Difference between revisions of "Modulation Methods/Objectives of Modulation and Demodulation"

From LNTwww
 
(135 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
{{FirstPage}}
 
{{FirstPage}}
 
{{Header
 
{{Header
|Untermenü=Allgemeine Beschreibung
+
|Untermenü=General Description
 
|Vorherige Seite=
 
|Vorherige Seite=
|Nächste Seite=Qualitätskriterien
+
|Nächste Seite=Quality Criteria
 
}}
 
}}
==Betrachtetes Nachrichtenübertragungssystem==
 
Im gesamten Buch „Modulationsverfahren”  wird von folgendem Blockschaltbild ausgegangen:
 
  
[[File:P_ID929__Mod_T_1_1_S1_neu.png|center|frame| Betrachtetes Nachrichtenübertragungssystem im Buch „Modulationsverfahren”]]
+
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
 +
<br>
 +
This book deals with&nbsp;&raquo;<b>modulation</b>&laquo; and&nbsp;&raquo;<b>demodulation</b>&laquo;,&nbsp; two classical and important methods for Communications Engineering,&nbsp; which already have a very long tradition but are nevertheless constantly developing.&nbsp;
  
Hierzu ist anzumerken:
+
Before&nbsp; &raquo;'''analog amplitude and angle modulation'''&laquo;&nbsp; are described in detail in the following chapters,&nbsp; along with today's more relevant digital modulation methods,&nbsp; this first chapter introduces the definitions and descriptive variables which are equally valid for all systems.&nbsp;
*Das zur Übertragung anstehende Quellensignal $q(t)$ sei ein [[Signaldarstellung/Klassifizierung_von_Signalen#Analog-_und_Digitalsignale|Analogsignal]], zum Beispiel Sprache, Musik oder der Ausgang einer (analogen) Kamera. Das zugehörige Spektrum $Q(f)$ sei auf den Frequenzbereich $|f| ≤ B_{\rm NF}$ begrenzt, wobei der Index für „Niederfrequenz” steht.  
 
  
*Der Kanal kann eine elektrische Leitung (Koaxialkabel, Twisted Pair, usw.), ein Lichtwellenleiter (Multimode– bzw. Monomode–Glasfaser) oder eine Funkverbindung (Richtfunk, Satellitenfunk, Mobilfunk, usw.) sein. Er wird hier durch seinen [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]] $H_{\rm K}(f)$ beschrieben.  
+
This chapter deals in detail with:
 +
# the&nbsp; &raquo;objectives&laquo;&nbsp; of modulation and demodulation,
 +
# the&nbsp; &raquo;differences and similarities&laquo;&nbsp; between analog and digital modulation techniques,
 +
# the&nbsp; &raquo;signal-to-noise power ratio&laquo;&nbsp; as a very general quality criterion,
 +
# &raquo;linear" and&nbsp; &raquo;non-linear distortions&laquo;&nbsp; due to modulation/demodulation,
 +
# degradation in the presence of&nbsp; &raquo;stochastic interference&laquo;,&nbsp; such as&nbsp; &raquo;noise&laquo;,  
 +
# a&nbsp; &raquo;unified model&laquo;&nbsp; for describing of amplitude and angle modulation,
 +
# descriptions using the&nbsp; &raquo;analytical signal&laquo;&nbsp; and the&nbsp; &raquo;equivalent low&ndash;pass signal&laquo;.
  
*Der mittlere Block in obigem Bild beinhaltet auch Störungen (Interferenzen, Übersprechen anderer Nutzer, Impulsstörungen durch Starkstromleitungen, etc.) und Rauschquellen wie Widerstands– und Halbleiterrauschen. Diese werden durch das [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|Störleistungsdichtespektrum]] ${\it Φ}_n(f)$ erfasst.  
+
==The communication system under consideration ==
 +
<br>
 +
[[File:EN_Mod_T_1_1_S1.png|right|frame| The communication system considered in the book "Modulation Methods"]]
 +
Throughout the book&nbsp; "Modulation Methods",&nbsp; we will be basing our communication system on the block diagram shown here.  
  
