbsp; the stronger signal ISDN does not interfere with the parallel running xDSL and vice versa.
 +
#The lower frequency range up to&nbsp; $\text{120 kHz}$&nbsp; has been reserved for ISDN&nbsp; $($optionally POTS$)$.&nbsp; This value results from the first zero of the&nbsp; [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes#ACF_and_PSD_of_the_4B3T_codes|"ISDN spectrum with 4B3T coding"]].&nbsp; Above $\text{120 kHz}$&nbsp; the ISDN spectrum is completely suppressed.
 +
#To separate the telephone and xDSL signals,&nbsp; a&nbsp; [[Examples_of_Communication_Systems/xDSL_Systems#Components_of_DSL_Internet_access|"splitter"]]&nbsp; is used at both ends of the two-wire line,&nbsp; which includes one low-pass filter and one high-pass filter each and also takes into account the following frequency gap up to&nbsp; $\text{138 kHz}$.
 +
#After this occupancy gap follows the ADSL upstream band from&nbsp; $\text{138 kHz}$&nbsp; to&nbsp;$\text{276 kHz}$.&nbsp; This allows the transmission of&nbsp; $N_{\rm Up} = 32$&nbsp; subcarriers with bandwidth &nbsp;$\text{4.3125 kHz}$&nbsp; each.&nbsp; This value is derived from the frame transmission rate.
 +
#The subsequent downstream range extends to&nbsp; $\text{1104 kHz}$&nbsp; for ADSL,&nbsp; with which&nbsp; $N_{\rm Down} = 256$&nbsp; subcarriers can be realized.&nbsp; The separation of the upstream and the downstream channel in xDSL is done by a band-pass filter in the modem.
 +
#However,&nbsp; the first&nbsp; $64$&nbsp; subcarriers&nbsp; $($this corresponds to $\text{276 kHz)}$&nbsp; must not be occupied.&nbsp; With the&nbsp; [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#Possible_bandwidth_allocations_for_xDSL|"frequency uniform position method"]]&nbsp; only&nbsp; $32$&nbsp; subcarriers would have to be left out,&nbsp; taking into account that the separation of uplink and downlink requires a more complex implementation.
 +
#For&nbsp; ADSL2+,&nbsp; the system bandwidth is&nbsp; $\text{2208 kHz}$ &nbsp; ⇒ &nbsp; $N_{\rm Down} = 512$&nbsp; subcarriers.&nbsp; The number of bins to be spared remains unchanged compared to ADSL.&nbsp; Taking into account that two bins are occupied by control functions&nbsp; $($e.g. for synchronization$)$,&nbsp; $190$&nbsp; $($ADSL$)$&nbsp; or&nbsp; $446$&nbsp; $($ADSL2+$)$ downstream channels remain for users.
 +
#The ISDN reservation prescribed in Germany,&nbsp; however,&nbsp; has the consequence for xDSL that the low frequencies,&nbsp; which are by far the least attenuated in a copper line and would therefore actually be the most suitable,&nbsp; cannot be used.
 +
#Further,&nbsp; from the frequency arrangement,&nbsp; it can be seen that the downstream bins are more attenuated than the upstream bins&nbsp; $($higher frequencies$)$&nbsp; and consequently have a smaller signal-to-noise ratio&nbsp; $($SNR$)$.
 +
#The decision&nbsp; "upstream below downstream"&nbsp; is related to the fact that the loss of downstream channels has only a comparatively small impact on the transmission rate.&nbsp; In the upstream,&nbsp; such a failure would be much more noticeable in percentage terms.
 +
 
 +
 
 +
==VDSL(2) bandwidth allocation== 
 +
<br>
 +
The ITU has defined several profiles for&nbsp; "VDSL(2)".&nbsp; At the time of writing this chapter&nbsp; (2010),&nbsp; the frequency band assignment specified in the graphic applies to the systems deployed in Germany in accordance with the ITU's&nbsp; $\text{ VDSL(2) Plan 998b - Profile 17a (Annex B)}$.&nbsp; The (slightly) lighter coloring at the higher frequencies is meant to indicate that these channels are more attenuated.
  
Wegen der technisch deutlich einfacheren Realisierbarkeit fiel in Deutschland für ADSL und ADSL2+ die Entscheidung zugunsten
+
Without claiming to be exhaustive, this allocation plan can be characterized as follows:
*des Frequenzgetrenntlageverfahrens,
 
*die generelle Reservierung des unteren Frequenzbereichs für ISDN.
 
  
Das Frequenzgleichlageverfahren wird zwar teilweise noch verwendet, aber eher selten.
+
[[File:EN_Bei_T_2_3_S5a_ganzneu.png|right|frame|VDSL(2) bandwidth allocation in Germany<br><br><br><br>]]
  
Bei den Übertragungsverfahren QAM und CAP wird die für DSL verfügbare Bandbreite nicht weiter zerlegt. Dagegen werden beim Mehrträgerverfahren DMT der Aufwärtskanal und der Abwärtskanal in $N_{\rm Up}$ bzw. $N_{\rm Down}$ Subkanäle (englisch: ''Bins'') zu je 4.3125 kHz aufgeteilt.
+
#To achieve higher bit rates,&nbsp; eight times as many bins are used here as in&nbsp; "ADSL2+".  
Außerdem ist zu dieser Grafik anzumerken:
+
#Thus,&nbsp; the bandwidth enables&nbsp; $8 \cdot \text{2208 MHz = 17664 MHz}$,&nbsp; transmission rates of up to&nbsp; $\text{100 Mbit/s}$&nbsp; $($depending on cable length and conditions$)$.
*Telefondienste (POTS bzw. ISDN) und xDSL liegen in verschiedenen Frequenzbändern, was die gegenseitigen Störungen im Bündelkabel minimiert. Das signalstärkere ISDN stört somit nicht das parallel laufende xDSL und umgekehrt.
+
#The same as in ADSL,&nbsp; the frequency bands for the upstream subchannels are always arranged at the lower frequencies,&nbsp; since the greater cable attenuation&nbsp; has a greater percentage influence on the bit rate for upstream than for downstream.
*Der untere Frequenzbereich bis 120 kHz wurde für ISDN (wahlweise POTS) reserviert. Dieser Wert ergibt sich aus der ersten Nullstelle des ISDN–Spektrums mit 4B3T–Codierung. Oberhalb von 120 kHz wird das ISDN–Spektrum vollständig unterdrückt.
+
#In VDSL(2),&nbsp; the&nbsp; [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#Possible_bandwidth_allocations_for_xDSL|"frequency separation method"]]&nbsp; is always used.&nbsp; Overlapping of the upstream and downstream frequency bands is categorically excluded in the ITU specification .
*Zur Trennung von Telefon– und xDSL–Signal wird an beiden Enden der Zweidrahtleitung ein Splitter eingesetzt, der je ein Tiefpassfilter und ein Hochpassfilter beinhaltet und auch die folgende Frequenzlücke bis 138 kHz berücksichtigt.
+
#In the VDSL systems,&nbsp; the lower frequencies are reserved for ISDN.&nbsp; This is followed by alternating ranges for upstream and downstream.&nbsp; From the specified limits,&nbsp; one can recognize the narrower upstream ranges,&nbsp; compared to the downstream.
*Nach dieser Belegungslücke folgt das ADSL–Upstream-Band von 138 kHz bis 276 kHz. Diese Bandbreite erlaubt die Übertragung von $N_{\rm Up}$ = 32 Subträgern zu je 4.3125 kHz. Dieser Wert ergibt sich aus der Rahmenübertragungsgeschwindigkeit.
+
#You can see an alternating arrangement of upstream and downstream areas.&nbsp; One reason  is that with this wide spectrum it should be avoided that one direction&nbsp; $($e.g. downstream$)$&nbsp; is assigned only strongly attenuated&nbsp; $($high$)$&nbsp; frequencies.
*Der anschließende Downstream–Bereich reicht bei ADSL bis 1104 kHz, womit $N_{\rm Down}$ = 256 Subträger realisiert werden können. Die Trennung von Auf– und Abwärtskanal bei xDSL erfolgt über ein Bandpassfilter im Modem.
 
*Allerdings dürfen die ersten 64 Subträger (das entspricht 276 kHz) nicht belegt werden. Beim Frequenzgleichlageverfahren wären nur 32 Subträger auszusparen, wobei zu berücksichtigen ist, dass die Trennung von Aufwärts– und Abwärtsrichtung eine aufwändigere Realisierung erfordert.
 
*Bei ADSL2+ ist die Systembandbreite gleich 2208 kHz ⇒ $N_{\rm Down}$ = 512 Subträger. Die Anzahl der auszusparenden Bins bleibt gegenüber ADSL unverändert. Berücksichtigt man, dass zwei Bins von Kontrollfunktionen (z.B. zur Synchronisation von Sender und Empfänger) belegt werden, so verbleiben 190 (ADSL) bzw. 446 (ADSL2+) Downstream–Kanäle für Nutzer.
 
*Die in Deutschland vorgeschriebene ISDN–Reservierung hat für xDSL allerdings die Konsequenz, dass die niedrigen Frequenzen, die bei einer Kupferleitung mit Abstand am wenigsten gedämpft werden und damit eigentlich am besten geeignet wären, nicht genutzt werden können.
 
*Aus der Frequenzanordnung erkennt man weiterhin, dass die Downstream–Subkanäle stärker gedämpft werden als die Upstream–Subkanäle (höhere Frequenzen) und demzufolge ein kleineres Signal–zu–Rauschleistungsverhältnis (SNR) aufweisen.
 
*Die Entscheidung „Upstream unterhalb Downstream” hängt damit zusammen, dass der Ausfall von Downstream–Kanälen nur eine vergleichsweise geringe Auswirkung auf die Übertragungsrate hat. Im Upstream würde sich ein solcher Ausfall prozentual viel stärker bemerkbar machen.
 
  
  
==VDSL2–Bandbreitenbelegung== 
+
The VDSL(2) specification provides for allocation plans up to system bandwidths of&nbsp; $\text{30 MHz}$&nbsp; $($according to profile 30a$)$.
 +
* This should enable transmission rates up to about&nbsp; $\text{ 200 Mbit/s}$&nbsp; over short distances.
  
Für VDSL2 hat die ITU mehrere Profile festgelegt. Für die in Deutschland eingesetzten Systeme gilt zum Zeitpunkt der Erstellung dieses Kapitels (2010) die in der Grafik angegebene Frequenzbandbelegung gemäß dem VDSL2 Plan 998b – Profil 17a (Annex B) der ITU. Die (leicht) hellere Farbgebung bei den höheren Frequenzen soll darauf hinweisen, dass diese Kanäle stärker gedämpft werden.
+
*For this purpose, the bandwidth of the individual subchannels is also doubled compared to ADSL to&nbsp; $\text{8.625 kHz}$&nbsp;.
  
Ohne Anspruch auf Vollständigkeit lässt sich dieser Belegungsplan wie folgt charakterisieren:
 
*Um höhere Bitraten zu erreichen, werden hier achtmal so viele Bins verwendet als bei ADSL2+. Damit beträgt die Systembandbreite 8 · 2208 MHz = 17664 MHz, womit Übertragungsraten bis zu 100 Mbit/s (abhängig von Kabellänge und –beschaffenheit) ermöglicht werden.
 
*Auch hier gilt, dass die Frequenzbänder für die Upstream–Subkanäle immer bei den niedrigeren Frequenzen angeordnet sind, da die größere Kabeldämpfung (mit der Frequenz zunehmend) beim Upstream einen prozentual größeren Einfluss auf die Gesamtbitrate hat als beim Downstream.
 
*Bei VDSL2–Systemen wird stets das so genannte Frequenzgetrenntlageverfahren verwendet. Eine Überlappung der Upstream– und Downstream–Frequenzbänder ist in der ITU–Spezifikation für VDSL2 kategorisch ausgeschlossen.
 
*Bei den VDSL–Systemen in Deutschland sind die unteren Frequenzen wieder für ISDN reserviert. Danach folgen abwechselnd Bereiche für Upstream und Downstream. Aus den angegebenen Bereichsgrenzen erkennt man die gegenüber dem Downstream schmäleren Upstream–Bereiche.
 
