Difference between revisions of "Signal Representation/Signal classification"

From LNTwww
 
(118 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Grundbegriffe der Nachrichtentechnik
+
|Untermenü=Basic Terms of Communications Engineering
|Vorherige Seite=Prinzip der Nachrichtenübertragung
+
|Vorherige Seite=Principles of Communication
|Nächste Seite=Zum Rechnen mit komplexen Zahlen
+
|Nächste Seite=Calculating With Complex Numbers
 
}}
 
}}
  
==Deterministische und stochastische Signale==
+
==Deterministic and stochastic signals==
 +
<br>
 +
In every transmission system,&nbsp; both&nbsp; deterministic signals&nbsp; and&nbsp; stochastic signal&nbsp; occur.
  
In jedem Nachrichtensystem treten sowohl deterministische als auch stochastische Signale auf.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A&nbsp; &raquo;'''deterministic signal'''&laquo;&nbsp; exists,&nbsp; if its time function&nbsp; $x(t)$&nbsp; can be described completely in analytical form.
 +
}}
 +
 
 +
 
 +
Since the time function&nbsp; $x(t)$&nbsp; for all times &nbsp;$t$&nbsp; is known and can be specified unambiguously,&nbsp; there always exists a spectral function&nbsp; $X(f)$&nbsp; which can be calculated using the&nbsp; [[Signal_Representation/Fourier_Series#Fourierreihe|&raquo;$\text{Fourier series}$&laquo;]]&nbsp; or the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse|&raquo;$\text{Fourier transform}$&laquo;]]&nbsp;.
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
One refers to a&nbsp; &raquo;'''stochastic signal'''&laquo;&nbsp; or to a&nbsp; &raquo;'''random signal'''&laquo;,&nbsp; if the signal course&nbsp; $x(t)$&nbsp; is not &ndash; or at least not completely &ndash; describable in mathematical form.&nbsp; Such a signal cannot be predicted exactly for the future.}}
 +
 
 +
 
 +
[[File:P_ID350_Sig_T_1_2_S1_neu.png|right|frame|Example of a deterministic signal (top) and <br>a stochastic signal (bottom)]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp;
 +
The graph shows the time courses of a deterministic and a stochastic signal:
 +
*At the top a periodic rectangular signal&nbsp; $x_1(t)$&nbsp; with period duration&nbsp; $T_0$ &nbsp; &rArr; &nbsp; deterministic signal,
 +
 
 +
*below a Gaussian noise signal&nbsp; $x_2(t)$&nbsp; with the mean value&nbsp; $2\ \rm V $ &nbsp; &rArr; &nbsp; stochastic signal.
 +
 
 +
 
 +
For such a non&ndash;deterministic signal&nbsp; $x_2(t)$&nbsp; no spectral function&nbsp; $X_2(f)$&nbsp; can be specified, since Fourier series and Fourier transform requires the exact knowledge of the time function for all times&nbsp; $t$. }}
 +
 
 +
 
 +
Information-carrying signals are always of stochastic nature.&nbsp; Their description and the definition of suitable parameters is given in the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
 +
 
 +
However,&nbsp;  deterministic signals are also of great importance for Communications Engineering.&nbsp; Examples of these are:
 +
*Test signals for the design of communication systems,
 +
 
 +
*carrier signals for frequency multiplex systems,&nbsp; and
 +
 
 +
*a&nbsp;  &raquo;Dirac delta comb&laquo;&nbsp; for sampling an analog signal or for time regeneration of a digital signal.
 +
 
 +
 
 +
==Causal and non-causal signals==
 +
<br>
 +
In&nbsp; Communications Engineering&nbsp; one often reckons with temporally unlimited signals;&nbsp; the definition range of the signal then extends from&nbsp; $t = -\infty$ &nbsp; to&nbsp; $t=+\infty$.
 +
 
 +
In reality,&nbsp; however,&nbsp; there are no such signals,&nbsp; because every signal had to be switched on at some point.&nbsp; If one chooses &ndash; arbitrarily  but nevertheless meaningfully &ndash; the switch-on time&nbsp; $t = 0$,&nbsp; then one comes to the following classification:
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
*A signal&nbsp; $x(t)$&nbsp; is called&nbsp; &raquo;'''causal'''&laquo;,&nbsp; if it does not exist for all times&nbsp; $t < 0$&nbsp; or is identical zero.
 +
 
 +
*If this condition is not fulfilled,&nbsp; then one speaks of a&nbsp; &raquo;'''non-causal'''&laquo;&nbsp; signal&nbsp; $($or system$)$.}}
 +
 
 +
 
 +
In this book&nbsp; &raquo;Signal representation&laquo;&nbsp; mostly causal signals and systems are considered.&nbsp; This has the following reasons:
 +
*Non-causal signals&nbsp; $($and systems$)$&nbsp; are mathematically easier to handle than causal ones.&nbsp; For example,&nbsp; the spectral function can be determined here by means of Fourier transform and one does not need extensive knowledge of function theory as in the Laplace transform.
 +
 
 +
*Non-causal signals and systems describe the situation completely and correctly,&nbsp; if one ignores the problem of the switch-on process and is therefore only interested in the&nbsp; &raquo;steady state&laquo;.
 +
 
 +
*The description of causal signals and systems using the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|&raquo;Laplace Transform&laquo;]]&nbsp; is shown in the book &nbsp; [[Lineare_zeitinvariante_Systeme|&raquo;Linear Time-Invariant Systems&laquo;]].
 +
 