*Aufgabe eines solchen Nachrichtenübertragungssystems ist es, die im Quellensignal $q(t)$ enthaltene Nachricht bzw. Information – man beachte die [[Signaldarstellung/Prinzip_der_Nachrichtenübertragung#Nachricht_-_Information_-_Signal|unterschiedliche Bedeutung  dieser zwei Größen]] – zur räumlich entfernten Sinke zu übertragen mit der Maßgabe, dass sich das Sinkensignal $v(t)$ „möglichst wenig” von $q(t)$ unterscheidet.  
+
The&nbsp; &raquo;'''transmission medium'''&laquo; &nbsp; &rArr; &nbsp; &raquo;'''physical transmission channel'''&laquo;&nbsp; is characterized here by its&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_.E2.80.93_Transfer_function|$\text{frequency response}$]]&nbsp; $H_{\rm K}(f)$.&nbsp; We will consider:
 +
*&raquo;'''electrical lines'''&laquo;&nbsp; (coaxial cable, twisted pair, etc.),&nbsp;
 +
*&raquo;'''optical fibers'''&laquo;&nbsp; (multimode or single mode),
 +
*&raquo;'''radio connections'''&laquo;&nbsp; (satellite radio, mobile radio, etc.).
  
*Ein häufig auftretendes Problem ist, dass der Übertragungskanal für die direkte Übertragung des Quellensignals $q(t)$ ungeeignet ist, da dieses für ihn ungünstige Frequenzen beinhaltet. So kann ein Musiksignal mit Frequenzen bis ca. 15 kHz nicht direkt per Funk übertragen werden, da eine Funkausbreitung erst ab etwa 100 kHz möglich ist.
 
  
*Abhilfe schafft hier nur eine Signalumsetzung beim Sender, die man '''Modulation''' nennt. Das Ausgangssignal des Modulators wird im Folgenden einheitlich als Sendesignal $s(t)$ bezeichnet. Dieses liegt im Allgemeinen bei höheren Frequenzen als das Quellensignal $q(t)$.  
+
Further considerations:
 +
*Let the source signal &nbsp;$q(t)$&nbsp; be an [[Signal_Representation/Signal_classification#Analog_and_digital_signals|$\text{analog signal}$]], for example, speech, music or the (analog) output of a camera.&nbsp; Let the corresponding spectrum &nbsp;$Q(f)$&nbsp; lie in the frequency range &nbsp;$|f| ≤ B_{\rm NF}$&nbsp;, where the subscript stands for&nbsp; "low frequency"&nbsp; (German:&nbsp; "Niederfrequenz").  
  
*Die '''Demodulation''' ist die Signalrücksetzung beim Empfänger, um aus dem hochfrequenten Empfangssignal $r(t)$ das niederfrequente Sinkensignal $v(t) ≈ q(t)$ zu gewinnen. Bei realem Kanal ist aufgrund des stets vorhandenen Rauschens $n(t)$ das Wunschergebnis $v(t) = q(t)$ nicht möglich.  
+
*The middle block in the above sketch also includes disturbances&nbsp; (interferences,&nbsp; crosstalk from other users,&nbsp; pulse interference from power lines, etc.) and noise sources such as thermal and semiconductor noise.&nbsp; These are captured by the&nbsp;[[Theory_of_Stochastic_Signals/Power_Density_Spectrum_(PDS)|$\text{noise power-spectral density}$]] &nbsp;${\it Φ}_n(f)$.  
  
==Anpassung an Übertragungskanal und Störspektrum==
+
*The task of such a communication system is to transmit the message or information contained in the source signal &nbsp;$q(t)$&nbsp; – note the&nbsp; [[Signal_Representation/Principles_of_Communication#Message_-_Information_-_Signal|$\text{different meaning of these quantities}$]]&nbsp; – to the spatially distant sink, with the proviso that the sink signal&nbsp;$v(t)$&nbsp; differs&nbsp; "as little as possible"&nbsp; from &nbsp;$q(t)$.
Die vorrangige Aufgabe der Modulation (im hier gemeinten Sinne) ist es, das Nachrichtensignal durch Zusetzen eines höherfrequenten Trägersignals mit der Trägerfrequenz $f_{\rm T}$ in eine andere Frequenzlage
 
*mit günstigerem Frequenzgang $H_{\rm K}(f)$ und/oder
 
*mit günstigerem Störleistungsdichtespektrum ${\it Φ}_n(f)$  
 
  
zu verschieben. Weitere Gründe für Modulation/Demodulation werden in den nachfolgenden Abschnitten genannt.
 