*Man erkennt eine abwechselnde Anordnung von Upstream– und Downstreambereichen. Ein Grund hierfür ist, dass bei diesem breiten Spektrum vermieden werden soll, dass eine Richtung (zum Beispiel abwärts) nur stark gedämpfte Frequenzen (also hohe) zugewiesen bekommt.
 
*Die VDSL2–Spezifikation sieht Belegungspläne bis zu Systembandbreiten von 30 MHz (nach dem Profil 30a) vor, die Übertragungsraten bis etwa 200 Mbit/s auf kurzen Strecken ermöglichen sollen. Dafür wird auch die Bandbreite der einzelnen Subkanäle gegenüber ADSL auf 8.625 kHz verdoppelt.
 
*Alle Belegungspläne werden mit verschiedenen Masken für das Leistungsdichtespektrum versehen, um so die maximale Sendeleistung und damit auch die Störung benachbarter Systeme im Kabelbündel (Nebensprechen) zu begrenzen.
 
  
 
 
 
 
==Übertragungsverfahren im Überblick== 
+
==Overview of xDSL transmission methods== 
 +
<br>
 +
At the beginning of the various standardization procedures for the individual xDSL variants,&nbsp; different transmission methods were defined as a basis:
 +
# [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]]&nbsp; $\text{QAM}$&nbsp; for&nbsp; "QAM-ADSL"&nbsp; and&nbsp; "QAM-VDSL",<br>
 +
# [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#Carrierless_Amplitude_Phase_Modulation|"Carrierless Amplitude Phase Modulation"]]&nbsp; $\text{CAP}$&nbsp;  for&nbsp; "CAP-HDSL"&nbsp; and&nbsp; "CAP-ADSL",
 +
#[[Modulation_Methods/Further_OFDM_Applications#A_brief_description_of_DSL_-_Digital_Subscriber_Line|"Discrete Multitone Transmission"]]&nbsp; $\text{DMT}$&nbsp; for&nbsp; "ADSL",&nbsp; "ADSL2",&nbsp; "ADSL2+",&nbsp; "VDSL"&nbsp; and",&nbsp; "VDSL2".
  
Zu Beginn der verschiedenen Standardisierungsprozeduren für die einzelnen xDSL–Varianten wurden als Basis verschiedene Übertragungsverfahren festgelegt:
 
*Pulscodemodulation (PCM) für ISDN sowie ''Trellis Coded–Pulse Amplitude Modulation'' für HDSL2 und SHDSL/SDSL,
 
*Quadratur–Amplitudemodulation (QAM) für QAM–ADSL und QAM–VDSL,
 
*Carrierless Amplitude/Phase Modulation (CAP) für CAP–HDSL und CAP–ADSL,
 
*Discrete Multitone Transmission (DMT) für ADSL, ADSL2, ADSL 2+, VDSL und VDSL2.
 
  
 +
With increasing market demand for higher transmission rates and the associated requirements, two main&nbsp; suitable processes crystallized,&nbsp; namely&nbsp; "QAM/CAP"&nbsp; and&nbsp; "DMT".
  
Mit zunehmender Forderung des Marktes nach höheren Übertragungsraten und den damit verbundenen Anforderungen kristallisierten sich zwei geeignete Hauptverfahren heraus, nämlich
+
Since the manufacturers were unable to agree on a common standard from 1997 to 2003,&nbsp; also for patent reasons&nbsp; $($one even speaks of&nbsp; "line code wars"&nbsp; in this context$)$,&nbsp; the two competing methods coexisted for a long time.&nbsp; At the so-called&nbsp; "DSL Olympics"&nbsp; in 2003,&nbsp; '''the decision was finally made in favor of DMT''',
*QAM/CAP,
+
*on the one hand,&nbsp; because of the slightly better&nbsp; "performance"&nbsp; in general,
*DMT.
 
  
 +
*but in particular because of its higher robustness against narrowband interference;<br>especially for the USA&nbsp; $($many overhead telephone lines and related problems with coupled radio signals$)$&nbsp; this argument played a major role.
  
Da sich die Hersteller von 1997 bis 2003 auch aus patentrechtlichen Gründen auf keinen gemeinsamen Standard einigen konnten (man spricht in diesem Zusammenhang sogar von ''Line Code Wars''), kam es lange Zeit zur Koexistenz beider konkurrierender Verfahren. Bei den so genannten DSL–Olympics 2003 wurde schließlich die Entscheidung zugunsten von DMT getroffen,
 
*einerseits wegen der etwas besseren Performance allgemein,
 
*insbesondere aber wegen der höheren Robustheit gegenüber Schmalbandstörungen.
 
  
 +
First,&nbsp; however,&nbsp; the systems&nbsp; "QAM-xDSL"&nbsp; and&nbsp; "CAP-xDSL"&nbsp; will be considered very briefly.
  
Insbesondere für die USA (viele Telefonfreileitungen und damit verbundene Probleme mit eingekoppelten Funksignalen) hat das zweite Argument eine große Rolle gespielt.
+
Die heutigen (2010) in Deutschland vorwiegend angebotenen xDSL–Varianten ADSL2(+) und VDSL2 basieren alle auf dem ''Discrete Multitone Transmission''–Verfahren, wobei aber die einzelnen Subträger durchaus mit QAM–Signalen belegt sein können.
+
==Basics of Quadrature Amplitude Modulation== 
Zunächst sollen aber in aller Kürze xDSL–QAM– und xDSL–CAP–Systeme betrachtet werden.
+
<br>
  
 +
The principle has already been described in detail in the chapter&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modation"]]&nbsp; of the book&nbsp; "Modulation Methods".&nbsp;
 +
[[File:EN_Bei_T_2_3_S6a.png|right|frame| Linear modulator with&nbsp; $\rm I$ and&nbsp; $\rm Q$–components;&nbsp; signal space for&nbsp; $\text{16-QAM}$]]
 +
Here follows short summary on the basis of the block diagram on the right:
 +
*QAM is a&nbsp; "single carrier modulation method"&nbsp; around the carrier frequency&nbsp; $f_{\rm T}$.&nbsp; First,&nbsp; a blockwise serial/parallel conversion of the bit stream and signal space assignment is performed.
 +
 +
*From each&nbsp; $b$&nbsp; binary symbols,&nbsp; two multi-level  amplitude coefficients&nbsp; $a_{{\rm I}n}$&nbsp; and&nbsp; $a_{{\rm Q}n}$&nbsp; are derived&nbsp; $($"in-phase component"&nbsp; and&nbsp; "quadrature component"$)$.&nbsp; Both coefficients can each take one of&nbsp; $M = 2^{b/2}$&nbsp; possible amplitude values.
 +
 +
*The example considered here applies to the&nbsp; $\text{16-QAM}$&nbsp; with&nbsp; $b = M = 4$&nbsp; and correspondingly sixteen&nbsp; signal space points. For a &nbsp; $\text{256-QAM}$&nbsp; would hold: &nbsp; $b = 8$&nbsp; and&nbsp; $M = 16$&nbsp; $(2^b = M^2 = 256)$.
 
   
 
   
==Grundlagen der Quadratur–Amplitudenmodulation== 
+
*The coefficients&nbsp; $a_{{\rm I}n}$&nbsp; and&nbsp; $a_{{\rm Q}n}$&nbsp; are each impressed on a Dirac delta impulse as weights.&nbsp; For pulse shaping one usually uses&nbsp; $($because of the small bandwidth$)$&nbsp; a raised-cosine filter.
  
Die folgende Grafik zeigt das Referenzmodell für QAM–ADSL, wobei wir uns hier nur mit den beiden roten Funktionsblöcken '''QAM–Modulator''' und '''QAM–Demodulator''' beschäftigen wollen.
+
*With the basic transmission pulse&nbsp; $g_s(t)$&nbsp; is then valid in the two branches of the block diagram:
 +
:$$ s_{\rm I}(t) = \sum_{n = - \infty}^{+\infty}a_{\rm
 +
I\hspace{0.03cm}\it n} \cdot g_s (t - n \cdot T)\hspace{0.05cm},\hspace{0.5cm}
 +
s_{\rm Q}(t) = \sum_{n = - \infty}^{+\infty}a_{\rm
 +
Q\hspace{0.03cm}\it n} \cdot g_s (t - n \cdot
 +
T)\hspace{0.05cm}.$$
 +
:<u>Note:</u>&nbsp; Because of the redundancy-free conversion to a higher-level code,&nbsp; the symbol duration&nbsp; $T$&nbsp; of these signals is greater by a factor&nbsp; $b$&nbsp; than the bit duration&nbsp; $T_{\rm B}$&nbsp; of the binary input sequence.&nbsp; In the drawn example&nbsp; $($16-QAM$)$,&nbsp; $T = 4 ⋅ T_{\rm B}$.
 +
*The&nbsp; &raquo;'''QAM transmitted signal'''&laquo;&nbsp; $s(t)$&nbsp; is then the sum of the two partial signals&nbsp; $ s_{\rm I}(t)$&nbsp; and&nbsp; $ s_{\rm Q}(t)$,&nbsp;  multiplied by&nbsp; "cosine"&nbsp; resp.&nbsp; "minus-sine"&nbsp;  $($possibly followed by a band limit to prevent interference to adjacent bands, as indicated in the graph below$)$:
 +
:$$s(t) = s_{\rm I}(t) \cdot \cos (2 \pi f_{\rm T}\,t) - s_{\rm Q}(t) \cdot \sin (2 \pi f_{\rm T}\,t)
 +
\hspace{0.05cm}. $$
 +
*The two branches&nbsp; $(\rm I$&nbsp; and&nbsp; $\rm Q)$&nbsp; can be considered as two completely separate&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#M.E2.80.93level_amplitude_shift_keying_.28M.E2.80.93ASK.29 |"M&ndash;level ASK systems"]]&nbsp; which do not interfere with each other as long as all components are optimally designed.&nbsp; This means at the same time: &nbsp;
  
Die Trägerfrequenz $f_T$ liegt jeweils innerhalb des spezifizierten Auf– und Abwärts–Bandes der jeweiligen xDSL–Variante. Sie wird ebenso wie die Signalraumgröße (zwischen 4 und 256 Signalraumpunkte) und die Symbolrate durch Kanalmessungen bei der Initialisierung der Übertragung festgelegt.
+
*Compared to a&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_phase_shift_keying_.28BPSK.29|"Binary Phase Shift Keying"]]&nbsp; $\rm (BPSK)$&nbsp; modulation with cosine or sine only,&nbsp; the&nbsp; '''QAM allows a doubling of the data rate at constant quality'''.
  
Für QAM–ADSL wurden folgende Symbolraten (in kBaud = 1000 Symbole/s) festgelegt:
 
*20, 40, 84, 100, 120, 136 im Upstream,
 
*40, 126, 160, 252, 336, 504, 806.4, 1008 im Downstream.
 