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
[[File:EN_Sig_T_1_2_S2_v2.png|right|frame|Causal system&nbsp; $($top$)$&nbsp; and non-causal system&nbsp; $($bottom$)$]] 
 +
$\text{Example 2:}$&nbsp;
 +
You can see a causal system in the upper graphic:
 +
*If a unit step function&nbsp; $x(t)$&nbsp; is applied to its input, then the output signal&nbsp; $y(t)$&nbsp; can only increase from zero to its maximum value after time&nbsp; $t = 0$.
 +
 
 +
*Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.
 +
 
 +
*In the lower graph the causality is no longer given.&nbsp;
 +
 
 +
 
 +
As you can easily see in this example,&nbsp; an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.}}
 +
 
 +
 
 +
==Energy&ndash;limited and power&ndash;limited signals==
 +
<br>
 +
At this place first two important signal description quantities must be introduced, namely&nbsp; &raquo;'''energy'''&laquo;&nbsp; and&nbsp; &raquo;'''power'''&laquo;.
 +
*In terms of physics,&nbsp; energy corresponds to work and has,&nbsp; for example,&nbsp; the unit&nbsp; "Ws".
 +
 +
*The power is defined as&nbsp; "work per time"&nbsp; and therefore has the unit&nbsp; "W".
 +
 
 +
 
 +
According to the elementary laws of Electrical Engineering,&nbsp; both values are dependent on the resistance&nbsp; $R$.&nbsp; In order to eliminate this dependency  in Communications Engineering,&nbsp; the resistance&nbsp; $R=1 \,\Omega$&nbsp; is often used as a basis.&nbsp; Then the following definitions apply:
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''energy'''&laquo;&nbsp; of the signal&nbsp; $x(t)$&nbsp; is to calculate as follows:
 +
 
 +
:$$E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;To calculate the&nbsp; $($mean$)$&nbsp; &raquo;'''power'''&laquo;&nbsp; still has to be divided  by the time&nbsp; $T_{\rm M}$&nbsp; before the boundary crossing:
 +
 
 +
:$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$
 +
 
 +
*$T_{\rm M}$&nbsp; is the assumed measurement duration during which the signal is observed,&nbsp; symmetrically with respect to the time origin&nbsp; $(t = 0)$.&nbsp;
 +
 
 +
*In general,&nbsp; this time interval must be chosen very large;&nbsp; ideally&nbsp; $T_{\rm M}$&nbsp; should be towards infinity.}}
 +
 
 +
 
 +
If&nbsp; $x(t)$&nbsp; denotes an electrical voltage curve&nbsp; $($unit:&nbsp; $\text{V)}$,&nbsp; then according to the above equations:
 +
#The signal energy has the unit&nbsp; "$\text{V}^2\text{s}$".
 +
#The signal power has the unit&nbsp; "$\text{V}^2$".
 +
 
 +
 
 +
This statement also means: &nbsp; In the above definitions the reference resistance&nbsp; $R=1\,\Omega$&nbsp; is already implicit.
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;
 +
Now the energy and power of two exemplary signals are calculated.
 +
[[File:P_ID590__Sig_T_1_2_S3.png|right|frame|Energy-limited and power-limited signals]]
 +
 
 +
&rArr; &nbsp; The upper graph shows a rectangular pulse&nbsp; $x_1(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$:
 +
 
 +
#The signal energy of this pulse is&nbsp; $E_1 = A^2 \cdot T$.
 +
#For the signal power,&nbsp; division by&nbsp; $T_{\rm M}$&nbsp; and limit formation&nbsp; $(T_{\rm M} \to \infty)$&nbsp; results in the value&nbsp; $P_1 = 0$.
  
{{Definition}}
 
Deterministische Signale sind Signale, deren Zeitfunktionen $x(t)$ in analytischer Form vollständig angegeben werden können.
 
{{end}}
 
  
  
Da hier die Zeitfunktion $x(t)$ für alle Zeiten $t$ bekannt und eindeutig angebbar ist, existiert für diese Signale stets eine über die Fourierreihe oder die Fouriertransformation berechenbare Spektralfunktion $X(f)$.
 
  
{{Definition}}
+
&rArr; &nbsp; For the cosine signal&nbsp; $x_2(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; applies according to the sketch below:
Man spricht von einem stochastischen Signal bzw. von einem Zufallssignal, wenn der Signalverlauf $x(t)$ nicht – oder zumindest nicht vollständig - in mathematischer Form beschreibbar ist. Ein solches Signal kann für die Zukunft nicht exakt vorhergesagt werden.
 
{{end}}
 
  
 +
#The signal power is&nbsp; $P_2 = A^2/2$,&nbsp; regardless of the frequency.
 +
#The signal energy&nbsp; $E_2$&nbsp; $($integral over power for all times$)$&nbsp; is infinite.
 +
#With&nbsp; $A = 4 \ {\rm V}$&nbsp; results for the power&nbsp; $P_2 = 8 \ {\rm V}^2$. &nbsp;
 +
#With the resistance of&nbsp; $R = 50 \,\,\Omega$&nbsp; this corresponds to the physical power&nbsp; ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.}}
  
{{Beispiel_rechts}}
 
[[File:P_ID350_Sig_T_1_2_S1_neu.png|right|250px|Beispiel eines deterministischen und eines stochastischen Signals]]
 
  
Die Grafik zeigt Zeitverläufe eines deterministischen (oben) und eines stochastischen Signals (unten):
+
According to this example there are the following classification characteristics:
*ein periodisches Rechtecksignal $x_1(t)$ mit der Periodendauer $T_0$,
 
*ein Gaußsches Rauschsignal $x_2(t)$ mit dem Mittelwert 2V.
 