  
{{GraueBox|TEXT=
+
*A common problem is that the channel is often unsuitable for direct transmission of the source signal&nbsp;$q(t)$&nbsp;because it contains&nbsp; "inconvenient frequencies".&nbsp;  For example,&nbsp; a music signal with frequencies up to about $\text{15 kHz}$&nbsp; cannot be transmitted directly by radio,&nbsp; since radio propagation is only possible from around $\text{100 kHz}$.
'''Beispiel 1:'''&nbsp; Die Grafik zeigt in blau das niederfrequente Spektrum $Q(f)$ mit der Bandbreite $B_{\rm NF}$. Grün eingezeichnet ist der Dämpfungsverlauf $a_{\rm K}(f) = \ –\ln \ \vert H_{\rm K}(f) \vert $ des Kanals, der hier in einem ausreichend großen Frequenzbereich günstige Eigenschaften mit konstant geringer Dämpfung zeigt.
 
 
 
[[File: P_ID932__Mod_T_1_1_S2_neu.png|center|frame|Zur Verdeutlichung von Modulation und Demodulation]]
 
 
 
Ockerfarben sehen Sie das Störleistungsdichtespektrum ${\it Φ}_n(f)$, das wegen des thermischen Rauschens im gesamten Frequenzbereich nicht verschwindet und bei unserem konstruierten Beispiel um die Frequenz $f_{\rm St}$ aufgrund äußerer Störungen besonders große Werte annimmt.
 
 
 
Diese Randbedingungen machen deutlich:
 
*Man muss die Trägerfrequenz $f_{\rm T}$ in etwa so wählen wie eingezeichnet, damit $S(f)$ bestmöglich hinsichtlich Verzerrungen und Störungen/Rauschen übertragen werden kann. Es ergibt sich so ein Frequenzband ausreichender Qualität der Breite $B_{\rm HF} = 2 · B_{\rm NF}$.
 
 
 
*Diese Verschiebung des Quellensignal–Spektrums $Q(f)$ um die Trägerfrequenz $f_{\rm T}$ nach rechts – und aufgrund der systemtheoretischen Betrachtungsweise beidseitiger Frequenzen auch um den gleichen Abstand nach links – beschreibt die ''Modulation''.
 
 
 
*Dagegen versteht man unter ''Demodulation'' die Signalumsetzung in Gegenrichtung. Ausgehend vom Empfangsspektrum $R(f)$, das sich vom Sendespektrum $S(f)$ aufgrund von Dämpfung und Rauschen zumindest geringfügig unterscheidet, kommt man zur Spektralfunktion $V(f) ≈ Q(f)$. }}
 
 
 
==Bündelung von Kanälen – Frequenzmultiplex==
 
Ein weiterer Vorteil der Modulation mit einer harmonischen Schwingung als Trägersignal liegt darin, dass ein einziger Übertragungskanal ausreichender Bandbreite von mehreren Teilnehmern gleichzeitig genutzt werden kann. Man spricht dann von '''Frequenzmultiplex''' (FM) bzw. ''Frequency Division Multiplexing'' (FDM) oder auch von ''Frequency Division Multiple Access'' (FDMA).
 
  
 +
*The only solution here is a signal conversion at the transmitter known as&nbsp; &raquo;'''modulation'''&laquo;.&nbsp; The output signal of the modulator will be uniformly referred to as the transmitted signal &nbsp;$s(t)$&nbsp; in the following.&nbsp; This is generally at higher frequencies than the source signal &nbsp;$q(t)$.
  