  
Das QAM–Prinzip wurde bereits im Kapitel 4.3 des Buches „Modulationsverfahren” ausführlich beschrieben. Hier folgt nur eine kurze Zusammenfassung anhand der folgenden Grafik bezieht:
+
[[File:EN_Bei_T_2_3_S6b.png|right|frame|Quadrature Amplitude Modulation as band-pass and equivalent low-pass model]]
  
*QAM ist ein Einträgermodulationsverfahren um die Trägerfrequenz $f_T$. Zunächst erfolgt eine blockweise Seriell–/Parallelwandlung des Bitstroms und die Signalraumzuordnung.
+
'''Equivalent low-pass model'''
*Aus jeweils $b$ Binärsymbolen werden zwei mehrstufige Amplitudenkoeffizienten $a_{In}$ und $a_{Qn}$ abgeleitet (Inphase– und Quadraturkomponente), wobei beide Koeffizienten jeweils einen von $M = 2^{b/2}$ möglichen Amplitudenwerten annehmen können.
+
 
*Das in der Grafik betrachtete Beispiel gilt für die 16–QAM mit $b$ = $M$ = 4 und dementsprechend 16 Signalraumpunkten. Bei einer 256–QAM würde $b$ = 8 und $M$ = 16 gelten ( $2^b = M^2 = 256$ ).  
+
The graph on the right shows  
*Die Koeffizienten $a_{In}$ und $a_{Qn}$ werden jeweils einem Diracpuls als Impulsgewichte eingeprägt. Nach der Impulsformung  ⇒  Sendegrundimpuls $g_s(t)$ gilt in den Zweigen des Blockschaltbilds:
+
*above the band-pass model,&nbsp; identical with the last graph,
 
   
 
   
Für die Impulsformung kommen meist Cosinus–Rolloff–Filter (geringe Bandbreite !) zum Einsatz.
+
*below the&nbsp; "equivalent low-pass model".  
*Anzumerken ist, dass wegen der redundanzfreien Umsetzung die Symboldauer $T$ dieser Signale um den Faktor $b$ größer ist als die Bitdauer $T_{\rm B}$ der binären Eingangsfolge. Im gezeichneten Beispiel (16–QAM) gilt $T = 4 · T_{\rm B}$.
+
 
*Das '''QAM–Sendesignal''' $s(t)$ ist dann die Summe der beiden mit Cosinus bzw. Minus–Sinus multiplizierten Teilsignale (möglicherweise folgt noch eine Bandbegrenzung, um Interferenzen zu benachbarten Bändern zu verhindern, siehe Grafik):
+
 
 +
Here,&nbsp; the inphase and quadrature coefficients are combined to give the complex amplitude coefficient
 +
:$$a_n = a_{\text{I}n} + {\rm j} ⋅ a_{\text{Q}n}.$$
 +
Additionally, the physical transmitted signal&nbsp; $s(t)$&nbsp; is replaced by the equivalent low-pass signal
 +
:$$s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} ⋅ s_{\rm Q}(t).$$
 +
 
 +
&rArr; &nbsp; The representation of the QAM transmitter and receiver is the content of the SWF flash animation&nbsp; [[Applets:Principle_of_QAM|"Principle of Quadrature Amplitude Modulation"]].
 +
<br clear=all>
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp;
 +
*As the bit number&nbsp; $b$&nbsp; and thus the number of defined symbols&nbsp; $(M=b^2)$&nbsp; increases,&nbsp; the bandwidth efficiency increases,&nbsp; <br>but also the signal processing overhead increases.
 
   
 
   
*Die beiden Zweige (I und Q) können wegen der Orthogonalität von Cosinus– und (Minus–) Sinus als zwei völlig getrennte $M$–stufige ASK–Systeme aufgefasst werden, die sich gegenseitig nicht stören, solange alle Komponenten optimal ausgelegt sind.
+
*In addition,&nbsp; it must be taken into account that a dense QAM allocation is appropriate only if the channel is sufficiently good.}}
*Das bedeutet gleichzeitig: Die Quadratur–Amplitudenmodulation ermöglicht gegenüber einer BPSK (Modulationnur mit Cosinus oder Sinus) eine Verdoppelung der Datenrate bei gleichbleibender Qualität.
+
 
 +
 
 +
'''Reference Model for ADSL-QAM'''
 +
 
 +
This diagram shows the reference model for&nbsp; "ADSL-QAM",&nbsp; whereby we will only deal with the red function blocks&nbsp; "QAM-Modulator"&nbsp; and&nbsp; "'QAM-Demodulator"&nbsp; here.
 +
[[File:EN_Bei_T_2_3_S5a.png|right|frame|Reference Model for ADSL-QAM]]
  
 +
*The carrier frequency $f_{\rm T}$&nbsp; lies within the specified up and down band of the respective xDSL variant.
  
Die Grafik zeigt oben das BP–Modell, unten das äquivalente TP–Modell. Man kombiniert Inphase– und Quadraturkoeffizient zum komplexen Amplitudenkoeffizienten $a_n = a_{\text{I}n} + j · a_{\text{Q}n}$ und ersetzt zusätzlich das BP–Signal $s(t)$ durch das äquivalente TP–Signal $s_{\rm TP}(t) = s_{\rm I}(t) + j · s_{\rm Q}(t)$.
+
*Like signal space size&nbsp; $($between&nbsp; $M^2=2^2=4$&nbsp; and&nbsp; $M^2=2^8=256$&nbsp; signal space points$)$&nbsp; and symbol rate, it is determined by channel measurements during transmission initialisation.
  
Die Darstellung des QAM–Senders und des hier nicht explizit aufgeführten QAM–Empfängers ist Inhalt der Flash–Animation  Prinzip der Quadratur–Amplitudenmodulation.
+
*For ADSL-QAM,&nbsp; the following symbol rates have been specified&nbsp; <br>$($all numerical values in&nbsp; "${\rm kBaud}$" $= 10^3 \rm symbols/s)$&nbsp; :
 +
:*In upstream:&nbsp; $20$, $40$, $84$, $100$, $120$, $136$;
  
 +
:*in downstream:&nbsp;$40$, $126$, $160$, $252$, $336$, $504$, $806.4$, $1008$.
  
==Mögliche QAM–Signalraumkonstellationen== 
 
  
Ein wichtiger QAM–Parameter ist die Anzahl $b$ der Bits, die zum Amplitudenkoeffizientenpaar ( $a_{\rm I}, a_{\rm Q}$ ) verarbeitet werden. Hierbei ist $b$ stets geradzahlig. Ist $b$ = 2, so kann sowohl aI als auch $a_{\m Q}$ nur die beiden Werte ±1 annehmen und es ergibt sich die '''4–QAM''' entsprechend der linken Konstellation in nachfolgender Grafik. Entsprechend einer ITU–Empfehlung gilt dabei die Zuordnung:
+
==Possible QAM signal space constellations==
 +
<br>
 +
We still consider possible arrangements of signal space points in quadrature amplitude modulation using three examples.
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp;
 +
An important QAM parameter is the bit number&nbsp; $b$&nbsp; processed to the amplitude coefficient pair&nbsp; $(a_{\rm I}, a_{\rm Q})$.&nbsp; Here&nbsp; $b$&nbsp; is always an even number.
 +
[[File:EN_Bei_T_2_3_S6a_v2.png|right|frame|Signal space constellations&nbsp; "$\rm 4\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$"&nbsp; $($left$)$&nbsp; and&nbsp; "$\rm 16\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$"&nbsp; $($right$)$]]
 +
 
 +
*If&nbsp; $b = 2$,&nbsp; both&nbsp; $a_{\rm I}$&nbsp; and&nbsp; $a_{\rm Q}$&nbsp; can only take the values&nbsp; $±1$&nbsp; resulting in the&nbsp; $\rm 4\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$&nbsp; corresponding to the left constellation.
 +
 
 +
*According to an ITU recommendation,&nbsp; the assignment applies here:
 +
:$$q_1 = 0, \ q_0 = 0 \, \Leftrightarrow \,a_{\rm I} = +1, \ a_{\rm Q} = +1,$$
 +
:$$q_1 = 0, \ q_0 = 1 \, \Leftrightarrow \, a_{\rm I} = +1, \ a_{\rm Q} = -1,$$
 +
:$$q_1 = 1, \ q_0 = 0 \, \Leftrightarrow \,a_{\rm I} = -1, \ a_{\rm Q} = +1,$$
 +
:$$q_1 = 1, \ q_0 = 1 \, \Leftrightarrow \, a_{\rm I} = -1, \ a_{\rm Q} = -1.$$
 
    
 
    
Der gelb markierte Punkt '''10''' ( $a_{\rm I}$ = –1, $a_{\rm Q}$ = 1) steht also für $q_1$ = 1, $q_0$ = 0.
+
*The point&nbsp; '''10''' &nbsp; marked in brown &nbsp;$(a_{\rm I} = -1, \ a_{\rm Q} = 1)$&nbsp; thus stands for&nbsp; $q_1 = 1$&nbsp; and&nbsp; $q_0 = 0$.
 +
 
 +
 
 +
With&nbsp; $b = 4$ &nbsp; ⇒ &nbsp; $M = 2^{b/2} = 4$&nbsp; one arrives at&nbsp; "$\rm 16\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$"&nbsp; according to the right diagram with the possible amplitude coefficients&nbsp;
 +
:$$a_{\rm I} ∈ \{±3, ±1\}, \ \ a_{\rm Q} ∈ \{±3, ±1\}.$$
 +
 
 +
*The assignment can be determined using the auxiliary graph given on the left below, as illustrated by the following numerical examples.
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; $\rm (A)$ &nbsp;&nbsp; $q_3 = 1, \ q_2 = 0, \ q_1 = 1,\ q_0 = 1$&nbsp; $($brown marker$)$:
 +
:#The two most significant bits&nbsp; $\rm (MSB)$ &nbsp; &rArr; &nbsp; "'''11'''"&nbsp; determine,&nbsp; according to the&nbsp; $\text{4-QAM}$&nbsp; diagram,&nbsp; the&nbsp; $($second$)$&nbsp; quadrant in which the symbol is located.
 +
:#The two least significant bits&nbsp; $\rm (LSB)$ &nbsp; &rArr; &nbsp; "'''10'''"&nbsp; together with the auxiliary graph determine the point within this quadrant.&nbsp; Result:&nbsp; $a_{\rm I} = -1$,&nbsp; $a_{\rm Q} = +3$.
 +
&nbsp; &nbsp; &nbsp; &nbsp; $\rm (B)$ &nbsp;&nbsp; $q_3 = 0, \ q_2 = 1, \ q_1 = 1,\ q_0 = 0$ $($green marker$)$:
 +
:#The two most significant bits &nbsp; &rArr; &nbsp; "'''01'''" &nbsp; refer here to the fourth quadrant.
 +
:#The two least significant bits &nbsp; &rArr; &nbsp; "'''10'''"&nbsp; refer to the green dot in the fourth quadrant: &nbsp; $a_{\rm I} = -3, \ a_{\rm Q} = -3$.}}
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 2:}$&nbsp; We use the same graphic as in $\text{Example 1}$.&nbsp; The decimal value&nbsp; $D$&nbsp; provides another way to label the points.
 +
[[File:EN_Bei_T_2_3_S6a_v2.png|right|frame|Signal space constellations&nbsp; "$\rm 4\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$"&nbsp; $($left$)$&nbsp; and&nbsp; "$\rm 16\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$"&nbsp; $($right$)$]]
 +
 
 +
*The brown marked point in the&nbsp; $\rm 4\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$ diagram is binary labeled&nbsp; "'''10'''"&nbsp; &nbsp; ⇒ &nbsp; decimal:&nbsp; $D = 2$.&nbsp; This point simultaneously marks the second quadrant of&nbsp; $\rm 16\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$.
 +
 
 +
*The further subdivision results from the lower left graphic.&nbsp; There at the brown dot is written&nbsp; $4D + 3=11$"&nbsp; $($decimal$)$.
 +
 
 +
*Therefore,&nbsp; the upper right dot&nbsp; $($highlighted in brown$)$&nbsp; in the upper left quadrant stands for decimal&nbsp; "$11$ &nbsp; ⇒ &nbsp; binary '''1011'''.
 +
 
 +
*For the green dot,&nbsp; $D = 1$&nbsp; gives the decimal value&nbsp; $4D + 2 =6$,$11$ which corresponds to the binary representation&nbsp; "'''0110'''"&nbsp;.
 +
<br><br><br><br>
 +
According to this scheme,&nbsp; the signal space constellations
 +
*for&nbsp; $\rm 64\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$ &nbsp; ⇒ &nbsp; $(b = 6, \ M = 8)$&nbsp;
 +
 
 +
*and&nbsp; $\rm 256-QAM$&nbsp; ⇒ &nbsp; $(b = 8, \ M = 16)$&nbsp;
 +
 
 +
 
 +
which will be discussed in detail in the&nbsp; [[Exercise_2.3:_QAM_Signal_Space_Assignment|$\text{Exercise 2.3}$]].&nbsp; }}
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 3:}$&nbsp;
 +
We still consider for the described&nbsp; $\rm 16\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$&nbsp; $($left graph,&nbsp; here referred to as&nbsp; "ITU proposal"$)$&nbsp; the resulting symbol and bit error probability in the presence of AWGN noise:
 +
#An error can be assumed to result in a horizontally or vertically adjacent symbol,&nbsp; as indicated for the upper left green dot.
 +
#The symbol error probability $p$&nbsp; depends on the Euclidean distance of the two points and the AWGN noise power density&nbsp; $N_0$.
 +
#A distortion to the more distant blue point instead of one of the two neighboring brown points is rather unlikely with Gaussian noise.
 +
[[File:EN_Bei_T_2_3_S6b_neu_v2.png|right|frame|Signal space constellation:&nbsp; "$\rm 16\hspace{0.05cm}&ndash;\hspace{-0.02cm}QAM$";&nbsp; left: ITU propsal,&nbsp; right:&nbsp; Gray encoding]]
 +
 