{{end}}
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A signal&nbsp; $x(t)$&nbsp; with finite energy&nbsp; $E_x$&nbsp; and infinitely small power&nbsp; $(P_x = 0)$&nbsp; is called&nbsp; &raquo;'''energy&ndash;limited'''&laquo;. }}
 +
*With pulse-shaped signals like the signal&nbsp; $x_1(t)$&nbsp; in the above example,&nbsp; the energy is always limited.&nbsp; Mostly, the signal values here are different from zero only for a finite time period. &nbsp; In other words:&nbsp; Such signals are often time-limited,&nbsp; too.
  
Für ein solches nichtdeterministisches Signal $x(t)$ ist daher auch keine Spektralfunktion $X(f)$ angebbar, da Fourierreihe und Fouriertransformation die genaue Kenntnis der Zeitfunktion für alle Zeiten $t$ voraussetzt.
+
*But even signals that are unlimited in time can have a finite energy.&nbsp; In later chapters&nbsp;you will find more information about energy&ndash;limited and therefore aperiodic signals, for example the &nbsp;&nbsp;[[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|&raquo;Gaussian pulse&laquo;]]&nbsp; and the&nbsp; [[Aufgaben:Exercise_3.1:_Spectrum_of_the_Exponential_Pulse|&raquo;exponential pulse&laquo;]].
Informationstragende Signale sind stets von stochastischer Art. Ihre Beschreibung sowie die Definition geeigneter Kenngrößen erfolgt im Buch Stochastische Signaltheorie. Aber auch die deterministischen Signale haben eine große Bedeutung für die Nachrichtentechnik. Beispiele sind:
 
*Testsignale für den Entwurf von Nachrichtensystemen,
 
*Trägersignale für Frequenzmultiplexsysteme, und
 
*ein Puls zur Abtastung eines Analogsignals oder zur Zeitregenerierung eines Digitalsignals.
 
  
  
==Kausale und akausale Signale==
+
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp;
 +
A signal&nbsp; $x(t)$&nbsp; with finite power&nbsp; $P_x$&nbsp; and accordingly infinite energy&nbsp; $(E_x \to \infty)$&nbsp; is called&nbsp; &raquo;'''power&ndash;limited'''&laquo;.}}
  
In der Nachrichtentechnik rechnet man oftmals mit zeitlich unbegrenzten Signalen; der Definitionsbereich des Signals erstreckt sich dann von $t = -\infty$ bis $+\infty$. In der Realität gibt es solche Signale nicht, denn jedes Signal musste irgendwann einmal eingeschaltet werden. Wählt man – zwar willkürlich, aber dennoch sinnvoll – den Einschaltzeitpunkt $t$ = 0, so kommt man zu folgender Klassifizierung:
+
*All power&ndash;limited signals are also infinitely extended in time.&nbsp; Examples are the&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|&raquo;DC signal&raquo;]]&nbsp; and&nbsp; [[Signal_Representation/Harmonic_Oscillation|&raquo;harmonic oscillations&laquo;]]&nbsp; such as the cosine signal&nbsp; $x_2(t)$&nbsp; in&nbsp; $\text{Example 3}$,&nbsp; which are described in detail in chapter&nbsp; [[Signal_Representation/General_Description|&raquo;Periodic Signals&laquo;]].  
  
{{Definition}}
+
*Even most of the stochastic signals are power&ndash;limited &nbsp; &rArr; &nbsp;  see the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
Man bezeichnet ein Signal $x(t)$ als kausal, wenn es für alle Zeiten $t < 0$ nicht existiert bzw. identisch 0 ist. Ist diese Bedingung nicht erfüllt, so liegt ein akausales Signal (oder System) vor.
 
{{end}}
 
  
  
Im gesamten Buch „Signaldarstellung” werden meist akausale Signale und Systeme betrachtet. Dies hat folgende Gründe:
+
==Continuous-valued and discrete-valued signals==
*Akausale Signale (und akausale Systeme) sind mathematisch leichter zu handhaben als kausale. Beispielsweise kann man hier die Spektralfunktion mittels Fouriertansformation bestimmen und benötigt nicht wie bei der Laplacetransformation weitreichende Kenntnisse der Funktionentheorie.
+
<br>
*Akausale Signale und Systeme beschreiben den Sachverhalt vollständig und richtig, wenn man die Problematik des Einschaltvorgangs außer Acht lässt.
+
{{BlaueBox|TEXT= 
Die Beschreibung kausaler Signale und Systeme mit Hilfe der Laplacetransformation folgt im Buch Lineare zeitinvariante Systeme.
+
$\text{Definitions:}$&nbsp;
 +
*A signal is&nbsp; &raquo;'''continuous in value'''&laquo; or&nbsp; &raquo;'''continuous-valued'''&laquo;,&nbsp; if the decisive signal parameter &ndash; for example the instantaneous value &ndash; can take all values of a continuum&nbsp; $($e.g. of an interval$)$.
 +
 +
*In contrast,&nbsp; if only countable many different values are possible for the signal parameter,&nbsp; then the signal is&nbsp; &raquo;'''discrete in value'''&laquo; or&nbsp; &raquo;'''discrete-valued'''&laquo;.&nbsp; The number&nbsp; $M$&nbsp; of possible values is called the&nbsp; &raquo;level number&laquo;&nbsp; or the&nbsp; &raquo;symbol set size&laquo;.}}
  
{{Beispiel}}
 
[[File:P_ID234_Sig_T_1_2_S2_neu.png|right|300px|Kausales und akausales System]]
 
Sie sehen nachfolgend ein kausales Übertragungssystem. Wird an dessen Eingang eine Sprungfunktion $x(t)$ angelegt, so kann auch das Ausgangssignal $y(t)$ erst ab dem Zeitpunkt $t = 0$ von 0 auf seinen Maximalwert ansteigen. Ansonsten wäre der Kausalzusammenhang, dass die Wirkung nicht vor der Ursache einsetzen kann, nicht erfüllt.
 