Die Grafik verdeutlicht den Sachverhalt. Über einen physikalischen Kanal entsprechender Bandbreite sollen $K$ Nachrichtensignale gleichzeitig übertragen werden. Die Teilkanäle sind hier mit $T_1$, ... , $T_K$ bezeichnet. Man geht folgendermaßen vor:
+
*The signal reset at the receiver to recover the low-frequency sink signal &nbsp;$v(t) ≈ q(t)$&nbsp; from the high-frequency received signal &nbsp;$r(t)$&nbsp; is called&nbsp; &raquo;'''demodulation'''&laquo;.&nbsp; With real channels, the desired result&nbsp;$v(t) \equiv q(t)$&nbsp; is not possible due to the noise &nbsp;$n(t)$&nbsp; that is always present.  
  
[[File:P_ID933__Mod_T_1_1_S3_neu.png |right|frame|Frequenzmultiplex]]
 
*Man moduliert die Quellensignale $q_1(t)$, $q_2(t)$, ... , $q_K(t)$ der Teilnehmer mit unterschiedlichen Trägerfrequenzen $f_1$, $f_2$, ... , $f_K$.
 
*Man fasst die Sendesignale $s_1(t)$, $s_2(t)$, ... , $s_K(t)$ zu einem Gesamtsignal $s(t)$ zusammen, so dass eine Mehrfachausnutzung der Übertragungseinrichtungen möglich ist.
 
*Zur Demodulation des Quellensignals $q_k(t)$ verwendet man die spezielle Trägerfrequenz $f_k$. Durch anschließende Filterung erreicht man (bei vernachlässigbaren Rauschstörungen) $v_k(t) = q_k(t)$. Man nennt den Vorgang ''Kanalseparierung.''
 
  
 +
==Adapting to the channel frequency response and noise power density==
 +
<br>
 +
The primary task of modulation&nbsp; (in the sense meant here)&nbsp; is adding a higher frequency carrier signal with carrier frequency &nbsp;$f_{\rm T}$&nbsp; to shift the source signal to a different frequency position with 
 +
*a more favorable channel frequency response&nbsp; $H_{\rm K}(f)$&nbsp; and/or
 +
*a more favorable noise power-spectral density&nbsp; ${\it Φ}_n(f)$.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
'''Beispiel 2:'''&nbsp; Die Frequenzmultiplextechnik wird schon seit vielen Jahrzehnten in der analogen TV– und Rundfunk–Übertragung angewandt.  
+
$\text{Example 1:}$&nbsp; The graph shows the source spectrum&nbsp; $Q(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ q(t)$&nbsp; with bandwidth &nbsp;$B_{\rm NF}$&nbsp; (subscript for&nbsp; "low-frequency"&nbsp; (German: "Niederfreuenz")&nbsp; in blue.&nbsp;
*So können ausreichend viele Programme berücksichtigt werden, zum Beispiel im UHF–Band (Frequenzen zwischen 470 MHz und 850 MHz) mehr als vierzig TV–Programme im Kanalabstand von 8 MHz.  
+
[[File:EN_Mod_T_1_1_S2.png|right|frame|Illustrating modulation and demodulation.&nbsp; Notation: 
*Seit etwa 2004 wird die analoge TV–Übertragung in diesem Frequenzband allerdings mehr und mehr durch den neuen digitalen Video–Standard ''Digital Video Broadcast–Terrestrical''  (DVB–T) verdrängt, der ebenfalls FDMA nutzt.}}  
+
<br>$\bullet$&nbsp; Source signal&nbsp; $q(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ Q(f)$, &nbsp; &nbsp;  with low-frequency bandwidth&nbsp; $B_{\rm NF}$, <br>$\bullet$&nbsp; Transmitted signal&nbsp; $s(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ S(f)$, &nbsp; &nbsp;  with high-frequency bandwidth&nbsp; $B_{\rm HF}$, <br>$\bullet$&nbsp; Received signal&nbsp; $r(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ R(f)$, &nbsp; &nbsp;  with high-frequency bandwidth&nbsp; $B_{\rm HF}$,<br>$\bullet$&nbsp; Sink signal&nbsp; $v(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ V(f)$, &nbsp; &nbsp;  with low-frequency bandwidth&nbsp; $B_{\rm NF}$,<br>$\bullet$&nbsp; Attenuation curve &nbsp;$a_{\rm K}(f) =  –\ln \ \vert H_{\rm K}(f) \vert $&nbsp; of channel &nbsp;&rArr; &nbsp; German:&nbsp; "Kanal" &nbsp;&rArr;&nbsp; "K",<br>$\bullet$&nbsp; Frequency of the carrier &nbsp;&rArr; &nbsp; German:&nbsp; "Träger" &nbsp;&rArr;&nbsp; "T": $f_{\rm T}$<br>$\bullet$&nbsp; Noise power-spectral density&nbsp; ${\it Φ}_n(f)$&nbsp; with center $f_{\rm N}$.
 +
]]
 +
 +
*The attenuation curve &nbsp;$a_{\rm K}(f) = \ –\ln \ \vert H_{\rm K}(f) \vert $&nbsp; of the channel is plotted in green,&nbsp; which here shows favorable characteristics with constant low attenuation in a sufficiently large frequency range.
 +
*In dark yellow,&nbsp; you can see the noise power-spectral density&nbsp;${\it Φ}_n(f)$,&nbsp; which does not disappear throughout the frequency range due to thermal noise and,&nbsp; in our constructed example,&nbsp; takes on particularly large values around the (center) frequency&nbsp;$f_{\rm N}$&nbsp; due to external interferences.
  