 +
An analysis shows:
 +
*All corner points&nbsp; $($green$)$&nbsp; can only be distorted in two directions.
 +
 
 +
*In contrast, the inner QAM points&nbsp; $($blue$)$&nbsp; have four direct neighbors.
 +
 
 +
* The remaining symbols&nbsp; $($brown$)$&nbsp;  have three  neighbors.
 +
 
 +
 
 +
For the&nbsp; &raquo;'''symbol error probability'''&laquo; &nbsp; $p_{\rm S}$&nbsp; then holds:
 +
 
 +
::$$p_{\rm S} = {1}/{16} \cdot (4 \cdot 2 p + 8 \cdot 3 p + 4 \cdot 4 p) = 3p.$$
 +
 
 +
To calculate the&nbsp; &raquo;'''bit error probability'''&laquo; &nbsp; $p_{\rm B}$&nbsp; it must now be taken into account that for the left constellation one symbol error leads
 +
* within one quadrant to only&nbsp; one bit error&nbsp; <br>$($e.g: "'''0100'''" &nbsp; ⇒ &nbsp; "'''0110'''"$)$,
 +
 +
*between adjacent quadrants to two bit errors <br>$($e.g:  "'''1111'''" &nbsp; ⇒ &nbsp; "'''0101'''"$)$.
 +
 
 +
 
 +
The computation of&nbsp; $p_{\rm B} $&nbsp; here involves some effort.
 +
 
 +
In contrast,&nbsp; with Gray encoding&nbsp;  $($right diagram$)$:
 +
# Each symbol differs from its neighbors by exactly one bit.
 +
#Each symbol error thus results in exactly one bit error.
 +
#Since each individual symbol contains four bits,&nbsp;  the&nbsp; "bit error probability" is in this case:&nbsp;
 +
 
 +
::$$p_{\rm B} =  p_{\rm S}/4  = 3/4 \cdot p. $$}}
 +
 
 +
 +
==Carrierless Amplitude Phase Modulation== 
 +
<br>
 +
"Carrierless amplitude phase modulation"&nbsp; $\rm (CAP)$&nbsp; is a bandwidth-efficient variant of QAM,&nbsp; which can be realized very easily with digital signal processors.&nbsp; The only difference to QAM is that the modulation with a carrier signal can be omitted.
 +
 
 +
[[File:EN_Bei_T_2_3_S7a.png|right|frame|Block diagram of&nbsp; "Carrierless Amplitude Phase Modulation"]]
 +
[[File:EN_Bei_T_2_3_S7d_neu.png|right|frame|Reference model for&nbsp; ADSL&ndash;CAP]]
 +
 
 +
*Digital filtering is used instead of multiplication by cosine and minus sine.&nbsp; $g_{\rm I}(t)$&nbsp; and&nbsp; $g_{\rm Q}(t)$&nbsp; are impulse responses of two transversal band-pass filters with same amplitude characteristic,&nbsp;  phase-shifted  by&nbsp; $π/2$.
 +
 +
*Both are orthogonal to each other,&nbsp; which means that the integral of the product&nbsp; $g_{\rm I}(t) · g_{\rm Q}(t)$&nbsp; over a symbol duration gives zero.
  
Mit $b = 4$ ⇒ $M = 2^{b/2} = 4$ kommt man zur '''16–QAM''' entsprechend dem rechten Diagramm mit den möglichen Amplitudenkoeffizienten $a_{\rm I}$ ∈ {±3, ±1} und $a_{\rm Q}$ ∈ {±3, ±1}. Dieses lässt sich mit Hilfe des links unten angegebenen Hilfsgrafen ermitteln, wie die nachfolgenden zwei Beispiele verdeutlichen sollen.
+
*The signals&nbsp; $s_{\rm I}(t)$&nbsp; and&nbsp; $s_{\rm Q}(t)$&nbsp; generated in this way are combined,&nbsp; converted to a continuous-time signal by a D/A converter.&nbsp;
* $q_3$ = 1, $q_2$ = 0, $q_1$ = 1, $q_0$ = 1 (gelbe Markierung). Die beiden höchstwertigen Bit (''Most Significant Bit'', MSB) '''10''' bestimmen entsprechend dem 4–QAM–Diagramm den Quadranten, in dem das Symbol liegt. Die beiden niederwertigen Bit ('''11''') legen zusammen mit dem Hilfsgrafen den Punkt innerhalb des Quadranten fest. Das Ergebnis ist $a_{\rm I}$ = –1, $a_{\rm Q}$ = +3.
+
 
*Entsprechend liefern die Eingangsbits $q_3$ = 0, $q_2$ = 1, $q_1$ = 1, $q_0$ = 0 (grüne Markierung) die Koeffizienten $a_{\rm I}$ = +3, $a_{\rm Q}$ = –3.
+
*The unwanted high-frequency components generated during D/A conversion are eliminated by a low-pass filter before transmission.
 +
 
 +
*At the receiver,&nbsp; the signal&nbsp; $r(t)$&nbsp; is first converted to a discrete-time signal using an A/D converter and then the in-phase and quadrature symbols&nbsp; $a_{\rm I}$&nbsp; and&nbsp; $a_{\rm Q}$&nbsp; are extracted via two&nbsp; "finite impulse response&nbsp; $\rm (FIR)$&nbsp; filters"&nbsp; and downstream "threshold decision".
 +
 
 +
 
 +
 
 +
CAP was the de facto standard in initial ADSL specifications until 1996.&nbsp; The graph shows the reference model.
 +
#The frequencies up to&nbsp; $\text{4 kHz}$&nbsp; were reserved for POTS/ISDN.
 +
#The up channel occupied the frequency range of&nbsp; $\text{15 - 160 kHz}$,
 +
#The down channel occupied the frequencies from&nbsp; $\text{240 - 1500 kHz}$.  
  
 
==Carrierless Amplitude Phase Modulation (CAP)== 
 
  
''Carrierless Amplitude Phase Modulation'' (CAP) ist eine bandbreiteneffiziente Variante der QAM, die sich mit digitalen Signalprozessoren sehr einfach realisieren lässt. Der Unterschied zur QAM liegt einzig darin, dass auf eine Modulation mit einem Trägersignal verzichtet werden kann.
+
One problem with CAP is that a&nbsp; "bad channel" has dramatic consequences on the transmission quality.&nbsp; Therefore,&nbsp; today (2011) ADSL-CAP is only found in a few HDSL variants.
 +
 +
==Basics of Discrete Multitone Transmission== 
 +
<br>
 +
[[File:EN_Bei_T_2_3_S8a_v8.png|right|frame|Spectra at OFDM and DMT; &nbsp; &nbsp; <u>Note:</u> &nbsp; For this graph a symmetrical rectangle is assumed. <br> &nbsp; &nbsp; A rectangle between&nbsp; $0$&nbsp; and&nbsp; $T$&nbsp; would still result in a phase term.<br> &nbsp; &nbsp; However,&nbsp; nothing would change with respect to&nbsp; $|S(f)|$.]]
 +
"Discrete Multitone Transmission"&nbsp; $\rm (DMT)$&nbsp; refers to a multicarrier modulation method that is almost identical to&nbsp; [[Modulation_Methods/General_Description_of_OFDM|"Orthogonal Frequency Division Multiplexing"]]&nbsp; $\rm (OFDM)$.&nbsp; In the case of wired transmission,&nbsp; one usually refers to&nbsp; "DMT",&nbsp; and in the case of wireless transmission,&nbsp; one refers to&nbsp; "OFDM".
  
Anstelle der Multiplikation mit Cosinus und Minus–Sinus wird hier eine digitale Filterung vorgenommen. $g_{\rm I}(t)$ und $g_{\rm Q}(t)$ sind die um $π/2$ phasenverschobenen Impulsantworten zweier transversaler Bandpassfilter mit gleicher Amplitudencharakteristik. Beide sind zueinander orthogonal, das heißt, dass das Integral des Produkts $g_{\rm I}(t) · g_{\rm Q}(t)$ über eine Symboldauer den Wert 0 ergibt.
+
In both cases,&nbsp; one divides the entire bandwidth into many narrowband equidistant subchannels.&nbsp; The respective subcarrier signals&nbsp; $s_k(t)$&nbsp; are individually impinged with complex data symbols&nbsp; $D_k$&nbsp; and the sum of the modulated subcarrier signals is transmitted as signal&nbsp; $s(t)$&nbsp;.
*Die so erzeugten Signale $s_{\rm I}(t)$ und $s_{\rm Q}(t)$ werden zusammengeführt, durch einen Digital–Analog–Wandler in ein zeitkontinuierliches Signal gewandelt und die bei der D/A–Wandlung erzeugten unerwünschten hochfrequenten Anteile vor dem Aussenden durch ein Tiefpassfilter (TP) eliminiert.
 
*Beim Empfänger wird das Signal $r(t)$ zunächst mittels A/D–Wandler in ein zeitdiskretes Signal gewandelt und anschließend werden über zwei ''Finite–Impulse–Response''–Filter (FIR–Filter) und nachgelagerte Entscheider die Inphase– und Quadratur–Symbole $a_{\rm I}$ und $a_{\rm Q}$ extrahiert.
 
  
CAP war der de–facto–Standard bei den anfänglichen ADSL–Spezifikationen bis 1996. Die Frequenzen bis 4 kHz wurden für POTS reserviert. Der CAP–ADSL–Aufwärtskanal belegte den Frequenzbereich von 25 kHz bis 160 kHz und der Abwärtskanal die Frequenzen von 240 kHz bis 1.5 MHz. Die folgende Grafik zeigt das Referenzmodell.
+
The diagram illustrates the principle of OFDM and DMT in the frequency domain,&nbsp; partly using the values specified for ADSL&ndash;DMT:
  
Ein Problem bei CAP ist, dass ein „schlechter Kanal” dramatische Folgen auf die Übertragungsqualität hat. Deshalb findet man heute (2010) CAP–ADSL nur noch bei einigen wenigen HDSL–Varianten.
+
*$255$&nbsp; Subcarriers with carrier frequencies&nbsp; $k \cdot f_0$&nbsp; $(k = 1$, ... , $255)$.
  
+
*$4000$&nbsp; data frames are transmitted per second.
==Grundlagen von DMT – Discrete Multitone Transmission== 
+
 +
*After&nbsp; $68$&nbsp; data frames,&nbsp; one synchronization frame is inserted each.
 +
 +
*Due to the&nbsp; "cyclic prefix"&nbsp; $($see chapter&nbsp; [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL#Inserting_guard_interval_and_cyclic_prefix|"Insertion of Guard&ndash;Interval and Cyclic Prefix"]]$)$&nbsp; the symbol duration&nbsp; $T = 1/f_0$&nbsp; must still be shortened by the factor&nbsp; $16/17$.
  
''Discrete Multitone Transmission'' (DMT) bezeichnet ein Mehrträgermodulationsverfahren, das nahezu identisch mit Orthogonal Frequency Division Multiplexing (OFDM) ist. Bei leitungsgebundener Übertragung spricht man meist von „DMT”, bei drahtloser Übertragung von „OFDM”.
+
*Thus,&nbsp; the&nbsp; &raquo;'''basic frequency'''&laquo;&nbsp; of DMT is&nbsp;
In beiden Fällen unterteilt man die gesamte Bandbreite in eine große Anzahl schmalbandiger äquidistanter Subkanäle. Die jeweiligen Subträgersignale $s_k(t)$ werden individuell mit komplexen Datensymbolen $D_k$ beaufschlagt und die Summe der modulierten Subträgersignale wird als Sendesignal $s(t)$ übertragen.
+
:$$f_0 = 4 \cdot (69/68) \cdot (69/68) = 4.3125 \ \rm kHz.$$  
  
Die Grafik verdeutlicht das Prinzip von OFDM und DMT im Frequenzbereich, wobei teilweise die für ADSL/DMT spezifizierten Werte verwendet sind:
 
*255 Subträger mit den Trägerfrequenzen $k · f_0$ ( $k$ = 1, ... , 255 ),
 
*Grundfrequenz $f_0$ = 4.3125 kHz, da 4000 Datenrahmen pro Sekunde übertragen werden, nach 68 Datenrahmen ein Synchronisationsrahmen eingefügt wird und aufgrund des zyklischen Präfix (siehe Kapitel 2.4) die Symboldauer $T = 1/f_0$ noch um den Faktor 16/17 verkürzt werden muss.
 