  
Im unteren Bild ist diese Kausalität nicht mehr gegeben. Wie leicht zu ersehen ist, kommt man hier durch eine zusätzliche Laufzeit von einer Millisekunde von der akausalen zur kausalen Darstellung.
+
*Analog transmission systems always work with continuous-valued signals.
{{end}}
+
 +
*For digital systems, on the other hand, most but not all signals are discrete-valued.
  
  
==Energiebegrenzte und leistungsbegrenzte Signale==
+
{{GraueBox|TEXT=
 +
$\text{Example 4:}$&nbsp;
 +
The upper diagram shows in blue a section of a continuous-valued signal&nbsp; $x(t)$, which can take values between&nbsp; $\pm 8\ \rm V$&nbsp;.
 +
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|right|frame|Continuous-valued and discrete-valued signal]]
 +
*In red you can see the signal&nbsp; $x_{\rm Q}(t)$&nbsp; discretized on &nbsp; $M = 8$&nbsp; quantization levels  with the possible signal values&nbsp; $\pm 1\ \rm V$,&nbsp; $\pm 3\ \rm V$,&nbsp; $\pm 5\ \rm V$&nbsp; and&nbsp; $\pm 7\ \rm V$.
 +
 +
*For this signal&nbsp; $x_{\rm Q}(t)$&nbsp; the&nbsp; <u>instantaneous value</u>&nbsp; was considered the decisive signal parameter.
  
An dieser Stelle müssen zunächst zwei wichtige Signalbeschreibungsgrößen eingeführt werden, nämlich die Energie und die Leistung. Im Sinne der Physik entspricht die Energie der Arbeit und hat zum Beispiel die Einheit „Ws“. Die Leistung ist als „Arbeit pro Zeit” definiert und besitzt somit die Einheit „W“.
 
Beide Größen sind nach den elementaren Gesetzen der Elektrotechnik vom Widerstand R abhängig. Um diese Abhängigkeit zu eliminieren, wird in der Nachrichtentechnik oftmals der Widerstand $R=1 \Omega$ zugrunde gelegt. Dann gelten folgende Definitionen:
 
  
{{Definition}}
+
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|left|frame|FSK signal &nbsp; &rArr; &nbsp; continuous&ndash;valued,&nbsp;  binary&ndash;in&ndash;frequency]]
Die Energie des Signals $x(t)$ ist wie folgt zu berechnen:
 
  
<math>E_x = \lim_{T_M \to \infty}\int_{-\frac{T_M}{2}}^{\frac{T_M}{2}} x^{2}(t)dt</math>
 
  
Zur Berechnung der (mittleren) Leistung muss vor dem Grenzübergang noch durch die Zeit TM dividiert werden:
 
  
<math>P_x = \lim_{T_M \to \infty}\frac{1}{T_M}\int_{-\frac{T_M}{2}}^{\frac{T_M}{2}} x^{2}(t)dt </math>
 
{{end}}
 
  
  
Hierbei bezeichnet $T_M$ die symmetrisch bezüglich des Zeitursprungs ($t$ = 0) angenommene Messdauer, während der das Signal beobachtet wird. Dieses Zeitintervall muss im Allgemeinen sehr groß gewählt werden; im Idealfall sollte TM gegen unendlich gehen.
 
Bezeichnet $x(t)$ einen Spannungsverlauf mit der Einheit „V“, so hat nach obigen Gleichungen
 
*die Signalenergie die Einheit $\text{V}^2\text{s}$ und
 
*die Signalleistung die Einheit $\text{V}^2$
 
  
 +
In an FSK system&nbsp; $($"Frequency Shift Keying"$)$&nbsp; on the other hand,&nbsp; the&nbsp; <u>instantaneous frequency</u>&nbsp; is the essential signal parameter.
  
Dies bedeutet: Obigen Definitionen liegt der Bezugswiderstand $R=1\Omega$ bereits implizit zugrunde.
 
Auf der nächsten Seite werden Energie und Leistung zweier beispielhafter Signale berechnet.
 
  
{{Beispiel}}
 
Die Grafik zeigt oben einen Rechteckimpuls $x_1(t)$ mit Amplitude $A$ und Dauer $T$.
 
  
[[File:P_ID590__Sig_T_1_2_S3.png|250px|right|Energiebegrenztes und leistungsbegrenztes Signal]]
+
Therefore the signal&nbsp; $s_{\rm FSK}(t)$&nbsp; shown below is also called&nbsp; <u>discrete-valued</u>&nbsp; with level number&nbsp; $M = 2$&nbsp; and  possible frequencies&nbsp; $1 \ \ \rm kHz$&nbsp; and&nbsp; $5 \ \ \rm kHz$, although the instantaneous value is continuous.}}
  
*Die Signalenergie ist $E_1 = A_2 \cdot T$.
 
*Für die Signalleistung ergibt sich aufgrund der Division durch $T_M$ und Grenzwertbildung ($T_M \to \infty$) der Wert $P_1 = 0$.
 