  
 +
An essential difference between OFDM and DMT is that
 +
*in OFDM,&nbsp; the above drawn spectrum&nbsp; $S(f)$&nbsp; in reality describes an&nbsp; "equivalent low-pass spectrum"&nbsp; $S_{\rm TP}(f)$&nbsp; and still the shift around a carrier frequency&nbsp; $f_{\rm T}$&nbsp; has to be considered:
  
Ein wesentlicher Unterschied zwischen OFDM und DMT besteht darin, dass
+
:$$S_{\rm TP}(f ) = \sum_{k = 1}^{255} D_k \cdot \delta (f - k \cdot f_0)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
*bei OFDM das dargestellte Spektrum $S(f)$ in Wirklichkeit ein äquivalentes Tiefpass-Spektrum $S_{\rm TP}(f)$ beschreibt und noch die Verschiebung um eine Trägerfrequenz $f_{\rm T}$ zu berücksichtigen ist:
+
S(f) = \frac{1}{2} \big [ S_{\rm TP}(f - f_{\rm T}) + S^*_{\rm TP}(-(f + f_{\rm T}))\big ]
 +
\hspace{0.05cm};$$
 
   
 
   
*bei DMT dagegen noch die Anteile bei negativen Frequenzen berücksichtigt werden müssen, die mit den konjugiert–komplexen Spektralkoeffizienten zu gewichten sind:
+
*in DMT,&nbsp; on the other hand,&nbsp; the components at negative frequencies must still be taken into account,&nbsp; which are to be weighted with the conjugate-complex spectral coefficients:
 +
 
 +
:$$S(f ) = \sum_{k = 1}^{255}  \big [ D_k \cdot \delta (f - k \cdot f_0) + D^*_k \cdot \delta (f + k \cdot f_0) \big ]
 +
\hspace{0.05cm}.$$
 
    
 
    
 +
{{BlaueBox|TEXT=
 +
$\text{Please note:}$&nbsp;
 +
#According to these equations,&nbsp; the complex OFDM signal&nbsp; $s_{\rm OFDM}(t)$&nbsp; consists of&nbsp; $K = 255$&nbsp; complex exponential oscillations.
 +
#The DMT signal&nbsp; $s_{\rm DMT}(t)$&nbsp; is composed of as many cosine oscillations with frequencies&nbsp; $k \cdot f_0$&nbsp; $($full occupancy presupposed$)$.
 +
#Despite complex coefficients&nbsp; $D_k$ resulting from QAM occupancy of the carriers,&nbsp; the DMT signal is always real <br>because of the conjugate-complex complements  at negative frequencies.}}
  
Nach den Gleichungen der letzten Seite besteht das komplexe OFDM–Signal $s_{\rm OFDM}(t)$ aus $K$ = 255 komplexen Exponentialschwingungen. Das DMT–Signal $s_{\rm DMT}(t)$ setzt sich aus ebenso vielen Cosinusschwingungen mit Frequenzen $k · f_0$ zusammen (volle Belegung voausgesetzt). Trotz komplexer Koeffizienten $D_k$, die sich bei QAM–Belegung der Träger ergeben, ist das DMT–Signal wegen der konjugiert–komplexen Ergänzungen bei negativen Frequenzen stets reell.
 
Sowohl bei OFDM als auch bei der DMT ist allerdings das Sendesignal $s(t)$ zeitlich genau auf die Symboldauer $T = 1/f_0 ≈ 232 {\rm μs}$ begrenzt, was mathematisch der Multiplikation mit einem Rechteck der Dauer $T$ bedeutet. Im Spektralbereich entspricht dies der Faltung mit einer Spaltfunktion $\text{si}(πfT)$:
 
*Aus jeder Diracfunktion bei $k · f_0$ wird somit bei Berücksichtigung der zeitlichen Begrenzung eine si–Funktion an gleicher Stelle, wie im unteren Diagramm dargestellt.
 
*Benachbarte Subträgerspektren überlappen sich zwar auf der Frequenzachse, aber bei $k · f_0$ sind wieder die Koeffizienten $D_k$ zu erkennen, da alle anderen Spektren hier Nullstellen aufweisen.
 
*Für die untere Grafik ist ein symmetrisches Rechteck angenommen. Ein Rechteck zwischen 0 und $T$ hätte noch einen Phasenterm zur Folge. Es würde sich aber nichts bezüglich $|S(f)|$ ändern.
 
  
 +
However,&nbsp; in both OFDM and DMT,&nbsp; the transmitted signal&nbsp; $s(t)$&nbsp; is precisely limited in time to the symbol duration&nbsp; $T = 1/f_0 ≈ 232 \ {\rm &micro;s}$&nbsp; which is equivalent to multiplying by a rectangle of duration $T$.&nbsp;  In the spectral domain,&nbsp; this corresponds to convolution with the function&nbsp; $\text{sinc}(fT)$:
 +
*Each Dirac delta function at&nbsp; $k · f_0$&nbsp; thus becomes an sinc&ndash; function at the same position,&nbsp; given the time limit,&nbsp; as shown in the second diagram of the graph above.
  
Geht man von den für den ADSL–Downstream günstigen Voraussetzungen aus, nämlich dass
+
*Adjacent subcarrier spectra overlap on the frequency axis,&nbsp; but exactly at&nbsp; $k · f_0$&nbsp; the coefficients&nbsp; $D_k$&nbsp; can be seen again,&nbsp; since all other spectra have zeros here.
*pro Sekunde 4000 Rahmen übertragen werden,
 
*stets alle Subträger aktiv sind ( $K$ = 255 ),
 
*jeder Träger mit einer 1024–QAM ( $b$ = 10, laut ITU 8 ≤ $b$ ≤ 15 ) belegt ist, und
 
*ideale Bedingungen herrschen, so dass die in der Grafik erkennbare Orthogonalität erhalten bleibt,
 
  
so ergibt sich für die maximale Daten(bit)rate $R_{\rm B,max}$ = 4000 · $K$ · $b$ ≈ 10 Mbit/s. Spezifiziert ist der ADSL–Downstream allerdings nur mit 2 Mbit/s (Aussparung der 64 untersten Träger wegen ISDN und Upstream, QAM–Belegung der stark gedämpften Träger mit weniger als 10 Bit, Berücksichtigung des zyklischen Präfix sowie einige betriebsbedingte Gründe).
+
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 4:}$&nbsp;
 +
Assuming the conditions favorable for ADSL downstream,&nbsp; viz.
 +
#$4000$ frames are transmitted per second.
 +
#All subcarriers are active at all times&nbsp; $(K = 255)$.
 +
#Each carrier is occupied with a 1024-QAM&nbsp; $(b = 10)$;&nbsp; according to ITU:&nbsp; $8 ≤ b ≤ 15$.
 +
#Ideal conditions prevail,&nbsp; so that the orthogonality evident in the graph is preserved,
 +
 
 +
 
 +
then for the&nbsp; &raquo;'''maximum bit rate'''&laquo;&nbsp;
 +
:$$R_{\rm B,\ max} = 4000 · K · b ≈ 10 \ \rm Mbit/s.$$
 +
 
 +
However,&nbsp; specified ADSL downstream is only&nbsp; $2 \ \rm Mbit/s$&nbsp; due to
 +
*the omission of the&nbsp; $64$&nbsp; lowest carriers because of ISDN and upstream,
 +
 +
*the QAM occupancy of the heavily attenuated carriers with less than&nbsp; $10$&nbsp; bits,&nbsp; and
 +
 
 +
*the consideration of the cyclic prefix,&nbsp; and some operational reasons.}}
 
 
 
 
  
==DMT–Realisierung mit IDFT/DFT==   
+
==DMT realization with IDFT/DFT==   
 +
<br>
 +
The upper graph shows the complete DMT system.&nbsp; For now we will focus on the two red blocks.&nbsp; The blue blocks will be covered in the [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL|"next chapter"]].&nbsp;  Simplified,&nbsp; the transmitter and receiver can be represented as shown in the second  graph:
 +
 
 +
[[File:EN_Bei_T_2_3_S9d_ganz_neuV8.png|right|frame|Discrete multitone transmission system]]
 +
[[File:EN_Bei_T_2_3_S9d_60Prozent.png|right|frame|DMT transmitter and receiver ]]
 +
 
 +
 
 +
*To perform a DMT modulation,&nbsp; the transmitter accumulates a block of input bits in a data buffer to be transmitted as one frame.
 +
 
 +
*The QAM encoder supplies per frame the complex-valued data symbols&nbsp; $D_1$,&nbsp; ... ,&nbsp; $D_{255}$,&nbsp; which  is expanded to the vector&nbsp; $\mathbf{D}$&nbsp; of length&nbsp; $512$&nbsp; by
 +
# &nbsp; $D_0 = D_{256} = 0$,
 +
# &nbsp; $D_k = D^\star_{512-k} \ (k = 257,$ ... , $511)$, 
 +
# &nbsp; the coefficients &nbsp; $D_{257}$, ... , $D_{511}$&nbsp; are identical to&nbsp; $D_{-255}$, ... , $D_{-1}$<br>$($as consequence of&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Finite_signal_representation|"finite signals"]]&nbsp; properties$)$.
 +
*The spectral samples&nbsp; $\mathbf{D}$&nbsp; are transformed with the&nbsp;[[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Inverse_discrete_Fourier_transform|"Inverse Discrete Fourier Transform"]]&nbsp;  to the vector&nbsp; $\mathbf{s}$&nbsp; of time signal samples, also with length $512$. Because of the conjugate-complex assignment in the spectral domain &nbsp; &rArr; &nbsp; $\text{Im}[\mathbf{s}] = 0$.
 +
 
 +
*After parallel/serial and digital/analog conversion and low-pass filtering of&nbsp; $\text{Re}[\mathbf{s}]$&nbsp; the physical&nbsp; $($real$)$&nbsp; as well as continuous-time transmitted signal&nbsp; $s(t)$&nbsp; results.
  
Die folgende Grafik zeigt das DMT–Gesamtsystem, wobei wir uns zunächst auf die beiden roten Blöcke konzentrieren. Die blauen Blöcke werden im Kapitel 2.4 behandelt.
+
*For this,&nbsp; in the range&nbsp; $0 ≤ t ≤ T$&nbsp; $($factor&nbsp; $2$,&nbsp; since two coefficients each contribute to cosine/sine$)$:
  
In vereinfachter Form lassen sich Sender und Empfänger wie in der unteren Grafik darstellen:
+
:$$s(t) = \sum_{k = 1}^{255} \big [ 2 \cdot{\rm Re}\{D_k\} \cdot \cos(2\pi  k f_0  t ) - 2 \cdot{\rm Im}\{D_k\} \cdot \sin(2\pi  k f_0  t )\big ] \hspace{0.05cm}. $$
*Zur Durchführung der DMT–Modulation wird beim Sender ein Block an Eingangsbits in einem Datenpuffer angesammelt, der als ein Rahmen übertragen werden soll.
 
*Der QAM–Coder liefert pro Rahmen die komplexwertigen Datensymbole $D_1, ... , D_{255}$, die mit $D_0 = D_{256} = 0$ sowie $D_k = D_{512}–k∗ (k = 257, ... , 511)$ zum Vektor $\mathbf{D}$ der Länge 512 erweitert wird. Als Konsequenz finiter Signale sind $D_{257}, ... , D_{511}$ identisch mit $D_{–255}, ... , D_{–1}$.
 
*Die Spektralabtastwerte $\mathbf{D}$ werden mittels der Inversen Diskreten Fouriertransformation (IDFT) in den Vektor $\mathbf{s}$ der Zeitsignalabtastwerte umgerechnet, ebenfalls mit Länge 512. Wegen der konjugiert–komplexen Belegung im Spektralbereich ist $\text{Im}\{\mathbf{s}\}$ = 0.
 
*Nach Parallel/Seriell– und Digital/Analog–Wandlung und Tiefpassfilterung von $\text{Re}\{\mathbf{s}\}$ ergibt sich das physikalische und damit reelle sowie zeitkontinuierliche Sendesignal $s(t)$. Für dieses gilt im Bereich 0 ≤ $t$ ≤ $T$ (Faktor 2, da jeweils zwei Koeffizienten zu Cosinus/Sinus beitragen):
 
 
   
 
   
*Das Empfangssignal bei Übertragung über den AWGN–Kanal ist $r(t) = s(t) + n(t)$. Nach A/D– und S/P–Wandlung kann $r(t)$ durch den (reellen) Vektor $\mathbf{r}$ ausgedrückt werden. Die Diskrete Fouriertransformation (DFT) liefert dann Schätzwerte für die gesendeten Spektralkoeffizienten.
+
*The received signal at the AWGN output is&nbsp; $r(t) = s(t) + n(t)$.&nbsp; After A/D and S/P conversion,&nbsp; $r(t)$&nbsp; can be expressed by the (real) vector&nbsp; $\mathbf{r}$&nbsp;. The&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#From_the_continuous_to_the_discrete_Fourier_transform|"Discrete Fourier Transform"]]&nbsp; then provides estimates for the transmitted spectral coefficients.
 +
<br clear=all>
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 5:}$&nbsp;
 +
As an example, let's consider the ADSL/DMT downstream.
 +
[[File:EN_Bei_T_2_3_S10_neu.png|right|frame|Allocation of the DMT frequency band with QAM coefficients]]
 +
*In the upper left graph on the right you can see the amounts&nbsp; $\vert D_k\vert $&nbsp; of the occupied subchannels&nbsp; $64$, ... , $255$.&nbsp; The carriers&nbsp; $0$, ... , $63$&nbsp; for the reserved frequency range of ISDN and upstream are set to zero.
 +
 
 +
*Next to it on the right are the spectral coefficients &nbsp; $D_{64}$, ... , $D_{255}$ &nbsp; are shown in the complex plane,&nbsp: where the signal space is chosen very large.
 +
 
 +
*The graph on the left shows the transmitted signal&nbsp; $s(t)$&nbsp; for the frame duration &nbsp; $T = {1}/{f_0} ≈ 232 \ \rm &micro;s$,&nbsp; which is obtained by low-pass filtering the IDFT values&nbsp; $s_0$, ... , $s_{511}$&nbsp; results. This useful signal looks almost like noise.
 +
<br>
 +
[[File:P_ID1953__Bei_T_2_3_S10b_v1.png|left|frame|Transmitted signal with above DMT allocation]]
 +
<br><br><br><br><br><br><br><br>
 +
It can be seen:
 +
 
 +
#Main problem of DMT is the unfavorable Crest factor &nbsp; &rArr; &nbsp; ratio of maximum value&nbsp; $s_{\rm max}$&nbsp; and rms value&nbsp; $s_{\rm eff}$.
 +
#The large dynamic range visible in the exemplary signal curve places high demands on the amplifier's linearity.
 +
#When the dynamic range is limited,&nbsp; the peaks of&nbsp; $s(t)$&nbsp; are cut off.
 +
#This acts as a pulse-like disturbance and an additional noise load to the system.}}
  
 
Betrachten wir als Beispiel den ADSL/DMT–Downstream. In der linken Grafik erkennt man die Beträge $|D_k|$ der belegten Subkanäle 64, ... , 255. Die Träger 0, ... , 63 für den reservierten Frequenzbereich von ISDN und Upstream sind auf 0 gesetzt. Rechts daneben sind die Spektralkoeffizienten $D_{64}, ... , D_{255}$ in der komplexen Zahlenebene dargestellt, wobei der Signalraum sehr groß gewählt ist.
 
  
Die untere Grafik zeigt das Sendesignal $s(t)$ für die Rahmendauer $T$ = $\frac{1}{f_0}$ ≈ 232 μs, das sich durch TP–Filterung der IDFT–Werte $s_0, ... , s_{511}$ ergibt. Dieses Nutzsignal sieht nahezu aus wie Rauschen.
+
{{BlaueBox|TEXT=
 +
$\text{Summarizing:}$&nbsp;
 +
*Discrete Multitone Transmission&nbsp; $\rm (DMT)$&nbsp; is basically the parallel implementation of many narrowband QAM modems with different carriers and relatively low data transmission rates.&nbsp;
  
Das Hauptproblem des DMT–Verfahrens ist der ungünstige Crestfaktor  ⇒  Verhältnis von Maximalwert $s_{\rm max}$ und dem Effektivwert $s_{\rm eff}$ (Wurzel aus der mittleren Leistung) an. Der im beispielhaften Signalverlauf erkennbare große Dynamikbereich stellt hohe Anforderungen an die Linearität der Verstärker. Bei Begrenzung des Aussteuerbereichs werden die Spitzen von $s(t)$ abgeschnitten, was wie eine Impulsstörung wirkt und eine zusätzliche Rauschbelastung für das System darstellt.
+
*The low bandwidth per subcarrier allows a long symbol duration,&nbsp; thus reducing the influence of intersymbol interference and reducing the development effort for equalization.
  
Zusammenfassend lässt sich sagen:
+
*A major reason for the DMT success is its technical ease of implementation.&nbsp; IDFT and DFT are formed with digital signal processors in real time.&nbsp; The vectors have the length&nbsp; $512$&nbsp; $($power of two$)$.&nbsp; Therefore the particularly fast FFT algorithm&nbsp; $($"Fast Fourier Transformation"$)$&nbsp; can be applied.}}
*DMT ist im Prinzip die parallele Realisierung vieler schmalbandiger QAM–Modems mit unterschiedlichen Trägern und verhältnismäßig geringen Datenübertragungsraten.
 
*Die geringe Bandbreite pro Subträger ermöglicht eine lange Symboldauer, vermindert somit den Einfluss von Intersymbolinterferenzen und verringert den Entwicklungsaufwands für Entzerrer.
 
*Ein wesentlicher Grund für den Erfolg von DMT ist die technisch einfache Realisierung. IDFT und DFT werden mit digitalen Signalprozessoren (DSP) in Echtzeit gebildet.
 
*Da die Vektoren die Länge 512 (Zweierpotenz) besitzen, kann hierfür der besonders schnelle FFT–Algorithmus (''Fast Fourier Transformation'') angewendet werden.
 
  
 
 
 
 
==Aufgaben zu Kapitel 2.3 ==
+
==Exercises for the chapter ==
 +
 
 +
[[Exercise_2.3:_QAM_Signal_Space_Assignment|Exercise 2.3: QAM Signal Space Assignment]]
 +
 
 +
[[Exercise_2.3Z:_xDSL_Frequency_Band|Exercise 2.3Z: xDSL Frequency Band]]
  
 +
[[Exercise_2.4:_DSL/DMT_with_IDFT/DFT|Exercise 2.4: DSL/DMT with IDFT/DFT]]
  
 +
[[Exercise_2.4Z:_Repetition_to_IDFT|Exercise 2.4Z: Repetition to IDFT]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:05, 24 April 2023


Possible bandwidth allocations for xDSL


The xDSL specifications give operators a great deal of freedom with regard to allocation.

For the necessary directional separation of the xDSL signal transmission according to

  • the downstream direction from the provider to the customer  $($with the highest possible data rate$)$,
  • the upstream direction from the customer to the provider  $($with mostly lower data rate$)$,


two variants have been standardized for this purpose:

$\text{Definition:}$ 

  • With the  »frequency separation method«  the data streams for the two directions are transmitted in two separate frequency bands with the advantage that a simple filter is sufficient to separate the transmission directions,  which simplifies the technical implementation.
  • With the  »frequency uniform position method«  the spectra of upstream and downstream overlap in a certain part.  The separation is done here with help of an echo cancellation circuit.  Advantages of this method:  The lower bandwidth requirement at higher  $($and thus more attenuated$)$  frequencies and longer range.


"Frequency separation method"  &  "Frequency uniform position method"

The graph compares these two options.  Basically,  the specifications leave it up to the developers/operators to decide,

  • to operate xDSL alone on the subscriber line,  or
  • to allow mixed operation of xDSL with the telephone services  $\rm POTS$  $($"Plain Old Telephone Service"$)$  or  $\rm ISDN$  $($"Integrated Services Digital Network"$)$,  and
  • thus to exclude or also occupy the lower frequency range occupied by the two telephone services for xDSL.


ADSL bandwidth allocation


Since it is technically much easier to realise, the decision in Germany for "ADSL" and "ADSL2+" was in favour of

ADSL bandwidth allocation in Germany and most of other European countries
  • of the  "frequency separation method",  and
  • the general reservation of the lower frequency range for ISDN.


The  "frequency uniform position method"  is still used in some cases,  but rather rarely.

The bandwidth available for DSL is not further decomposed for the transmission methods

  • $\rm QAM$  $($"Quadrature Amplitude Modulation"$)$  and
  • $\rm CAP$  $($"Carrierless Amplitude Phase Modulation$)$.


In contrast,  with the multicarrier method  $\rm DMT$  $($"Discrete Multitone Transmission"$),$  the uplink and the downlink channel are divided into  $N_{\rm Up}$  resp.  $N_{\rm Down}$  bins of  $4.3125\rm \ kHz $  each.


In addition to the above graph, it should be noted:

  1. Phone services  $($POTS or ISDN$)$  and xDSL are in different frequency bands,  which minimizes mutual interference in the trunk cable.  Thus,  the stronger signal ISDN does not interfere with the parallel running xDSL and vice versa.
  2. The lower frequency range up to  $\text{120 kHz}$  has been reserved for ISDN  $($optionally POTS$)$.  This value results from the first zero of the  "ISDN spectrum with 4B3T coding".  Above $\text{120 kHz}$  the ISDN spectrum is completely suppressed.
  3. To separate the telephone and xDSL signals,  a  "splitter"  is used at both ends of the two-wire line,  which includes one low-pass filter and one high-pass filter each and also takes into account the following frequency gap up to  $\text{138 kHz}$.
  4. After this occupancy gap follows the ADSL upstream band from  $\text{138 kHz}$  to $\text{276 kHz}$.  This allows the transmission of  $N_{\rm Up} = 32$  subcarriers with bandwidth  $\text{4.3125 kHz}$  each.  This value is derived from the frame transmission rate.
  5. The subsequent downstream range extends to  $\text{1104 kHz}$  for ADSL,  with which  $N_{\rm Down} = 256$  subcarriers can be realized.  The separation of the upstream and the downstream channel in xDSL is done by a band-pass filter in the modem.
  6. However,  the first  $64$  subcarriers  $($this corresponds to $\text{276 kHz)}$  must not be occupied.  With the  "frequency uniform position method"  only  $32$  subcarriers would have to be left out,  taking into account that the separation of uplink and downlink requires a more complex implementation.
  7. For  ADSL2+,  the system bandwidth is  $\text{2208 kHz}$   ⇒   $N_{\rm Down} = 512$  subcarriers.  The number of bins to be spared remains unchanged compared to ADSL.  Taking into account that two bins are occupied by control functions  $($e.g. for synchronization$)$,  $190$  $($ADSL$)$  or  $446$  $($ADSL2+$)$ downstream channels remain for users.
  8. The ISDN reservation prescribed in Germany,  however,  has the consequence for xDSL that the low frequencies,  which are by far the least attenuated in a copper line and would therefore actually be the most suitable,  cannot be used.
  9. Further,  from the frequency arrangement,  it can be seen that the downstream bins are more attenuated than the upstream bins  $($higher frequencies$)$  and consequently have a smaller signal-to-noise ratio  $($SNR$)$.
  10. The decision  "upstream below downstream"  is related to the fact that the loss of downstream channels has only a comparatively small impact on the transmission rate.  In the upstream,  such a failure would be much more noticeable in percentage terms.


VDSL(2) bandwidth allocation


The ITU has defined several profiles for  "VDSL(2)".  At the time of writing this chapter  (2010),  the frequency band assignment specified in the graphic applies to the systems deployed in Germany in accordance with the ITU's  $\text{ VDSL(2) Plan 998b - Profile 17a (Annex B)}$.  The (slightly) lighter coloring at the higher frequencies is meant to indicate that these channels are more attenuated.