  
Beim Cosinussignal $x_2(t)$ mit Amplitude $A$ entsprechend der unteren Skizze ist
+
==Continuous-time and discrete-time signals==
*die Signalleistung unabhängig von der Frequenz gleich $P_2 = A^2/2$, und
+
<br>
*die Signalenergie (Integral über die Leistung für alle Zeiten) unendlich.
+
For the signals considered so far,&nbsp; the signal parameter was defined at any given time.&nbsp; Such a signal is called&nbsp; "continuous in time".
  
Mit $A =$ 4 V ergibt sich für die Leistung $P_2 = 8 \text{V^2}$. Bei einem Widerstand von $R = 50 \Omega$ entspricht dies der physikalischen Leistung $\frac{8}{50} \frac{\text{V}}{\Omega}=$ 160 mW.
+
{{BlaueBox|TEXT=
{{end}}
+
$\text{Definition:}$&nbsp;
  
 +
With a&nbsp; &raquo;'''discrete-time signal'''&laquo;&nbsp; on the contrary,&nbsp; the signal parameter is defined only at the discrete points&nbsp; $t_\nu$.&nbsp; These time points are usually chosen equidistant: &nbsp;
 +
:$$t_\nu = \nu \cdot T_{\rm A}.$$
 +
*We refer&nbsp; $T_{\rm A}$&nbsp; as&nbsp; &raquo;sampling time interval&laquo;&nbsp; and its reciprocal&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; as&nbsp; &raquo;sampling frequency&laquo;.&nbsp;
  
==Wertkontinuierliche und wertdiskrete Signale==
+
*Such a signal may be created by sampling a &raquo;'''continuous-time signal'''&laquo;. }}
  
{{Definition}}
 
Ein Signal bezeichnet man als wertkontinuierlich, wenn sein Signalparameter – z. B. der Augenblickswert – alle Werte eines Kontinuums (beispielsweise eines Intervalls) annehmen kann. Sind für den Signalparameter dagegen nur abzählbar viele verschiedene Werte möglich, so ist das Signal wertdiskret. Die Anzahl der möglichen Werte bezeichnet man als die Stufenzahl $M$.
 
{{end}}
 
  
  
Bei den analogen Übertragungssystemen wird stets mit wertkontinuierlichen Signalen gearbeitet. Bei Digitalsystemen sind dagegen die meisten Signale – aber nicht alle – wertdiskret.
+
{{GraueBox|TEXT=
 +
[[File:P_ID355_Sig_T_1_2_S5_neu.png|right|frame|Continuous-time and discrete-time signal]] 
 +
$\text{Example 5:}$&nbsp;
  
{{Beispiel}}
+
*The discrete-time signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained after sampling the continuous-time and continuous-value signal&nbsp; $x(t)$&nbsp; with a uniform sampling period &nbsp; $(T_{\rm A})$.<br><br>
Das linke Bild zeigt in blau einen Ausschnitt eines wertkontinuierlichen Signals $x(t)$, das Werte zwischen $\pm 8$V annehmen kann. In roter Farbe erkennt man das auf $M$ = 8 Quantisierungsstufen diskretisierte Signal $x_Q(t)$ mit den möglichen Signalwerten $\pm$1V, $\pm$3V, $\pm$5V und $\pm$7V. Beim Signal $x_Q(t)$ wurde der Augenblickswert als der entscheidende Signalparameter betrachtet.
+
*The time plot&nbsp; $x_{\rm R}(t)$&nbsp; outlined below differs from the real discrete-time representation&nbsp; $x_{\rm A}(t)$&nbsp; in that the infinitely narrow samples&nbsp; $($mathematically describable with Dirac deltas$)$&nbsp; are replaced by rectangular pulses of duration&nbsp; $T_{\rm A}$.<br><br>
 +
*Such a signal can also be called&nbsp; "discrete-time"&nbsp; according to the above definition.<br><br>
  
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|280px|Wertkontinuierliches und wertdiskretes Signal]]
+
*Furthermore applies:
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|280px|FSK-Signal - wertkontuierlich und trotzdem binär]]
+
#A discrete-time signal&nbsp;$x(t)$&nbsp; is completely determined by its series &nbsp;$\left \langle x_\nu \right \rangle$&nbsp; of sampled values.&nbsp;
 +
#These sampled values can either be continuous or discrete.
 +
#The mathematical description of discrete-time signals is given in the chapter&nbsp;<br> [[Signal_Representation/Time_Discrete_Signal_Representation|&raquo;Discrete-Time Signal Representation&laquo;]].}}
 +
<br clear=all>
 +
==Analog and digital signals==
 +
<br>
 +
[[File:EN_Sig_T_1_2_S6.png|right|frame|Analog and digital signals]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example 6:}$&nbsp;
 +
The signal properties
 +
* "continuous-valued",
 +
* "discret-valued",
 +
* "continuous-time",
 +
* "discrete-time"
  
Bei einem FSK-System (Frequency Shift Keying) ist dagegen die Augenblicksfrequenz der wesentliche Signalparameter. Deshalb bezeichnet man auch das rechts dargestellte Signal $s_{FSK}(t)$ als wertdiskret mit der Stufenzahl $M = 2$ und den möglichen Frequenzen 1 kHz und 5 kHz, obwohl der Augenblickswert wertkontinuierlich ist.
 