Without claiming to be exhaustive, this allocation plan can be characterized as follows:

VDSL(2) bandwidth allocation in Germany



  1. To achieve higher bit rates,  eight times as many bins are used here as in  "ADSL2+".
  2. Thus,  the bandwidth enables  $8 \cdot \text{2208 MHz = 17664 MHz}$,  transmission rates of up to  $\text{100 Mbit/s}$  $($depending on cable length and conditions$)$.
  3. The same as in ADSL,  the frequency bands for the upstream subchannels are always arranged at the lower frequencies,  since the greater cable attenuation  has a greater percentage influence on the bit rate for upstream than for downstream.
  4. In VDSL(2),  the  "frequency separation method"  is always used.  Overlapping of the upstream and downstream frequency bands is categorically excluded in the ITU specification .
  5. In the VDSL systems,  the lower frequencies are reserved for ISDN.  This is followed by alternating ranges for upstream and downstream.  From the specified limits,  one can recognize the narrower upstream ranges,  compared to the downstream.
  6. You can see an alternating arrangement of upstream and downstream areas.  One reason is that with this wide spectrum it should be avoided that one direction  $($e.g. downstream$)$  is assigned only strongly attenuated  $($high$)$  frequencies.


The VDSL(2) specification provides for allocation plans up to system bandwidths of  $\text{30 MHz}$  $($according to profile 30a$)$.

  • This should enable transmission rates up to about  $\text{ 200 Mbit/s}$  over short distances.
  • For this purpose, the bandwidth of the individual subchannels is also doubled compared to ADSL to  $\text{8.625 kHz}$ .


Overview of xDSL transmission methods


At the beginning of the various standardization procedures for the individual xDSL variants,  different transmission methods were defined as a basis:

  1. "Quadrature Amplitude Modulation"  $\text{QAM}$  for  "QAM-ADSL"  and  "QAM-VDSL",
  2. "Carrierless Amplitude Phase Modulation"  $\text{CAP}$  for  "CAP-HDSL"  and  "CAP-ADSL",
  3. "Discrete Multitone Transmission"  $\text{DMT}$  for  "ADSL",  "ADSL2",  "ADSL2+",  "VDSL"  and",  "VDSL2".


With increasing market demand for higher transmission rates and the associated requirements, two main  suitable processes crystallized,  namely  "QAM/CAP"  and  "DMT".

Since the manufacturers were unable to agree on a common standard from 1997 to 2003,  also for patent reasons  $($one even speaks of  "line code wars"  in this context$)$,  the two competing methods coexisted for a long time.  At the so-called  "DSL Olympics"  in 2003,  the decision was finally made in favor of DMT,

  • on the one hand,  because of the slightly better  "performance"  in general,
  • but in particular because of its higher robustness against narrowband interference;
    especially for the USA  $($many overhead telephone lines and related problems with coupled radio signals$)$  this argument played a major role.


First,  however,  the systems  "QAM-xDSL"  and  "CAP-xDSL"  will be considered very briefly.


Basics of Quadrature Amplitude Modulation


The principle has already been described in detail in the chapter  "Quadrature Amplitude Modation"  of the book  "Modulation Methods". 

Linear modulator with  $\rm I$ and  $\rm Q$–components;  signal space for  $\text{16-QAM}$

Here follows short summary on the basis of the block diagram on the right:

  • QAM is a  "single carrier modulation method"  around the carrier frequency  $f_{\rm T}$.  First,  a blockwise serial/parallel conversion of the bit stream and signal space assignment is performed.
  • From each  $b$  binary symbols,  two multi-level amplitude coefficients  $a_{{\rm I}n}$  and  $a_{{\rm Q}n}$  are derived  $($"in-phase component"  and  "quadrature component"$)$.  Both coefficients can each take one of  $M = 2^{b/2}$  possible amplitude values.
  • The example considered here applies to the  $\text{16-QAM}$  with  $b = M = 4$  and correspondingly sixteen  signal space points. For a   $\text{256-QAM}$  would hold:   $b = 8$  and  $M = 16$  $(2^b = M^2 = 256)$.
  • The coefficients  $a_{{\rm I}n}$  and  $a_{{\rm Q}n}$  are each impressed on a Dirac delta impulse as weights.  For pulse shaping one usually uses  $($because of the small bandwidth$)$  a raised-cosine filter.
  • With the basic transmission pulse  $g_s(t)$  is then valid in the two branches of the block diagram:
$$ s_{\rm I}(t) = \sum_{n = - \infty}^{+\infty}a_{\rm I\hspace{0.03cm}\it n} \cdot g_s (t - n \cdot T)\hspace{0.05cm},\hspace{0.5cm} s_{\rm Q}(t) = \sum_{n = - \infty}^{+\infty}a_{\rm Q\hspace{0.03cm}\it n} \cdot g_s (t - n \cdot T)\hspace{0.05cm}.$$
Note:  Because of the redundancy-free conversion to a higher-level code,  the symbol duration  $T$  of these signals is greater by a factor  $b$  than the bit duration  $T_{\rm B}$  of the binary input sequence.  In the drawn example  $($16-QAM$)$,  $T = 4 ⋅ T_{\rm B}$.
  • The  »QAM transmitted signal«  $s(t)$  is then the sum of the two partial signals  $ s_{\rm I}(t)$  and  $ s_{\rm Q}(t)$,  multiplied by  "cosine"  resp.  "minus-sine"  $($possibly followed by a band limit to prevent interference to adjacent bands, as indicated in the graph below$)$:
$$s(t) = s_{\rm I}(t) \cdot \cos (2 \pi f_{\rm T}\,t) - s_{\rm Q}(t) \cdot \sin (2 \pi f_{\rm T}\,t) \hspace{0.05cm}. $$
  • The two branches  $(\rm I$  and  $\rm Q)$  can be considered as two completely separate  "M–level ASK systems"  which do not interfere with each other as long as all components are optimally designed.  This means at the same time:  
  • Compared to a  "Binary Phase Shift Keying"  $\rm (BPSK)$  modulation with cosine or sine only,  the  QAM allows a doubling of the data rate at constant quality.


Quadrature Amplitude Modulation as band-pass and equivalent low-pass model

Equivalent low-pass model

The graph on the right shows

  • above the band-pass model,  identical with the last graph,
  • below the  "equivalent low-pass model".


Here,  the inphase and quadrature coefficients are combined to give the complex amplitude coefficient

$$a_n = a_{\text{I}n} + {\rm j} ⋅ a_{\text{Q}n}.$$

Additionally, the physical transmitted signal  $s(t)$  is replaced by the equivalent low-pass signal

$$s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} ⋅ s_{\rm Q}(t).$$

⇒   The representation of the QAM transmitter and receiver is the content of the SWF flash animation  "Principle of Quadrature Amplitude Modulation".

$\text{Conclusion:}$ 

  • As the bit number  $b$  and thus the number of defined symbols  $(M=b^2)$  increases,  the bandwidth efficiency increases, 
    but also the signal processing overhead increases.
  • In addition,  it must be taken into account that a dense QAM allocation is appropriate only if the channel is sufficiently good.


Reference Model for ADSL-QAM

This diagram shows the reference model for  "ADSL-QAM",  whereby we will only deal with the red function blocks  "QAM-Modulator"  and  "'QAM-Demodulator"  here.

Reference Model for ADSL-QAM
  • The carrier frequency $f_{\rm T}$  lies within the specified up and down band of the respective xDSL variant.
  • Like signal space size  $($between  $M^2=2^2=4$  and  $M^2=2^8=256$  signal space points$)$  and symbol rate, it is determined by channel measurements during transmission initialisation.
  • For ADSL-QAM,  the following symbol rates have been specified 
    $($all numerical values in  "${\rm kBaud}$" $= 10^3 \rm symbols/s)$  :
  • In upstream:  $20$, $40$, $84$, $100$, $120$, $136$;
  • in downstream: $40$, $126$, $160$, $252$, $336$, $504$, $806.4$, $1008$.


Possible QAM signal space constellations


We still consider possible arrangements of signal space points in quadrature amplitude modulation using three examples.

$\text{Example 1:}$  An important QAM parameter is the bit number  $b$  processed to the amplitude coefficient pair  $(a_{\rm I}, a_{\rm Q})$.  Here  $b$  is always an even number.

Signal space constellations  "$\rm 4\hspace{0.05cm}–\hspace{-0.02cm}QAM$"  $($left$)$  and  "$\rm 16\hspace{0.05cm}–\hspace{-0.02cm}QAM$"  $($right$)$
  • If  $b = 2$,  both  $a_{\rm I}$  and  $a_{\rm Q}$  can only take the values  $±1$  resulting in the  $\rm 4\hspace{0.05cm}–\hspace{-0.02cm}QAM$  corresponding to the left constellation.
  • According to an ITU recommendation,  the assignment applies here:
$$q_1 = 0, \ q_0 = 0 \, \Leftrightarrow \,a_{\rm I} = +1, \ a_{\rm Q} = +1,$$
$$q_1 = 0, \ q_0 = 1 \, \Leftrightarrow \, a_{\rm I} = +1, \ a_{\rm Q} = -1,$$
$$q_1 = 1, \ q_0 = 0 \, \Leftrightarrow \,a_{\rm I} = -1, \ a_{\rm Q} = +1,$$
$$q_1 = 1, \ q_0 = 1 \, \Leftrightarrow \, a_{\rm I} = -1, \ a_{\rm Q} = -1.$$
  • The point  10   marked in brown  $(a_{\rm I} = -1, \ a_{\rm Q} = 1)$  thus stands for  $q_1 = 1$  and  $q_0 = 0$.


With  $b = 4$   ⇒   $M = 2^{b/2} = 4$  one arrives at  "$\rm 16\hspace{0.05cm}–\hspace{-0.02cm}QAM$"  according to the right diagram with the possible amplitude coefficients 

$$a_{\rm I} ∈ \{±3, ±1\}, \ \ a_{\rm Q} ∈ \{±3, ±1\}.$$
  • The assignment can be determined using the auxiliary graph given on the left below, as illustrated by the following numerical examples.

        $\rm (A)$    $q_3 = 1, \ q_2 = 0, \ q_1 = 1,\ q_0 = 1$  $($brown marker$)$:

  1. The two most significant bits  $\rm (MSB)$   ⇒   "11"  determine,  according to the  $\text{4-QAM}$  diagram,  the  $($second$)$  quadrant in which the symbol is located.
  2. The two least significant bits  $\rm (LSB)$   ⇒   "10"  together with the auxiliary graph determine the point within this quadrant.  Result:  $a_{\rm I} = -1$,  $a_{\rm Q} = +3$.

        $\rm (B)$    $q_3 = 0, \ q_2 = 1, \ q_1 = 1,\ q_0 = 0$ $($green marker$)$:

  1. The two most significant bits   ⇒   "01"   refer here to the fourth quadrant.
  2. The two least significant bits   ⇒   "10"  refer to the green dot in the fourth quadrant:   $a_{\rm I} = -3, \ a_{\rm Q} = -3$.


$\text{Example 2:}$  We use the same graphic as in $\text{Example 1}$.  The decimal value  $D$  provides another way to label the points.

Signal space constellations  "$\rm 4\hspace{0.05cm}–\hspace{-0.02cm}QAM$"  $($left$)$  and  "$\rm 16\hspace{0.05cm}–\hspace{-0.02cm}QAM$"  $($right$)$
  • The brown marked point in the  $\rm 4\hspace{0.05cm}–\hspace{-0.02cm}QAM$ diagram is binary labeled  "10"    ⇒   decimal:  $D = 2$.  This point simultaneously marks the second quadrant of  $\rm 16\hspace{0.05cm}–\hspace{-0.02cm}QAM$.
  • The further subdivision results from the lower left graphic.  There at the brown dot is written  $4D + 3=11$"  $($decimal$)$.
  • Therefore,  the upper right dot  $($highlighted in brown$)$  in the upper left quadrant stands for decimal  "$11$   ⇒   binary 1011.
  • For the green dot,  $D = 1$  gives the decimal value  $4D + 2 =6$,$11$ which corresponds to the binary representation  "0110" .