{{end}}
 
  
 +
are illustrated in the diagram on the right using an example.
 +
<br clear=all>}}
  
==Zeitkontinuierliche und zeitdiskrete Signale==
+
<br>In addition,&nbsp; the following specifications apply:
  
Bei den bisher betrachteten Signalen war der Signalparameter zu jedem beliebigen Zeitpunkt definiert. Man spricht dann von einem zeitkontinuierlichen Signal.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
If a signal is both continuous in value &nbsp; <u>and</u> &nbsp; continuous in time,&nbsp; it is called an&nbsp; &raquo;'''analog signal'''&laquo;.&nbsp;
  
{{Definition}}
+
*Such signals represent a continuous process.  
Bei einem zeitdiskreten Signal ist im Gegensatz dazu der Signalparameter nur zu den diskreten Zeitpunkten $t_v$ definiert, wobei man diese Zeitpunkte meist äquidistant wählt: $t_v = v \cdot T_A$. Da ein solches Signal beispielsweise durch Abtastung eines zeitkontinuierlichen Signals entsteht, bezeichnen wir $T_A$ als den Abtastzeitabstand und dessen Kehrwert $f_A = \frac{1}{T_A}$ als die Abtastfrequenz.
 
{{end}}
 
  
 +
*Examples are speech signals,&nbsp; music signals and image signals.}}
  
{{Beispiel_rechts}}
 
[[File:P_ID355_Sig_T_1_2_S5_neu.png|right|250px|Zeitkontinuierliches und zeitdiskretes Signal]]
 
Das zeitdiskrete Signal $x_A(t)$ erhält man nach Abtastung des oben dargestellten zeit- und wertkontinuierlichen Nachrichtensignals $x(t)$ im Abstand$T_A$. Der unten skizzierte Zeitverlauf $x_R(t)$ unterscheidet sich von der echten zeitdiskreten Darstellung $x_A(t)$ dadurch, dass die unendlich schmalen Abtastwerte (mathematisch mit Diracimpulsen beschreibbar) durch Rechteckimpulse der Dauer $T_A$ ersetzt sind. Ein solches Signal kann nach obiger Definition ebenfalls als zeitdiskret bezeichnet werden.
 
{{end}}
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A&nbsp; &raquo;'''digital signal'''&laquo;&nbsp; is discrete in value &nbsp; <u>and</u> &nbsp; discrete in time,&nbsp; and the message contained therein consists of symbols from a symbol set.
 +
 +
*For example,&nbsp; it can be a voice signal,&nbsp; music signal or image signal after sampling,&nbsp; quantization,&nbsp; and encoding in any form.
 +
 +
*But also a&nbsp; &raquo;data signal&laquo;&nbsp; when a file is downloaded from a server on the Internet.}}
  
Ein zeitdiskretes Signal $x(t)$ ist durch die zeitliche Folge $\left \langle x_v \right \rangle$ seiner Abtastwerte vollständig bestimmt. Diese Abtastwerte können dabei sowohl wertkontinuierlich als auch wertdiskret sein.
 
Die mathematische Beschreibung zeitdiskreter Signale erfolgt in Kapitel 5.1.
 
  
 +
Depending on the number of levels,&nbsp; digital signals are also known by other names,&nbsp; for example
 +
* with $M = 2$:  &nbsp; binary digital signal or&nbsp; &raquo;'''binary signal'''&laquo;,
  
==Analog- und Digitalsignale==
+
* with $M = 3$: &nbsp; ternary digital signal or &nbsp; &raquo;'''ternary signal'''&laquo;,
  
{{Beispiel_rechts}}
+
* with $M = 4$: &nbsp; quaternary digital signal or&nbsp; &raquo;'''quaternary signal'''&laquo;.
[[File:P_ID186_Sig_T_1_2_S6_neu2.png|right|250px|Analog- und Digitalsignale]]
 
In folgender Grafik sind noch einmal die Signaleigenschaften „wertkontinuierlich” und „wertdiskret” sowie „zeitkontinuierlich” und „zeitdiskret” an einem Beispiel verdeutlicht.
 
{{end}}
 
  
  
Ist ein Signal wert- und zeitkontinuierlich, so spricht man auch von einem Analogsignal. Solche Signale bilden einen kontinuierlichen Vorgang kontinuierlich ab. Beispiele hierfür sind Sprach-, Musik-, Bild- und Messsignale.
+
The following&nbsp;  $($German-language$)$&nbsp; learning video summarizes the classification features discussed in this chapter in a compact way:<br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Analoge_und_digitale_Signale_(Lernvideo)|&raquo;Analoge und digitale Signale&laquo;]] &nbsp; &rArr; &nbsp; "Analog and Digital Signals".
Ein Digitalsignal ist dagegen stets wert- und zeitdiskret und die darin enthaltene Nachricht besteht aus den Symbolen eines Symbolvorrats. Es kann beispielsweise ein abgetastetes und quantisiertes (sowie in irgendeiner Form codiertes) Sprach-, Musik- oder Bildsignal sein, aber auch ein Datensignal, wenn im Internet eine Datei von einem Server heruntergeladen wird.
 
Je nach Stufenzahl sind Digitalsignale auch noch unter anderen Namen bekannt, beispielsweise
 
* $M$ = 2: binäres Digitalsignal oder Binärsignal,
 
* $M$ = 3: ternäres Digitalsignal oder Ternärsignal,
 
* $M$ = 4: quaternäres Digitalsignal oder Quaternärsignal.
 
  
  
Das nachfolgende Lernvideo fasst die hier behandelten Klassifizierungsmerkmale zusammen:
 
[http://{{SERVERNAME}}/mediawiki/swf_files/Buch1/Signale0.swf Analoge und digitale Signale (Dauer Teil 1: 3:46; Teil 2: 3:28)]
 
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_1.2:_Signal_Classification|Exercise 1.2: Signal Classification]]
  
==Aufgaben zu Kapitel 1.2==
+
[[Aufgaben:Exercise_1.2Z:_Puls-Code-Modulation|Exercise 1.2Z: Puls Code Modulation]]
[[Aufgaben:1.2 Signalklassifizierung]]
 
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 13:46, 22 June 2023

Deterministic and stochastic signals


In every transmission system,  both  deterministic signals  and  stochastic signal  occur.

$\text{Definition:}$  A  »deterministic signal«  exists,  if its time function  $x(t)$  can be described completely in analytical form.


Since the time function  $x(t)$  for all times  $t$  is known and can be specified unambiguously,  there always exists a spectral function  $X(f)$  which can be calculated using the  »$\text{Fourier series}$«  or the  »$\text{Fourier transform}$« .

$\text{Definition:}$  One refers to a  »stochastic signal«  or to a  »random signal«,  if the signal course  $x(t)$  is not – or at least not completely – describable in mathematical form.  Such a signal cannot be predicted exactly for the future.


Example of a deterministic signal (top) and
a stochastic signal (bottom)

$\text{Example 1:}$  The graph shows the time courses of a deterministic and a stochastic signal:

  • At the top a periodic rectangular signal  $x_1(t)$  with period duration  $T_0$   ⇒   deterministic signal,
  • below a Gaussian noise signal  $x_2(t)$  with the mean value  $2\ \rm V $   ⇒   stochastic signal.


For such a non–deterministic signal  $x_2(t)$  no spectral function  $X_2(f)$  can be specified, since Fourier series and Fourier transform requires the exact knowledge of the time function for all times  $t$.


Information-carrying signals are always of stochastic nature.  Their description and the definition of suitable parameters is given in the book  »Theory of Stochastic Signals«.

However,  deterministic signals are also of great importance for Communications Engineering.  Examples of these are:

  • Test signals for the design of communication systems,
  • carrier signals for frequency multiplex systems,  and
  • a  »Dirac delta comb«  for sampling an analog signal or for time regeneration of a digital signal.


Causal and non-causal signals


In  Communications Engineering  one often reckons with temporally unlimited signals;  the definition range of the signal then extends from  $t = -\infty$   to  $t=+\infty$.

In reality,  however,  there are no such signals,  because every signal had to be switched on at some point.  If one chooses – arbitrarily but nevertheless meaningfully – the switch-on time  $t = 0$,  then one comes to the following classification:

$\text{Definition:}$ 

  • A signal  $x(t)$  is called  »causal«,  if it does not exist for all times  $t < 0$  or is identical zero.
  • If this condition is not fulfilled,  then one speaks of a  »non-causal«  signal  $($or system$)$.


In this book  »Signal representation«  mostly causal signals and systems are considered.  This has the following reasons:

  • Non-causal signals  $($and systems$)$  are mathematically easier to handle than causal ones.  For example,  the spectral function can be determined here by means of Fourier transform and one does not need extensive knowledge of function theory as in the Laplace transform.
  • Non-causal signals and systems describe the situation completely and correctly,  if one ignores the problem of the switch-on process and is therefore only interested in the  »steady state«.


Causal system  $($top$)$  and non-causal system  $($bottom$)$

$\text{Example 2:}$  You can see a causal system in the upper graphic:

  • If a unit step function  $x(t)$  is applied to its input, then the output signal  $y(t)$  can only increase from zero to its maximum value after time  $t = 0$.
  • Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.
  • In the lower graph the causality is no longer given. 


As you can easily see in this example,  an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.


Energy–limited and power–limited signals


At this place first two important signal description quantities must be introduced, namely  »energy«  and  »power«.

  • In terms of physics,  energy corresponds to work and has,  for example,  the unit  "Ws".
  • The power is defined as  "work per time"  and therefore has the unit  "W".


According to the elementary laws of Electrical Engineering,  both values are dependent on the resistance  $R$.  In order to eliminate this dependency in Communications Engineering,  the resistance  $R=1 \,\Omega$  is often used as a basis.  Then the following definitions apply:

$\text{Definition:}$  The  »energy«  of the signal  $x(t)$  is to calculate as follows:

$$E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$


$\text{Definition:}$ To calculate the  $($mean$)$  »power«  still has to be divided by the time  $T_{\rm M}$  before the boundary crossing:

$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$
  • $T_{\rm M}$  is the assumed measurement duration during which the signal is observed,  symmetrically with respect to the time origin  $(t = 0)$. 
  • In general,  this time interval must be chosen very large;  ideally  $T_{\rm M}$  should be towards infinity.


If  $x(t)$  denotes an electrical voltage curve  $($unit:  $\text{V)}$,  then according to the above equations:

  1. The signal energy has the unit  "$\text{V}^2\text{s}$".
  2. The signal power has the unit  "$\text{V}^2$".


This statement also means:   In the above definitions the reference resistance  $R=1\,\Omega$  is already implicit.

$\text{Example 3:}$  Now the energy and power of two exemplary signals are calculated.

Energy-limited and power-limited signals

⇒   The upper graph shows a rectangular pulse  $x_1(t)$  with amplitude  $A$  and duration  $T$:

  1. The signal energy of this pulse is  $E_1 = A^2 \cdot T$.
  2. For the signal power,  division by  $T_{\rm M}$  and limit formation  $(T_{\rm M} \to \infty)$  results in the value  $P_1 = 0$.



⇒   For the cosine signal  $x_2(t)$  with amplitude  $A$  applies according to the sketch below:

  1. The signal power is  $P_2 = A^2/2$,  regardless of the frequency.
  2. The signal energy  $E_2$  $($integral over power for all times$)$  is infinite.
  3. With  $A = 4 \ {\rm V}$  results for the power  $P_2 = 8 \ {\rm V}^2$.  
  4. With the resistance of  $R = 50 \,\,\Omega$  this corresponds to the physical power  ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.