According to this scheme,  the signal space constellations

  • for  $\rm 64\hspace{0.05cm}–\hspace{-0.02cm}QAM$   ⇒   $(b = 6, \ M = 8)$ 
  • and  $\rm 256-QAM$  ⇒   $(b = 8, \ M = 16)$ 


which will be discussed in detail in the  $\text{Exercise 2.3}$


$\text{Example 3:}$  We still consider for the described  $\rm 16\hspace{0.05cm}–\hspace{-0.02cm}QAM$  $($left graph,  here referred to as  "ITU proposal"$)$  the resulting symbol and bit error probability in the presence of AWGN noise:

  1. An error can be assumed to result in a horizontally or vertically adjacent symbol,  as indicated for the upper left green dot.
  2. The symbol error probability $p$  depends on the Euclidean distance of the two points and the AWGN noise power density  $N_0$.
  3. A distortion to the more distant blue point instead of one of the two neighboring brown points is rather unlikely with Gaussian noise.
Signal space constellation:  "$\rm 16\hspace{0.05cm}–\hspace{-0.02cm}QAM$";  left: ITU propsal,  right:  Gray encoding

An analysis shows:

  • All corner points  $($green$)$  can only be distorted in two directions.
  • In contrast, the inner QAM points  $($blue$)$  have four direct neighbors.
  • The remaining symbols  $($brown$)$  have three neighbors.


For the  »symbol error probability«   $p_{\rm S}$  then holds:

$$p_{\rm S} = {1}/{16} \cdot (4 \cdot 2 p + 8 \cdot 3 p + 4 \cdot 4 p) = 3p.$$

To calculate the  »bit error probability«   $p_{\rm B}$  it must now be taken into account that for the left constellation one symbol error leads

  • within one quadrant to only  one bit error 
    $($e.g: "0100"   ⇒   "0110"$)$,
  • between adjacent quadrants to two bit errors
    $($e.g: "1111"   ⇒   "0101"$)$.


The computation of  $p_{\rm B} $  here involves some effort.

In contrast,  with Gray encoding  $($right diagram$)$:

  1. Each symbol differs from its neighbors by exactly one bit.
  2. Each symbol error thus results in exactly one bit error.
  3. Since each individual symbol contains four bits,  the  "bit error probability" is in this case: 
$$p_{\rm B} = p_{\rm S}/4 = 3/4 \cdot p. $$


Carrierless Amplitude Phase Modulation


"Carrierless amplitude phase modulation"  $\rm (CAP)$  is a bandwidth-efficient variant of QAM,  which can be realized very easily with digital signal processors.  The only difference to QAM is that the modulation with a carrier signal can be omitted.

Block diagram of  "Carrierless Amplitude Phase Modulation"
Reference model for  ADSL–CAP
  • Digital filtering is used instead of multiplication by cosine and minus sine.  $g_{\rm I}(t)$  and  $g_{\rm Q}(t)$  are impulse responses of two transversal band-pass filters with same amplitude characteristic,  phase-shifted by  $π/2$.
  • Both are orthogonal to each other,  which means that the integral of the product  $g_{\rm I}(t) · g_{\rm Q}(t)$  over a symbol duration gives zero.
  • The signals  $s_{\rm I}(t)$  and  $s_{\rm Q}(t)$  generated in this way are combined,  converted to a continuous-time signal by a D/A converter. 
  • The unwanted high-frequency components generated during D/A conversion are eliminated by a low-pass filter before transmission.
  • At the receiver,  the signal  $r(t)$  is first converted to a discrete-time signal using an A/D converter and then the in-phase and quadrature symbols  $a_{\rm I}$  and  $a_{\rm Q}$  are extracted via two  "finite impulse response  $\rm (FIR)$  filters"  and downstream "threshold decision".


CAP was the de facto standard in initial ADSL specifications until 1996.  The graph shows the reference model.

  1. The frequencies up to  $\text{4 kHz}$  were reserved for POTS/ISDN.
  2. The up channel occupied the frequency range of  $\text{15 - 160 kHz}$,
  3. The down channel occupied the frequencies from  $\text{240 - 1500 kHz}$.


One problem with CAP is that a  "bad channel" has dramatic consequences on the transmission quality.  Therefore,  today (2011) ADSL-CAP is only found in a few HDSL variants.

Basics of Discrete Multitone Transmission


Spectra at OFDM and DMT;     Note:   For this graph a symmetrical rectangle is assumed.
    A rectangle between  $0$  and  $T$  would still result in a phase term.
    However,  nothing would change with respect to  $|S(f)|$.

"Discrete Multitone Transmission"  $\rm (DMT)$  refers to a multicarrier modulation method that is almost identical to  "Orthogonal Frequency Division Multiplexing"  $\rm (OFDM)$.  In the case of wired transmission,  one usually refers to  "DMT",  and in the case of wireless transmission,  one refers to  "OFDM".

In both cases,  one divides the entire bandwidth into many narrowband equidistant subchannels.  The respective subcarrier signals  $s_k(t)$  are individually impinged with complex data symbols  $D_k$  and the sum of the modulated subcarrier signals is transmitted as signal  $s(t)$ .

The diagram illustrates the principle of OFDM and DMT in the frequency domain,  partly using the values specified for ADSL–DMT:

  • $255$  Subcarriers with carrier frequencies  $k \cdot f_0$  $(k = 1$, ... , $255)$.
  • $4000$  data frames are transmitted per second.
  • After  $68$  data frames,  one synchronization frame is inserted each.
  • Thus,  the  »basic frequency«  of DMT is 
$$f_0 = 4 \cdot (69/68) \cdot (69/68) = 4.3125 \ \rm kHz.$$


An essential difference between OFDM and DMT is that

  • in OFDM,  the above drawn spectrum  $S(f)$  in reality describes an  "equivalent low-pass spectrum"  $S_{\rm TP}(f)$  and still the shift around a carrier frequency  $f_{\rm T}$  has to be considered:
$$S_{\rm TP}(f ) = \sum_{k = 1}^{255} D_k \cdot \delta (f - k \cdot f_0)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} S(f) = \frac{1}{2} \big [ S_{\rm TP}(f - f_{\rm T}) + S^*_{\rm TP}(-(f + f_{\rm T}))\big ] \hspace{0.05cm};$$
  • in DMT,  on the other hand,  the components at negative frequencies must still be taken into account,  which are to be weighted with the conjugate-complex spectral coefficients:
$$S(f ) = \sum_{k = 1}^{255} \big [ D_k \cdot \delta (f - k \cdot f_0) + D^*_k \cdot \delta (f + k \cdot f_0) \big ] \hspace{0.05cm}.$$

$\text{Please note:}$ 

  1. According to these equations,  the complex OFDM signal  $s_{\rm OFDM}(t)$  consists of  $K = 255$  complex exponential oscillations.
  2. The DMT signal  $s_{\rm DMT}(t)$  is composed of as many cosine oscillations with frequencies  $k \cdot f_0$  $($full occupancy presupposed$)$.
  3. Despite complex coefficients  $D_k$ resulting from QAM occupancy of the carriers,  the DMT signal is always real
    because of the conjugate-complex complements at negative frequencies.


However,  in both OFDM and DMT,  the transmitted signal  $s(t)$  is precisely limited in time to the symbol duration  $T = 1/f_0 ≈ 232 \ {\rm µs}$  which is equivalent to multiplying by a rectangle of duration $T$.  In the spectral domain,  this corresponds to convolution with the function  $\text{sinc}(fT)$:

  • Each Dirac delta function at  $k · f_0$  thus becomes an sinc– function at the same position,  given the time limit,  as shown in the second diagram of the graph above.
  • Adjacent subcarrier spectra overlap on the frequency axis,  but exactly at  $k · f_0$  the coefficients  $D_k$  can be seen again,  since all other spectra have zeros here.


$\text{Example 4:}$  Assuming the conditions favorable for ADSL downstream,  viz.

  1. $4000$ frames are transmitted per second.
  2. All subcarriers are active at all times  $(K = 255)$.
  3. Each carrier is occupied with a 1024-QAM  $(b = 10)$;  according to ITU:  $8 ≤ b ≤ 15$.
  4. Ideal conditions prevail,  so that the orthogonality evident in the graph is preserved,


then for the  »maximum bit rate« 

$$R_{\rm B,\ max} = 4000 · K · b ≈ 10 \ \rm Mbit/s.$$

However,  specified ADSL downstream is only  $2 \ \rm Mbit/s$  due to

  • the omission of the  $64$  lowest carriers because of ISDN and upstream,
  • the QAM occupancy of the heavily attenuated carriers with less than  $10$  bits,  and
  • the consideration of the cyclic prefix,  and some operational reasons.


DMT realization with IDFT/DFT


The upper graph shows the complete DMT system.  For now we will focus on the two red blocks.  The blue blocks will be covered in the "next chapter".  Simplified,  the transmitter and receiver can be represented as shown in the second graph:

Discrete multitone transmission system
DMT transmitter and receiver


  • To perform a DMT modulation,  the transmitter accumulates a block of input bits in a data buffer to be transmitted as one frame.
  • The QAM encoder supplies per frame the complex-valued data symbols  $D_1$,  ... ,  $D_{255}$,  which is expanded to the vector  $\mathbf{D}$  of length  $512$  by
  1.   $D_0 = D_{256} = 0$,
  2.   $D_k = D^\star_{512-k} \ (k = 257,$ ... , $511)$,
  3.   the coefficients   $D_{257}$, ... , $D_{511}$  are identical to  $D_{-255}$, ... , $D_{-1}$
    $($as consequence of  "finite signals"  properties$)$.
  • The spectral samples  $\mathbf{D}$  are transformed with the "Inverse Discrete Fourier Transform"  to the vector  $\mathbf{s}$  of time signal samples, also with length $512$. Because of the conjugate-complex assignment in the spectral domain   ⇒   $\text{Im}[\mathbf{s}] = 0$.
  • After parallel/serial and digital/analog conversion and low-pass filtering of  $\text{Re}[\mathbf{s}]$  the physical  $($real$)$  as well as continuous-time transmitted signal  $s(t)$  results.
  • For this,  in the range  $0 ≤ t ≤ T$  $($factor  $2$,  since two coefficients each contribute to cosine/sine$)$:
$$s(t) = \sum_{k = 1}^{255} \big [ 2 \cdot{\rm Re}\{D_k\} \cdot \cos(2\pi k f_0 t ) - 2 \cdot{\rm Im}\{D_k\} \cdot \sin(2\pi k f_0 t )\big ] \hspace{0.05cm}. $$
  • The received signal at the AWGN output is  $r(t) = s(t) + n(t)$.  After A/D and S/P conversion,  $r(t)$  can be expressed by the (real) vector  $\mathbf{r}$ . The  "Discrete Fourier Transform"  then provides estimates for the transmitted spectral coefficients.


$\text{Example 5:}$  As an example, let's consider the ADSL/DMT downstream.

Allocation of the DMT frequency band with QAM coefficients
  • In the upper left graph on the right you can see the amounts  $\vert D_k\vert $  of the occupied subchannels  $64$, ... , $255$.  The carriers  $0$, ... , $63$  for the reserved frequency range of ISDN and upstream are set to zero.
  • Next to it on the right are the spectral coefficients   $D_{64}$, ... , $D_{255}$   are shown in the complex plane,&nbsp: where the signal space is chosen very large.
  • The graph on the left shows the transmitted signal  $s(t)$  for the frame duration   $T = {1}/{f_0} ≈ 232 \ \rm µs$,  which is obtained by low-pass filtering the IDFT values  $s_0$, ... , $s_{511}$  results. This useful signal looks almost like noise.


Transmitted signal with above DMT allocation









It can be seen:

  1. Main problem of DMT is the unfavorable Crest factor   ⇒   ratio of maximum value  $s_{\rm max}$  and rms value  $s_{\rm eff}$.
  2. The large dynamic range visible in the exemplary signal curve places high demands on the amplifier's linearity.
  3. When the dynamic range is limited,  the peaks of  $s(t)$  are cut off.
  4. This acts as a pulse-like disturbance and an additional noise load to the system.


$\text{Summarizing:}$ 

  • Discrete Multitone Transmission  $\rm (DMT)$  is basically the parallel implementation of many narrowband QAM modems with different carriers and relatively low data transmission rates. 
  • The low bandwidth per subcarrier allows a long symbol duration,  thus reducing the influence of intersymbol interference and reducing the development effort for equalization.
  • A major reason for the DMT success is its technical ease of implementation.  IDFT and DFT are formed with digital signal processors in real time.  The vectors have the length  $512$  $($power of two$)$.  Therefore the particularly fast FFT algorithm  $($"Fast Fourier Transformation"$)$  can be applied.


Exercises for the chapter

Exercise 2.3: QAM Signal Space Assignment

Exercise 2.3Z: xDSL Frequency Band

Exercise 2.4: DSL/DMT with IDFT/DFT

Exercise 2.4Z: Repetition to IDFT