According to this example there are the following classification characteristics:

$\text{Definition:}$  A signal  $x(t)$  with finite energy  $E_x$  and infinitely small power  $(P_x = 0)$  is called  »energy–limited«.

  • With pulse-shaped signals like the signal  $x_1(t)$  in the above example,  the energy is always limited.  Mostly, the signal values here are different from zero only for a finite time period.   In other words:  Such signals are often time-limited,  too.
  • But even signals that are unlimited in time can have a finite energy.  In later chapters you will find more information about energy–limited and therefore aperiodic signals, for example the   »Gaussian pulse«  and the  »exponential pulse«.


$\text{Definition:}$  A signal  $x(t)$  with finite power  $P_x$  and accordingly infinite energy  $(E_x \to \infty)$  is called  »power–limited«.


Continuous-valued and discrete-valued signals


$\text{Definitions:}$ 

  • A signal is  »continuous in value« or  »continuous-valued«,  if the decisive signal parameter – for example the instantaneous value – can take all values of a continuum  $($e.g. of an interval$)$.
  • In contrast,  if only countable many different values are possible for the signal parameter,  then the signal is  »discrete in value« or  »discrete-valued«.  The number  $M$  of possible values is called the  »level number«  or the  »symbol set size«.


  • Analog transmission systems always work with continuous-valued signals.
  • For digital systems, on the other hand, most but not all signals are discrete-valued.


$\text{Example 4:}$  The upper diagram shows in blue a section of a continuous-valued signal  $x(t)$, which can take values between  $\pm 8\ \rm V$ .

Continuous-valued and discrete-valued signal
  • In red you can see the signal  $x_{\rm Q}(t)$  discretized on   $M = 8$  quantization levels with the possible signal values  $\pm 1\ \rm V$,  $\pm 3\ \rm V$,  $\pm 5\ \rm V$  and  $\pm 7\ \rm V$.
  • For this signal  $x_{\rm Q}(t)$  the  instantaneous value  was considered the decisive signal parameter.


FSK signal   ⇒   continuous–valued,  binary–in–frequency




In an FSK system  $($"Frequency Shift Keying"$)$  on the other hand,  the  instantaneous frequency  is the essential signal parameter.


Therefore the signal  $s_{\rm FSK}(t)$  shown below is also called  discrete-valued  with level number  $M = 2$  and possible frequencies  $1 \ \ \rm kHz$  and  $5 \ \ \rm kHz$, although the instantaneous value is continuous.


Continuous-time and discrete-time signals


For the signals considered so far,  the signal parameter was defined at any given time.  Such a signal is called  "continuous in time".

$\text{Definition:}$ 

With a  »discrete-time signal«  on the contrary,  the signal parameter is defined only at the discrete points  $t_\nu$.  These time points are usually chosen equidistant:  

$$t_\nu = \nu \cdot T_{\rm A}.$$
  • We refer  $T_{\rm A}$  as  »sampling time interval«  and its reciprocal  $f_{\rm A} = 1/T_{\rm A}$  as  »sampling frequency«. 
  • Such a signal may be created by sampling a »continuous-time signal«.


Continuous-time and discrete-time signal

$\text{Example 5:}$ 

  • The discrete-time signal  $x_{\rm A}(t)$  is obtained after sampling the continuous-time and continuous-value signal  $x(t)$  with a uniform sampling period   $(T_{\rm A})$.

  • The time plot  $x_{\rm R}(t)$  outlined below differs from the real discrete-time representation  $x_{\rm A}(t)$  in that the infinitely narrow samples  $($mathematically describable with Dirac deltas$)$  are replaced by rectangular pulses of duration  $T_{\rm A}$.

  • Such a signal can also be called  "discrete-time"  according to the above definition.

  • Furthermore applies:
  1. A discrete-time signal $x(t)$  is completely determined by its series  $\left \langle x_\nu \right \rangle$  of sampled values. 
  2. These sampled values can either be continuous or discrete.
  3. The mathematical description of discrete-time signals is given in the chapter 
    »Discrete-Time Signal Representation«.


Analog and digital signals


Analog and digital signals

$\text{Example 6:}$  The signal properties

  • "continuous-valued",
  • "discret-valued",
  • "continuous-time",
  • "discrete-time"


are illustrated in the diagram on the right using an example.


In addition,  the following specifications apply:

$\text{Definition:}$  If a signal is both continuous in value   and   continuous in time,  it is called an  »analog signal«. 

  • Such signals represent a continuous process.
  • Examples are speech signals,  music signals and image signals.


$\text{Definition:}$  A  »digital signal«  is discrete in value   and   discrete in time,  and the message contained therein consists of symbols from a symbol set.

  • For example,  it can be a voice signal,  music signal or image signal after sampling,  quantization,  and encoding in any form.
  • But also a  »data signal«  when a file is downloaded from a server on the Internet.


Depending on the number of levels,  digital signals are also known by other names,  for example

  • with $M = 2$:   binary digital signal or  »binary signal«,
  • with $M = 3$:   ternary digital signal or   »ternary signal«,
  • with $M = 4$:   quaternary digital signal or  »quaternary signal«.


The following  $($German-language$)$  learning video summarizes the classification features discussed in this chapter in a compact way:
         »Analoge und digitale Signale«   ⇒   "Analog and Digital Signals".


Exercises for the chapter


Exercise 1.2: Signal Classification

Exercise 1.2Z: Puls Code Modulation