  
{{GraueBox|TEXT=
+
These boundary conditions make clear:
'''Beispiel 3:'''&nbsp; In der optischen Übertragungstechnik firmiert das gleiche FDMA–Verfahren unter der Bezeichnung '''Wellenlängenmultiplex''' bzw. ''Wave–length Division Multiplex'' (WDM).  
+
*One must select the carrier frequency &nbsp;$f_{\rm T}$&nbsp; approximately as drawn so that &nbsp;$S(f)$&nbsp; can be transmitted in the best possible way with respect to distortions and interferences/noise.&nbsp; 
*Damit können über einen einzigen Lichtwellenleiter derzeit (2005) gleichzeitig 160 Digitalsignale à 10 Gbit/s übertragen werden, was einer Gesamtbitrate von 1.6 Tbit/s entspricht. }}
+
*This results in a high-frequency band of sufficient quality &nbsp; &rArr; &nbsp; high signal-to-noise power ratio with&nbsp; bandwidth &nbsp;$B_{\rm HF} = 2 · B_{\rm NF}$.
 +
*This shift of the source signal spectrum &nbsp;$Q(f)$&nbsp; by the carrier frequency &nbsp;$f_{\rm T}$&nbsp; to the right – and also by the same distance to the left due to system theory – represents the&nbsp; "modulation".
 +
*"Demodulation"&nbsp; is the same procedure in the opposite direction.&nbsp; Starting from the received spectrum &nbsp;$R(f)$,&nbsp; which differs at least slightly from the transmitted spectrum &nbsp;$S(f)$&nbsp; due to attenuation and noise,&nbsp; one arrives at the spectral function &nbsp;$V(f) ≈ Q(f)$. }}
  
==Analoges Übertragungssystem vs. digitales Übertragungssystem==
 
Für das gesamte Buch &bdquo;Modulationsverfahren&rdquo; wird vorausgesetzt, dass das Quellensignal $q(t)$ und das Sinkensignal $υ(t)$ jeweils Analogsignale seien. Sie sind also sowohl zeitkontinuierlich als auch wertkontinuierlich – seien. Damit ist aber noch nicht festgelegt, ob die eigentliche Übertragung analog oder digital erfolgt.
 
  
[[File:P_ID946__Mod_T_1_1_S4_neu.png|center|frame|Analoges Übertragungssystem (oben) und  digitales Übertragungssystem (unten)]]
+
Further reasons for modulation and demodulation are given in the following sections.  
  
Die beiden Blockschaltbilder verdeutlichen die wesentlichen Unterschiede zwischen einem analogen und einem digitalen Nachrichtenübertragungssystem. Man erkennt:
+
==Channel bundling – Frequency Division Multiplexing==
 +
<br>
 +
Another advantage of modulation with a harmonic oscillation as a carrier signal is that a single transmission channel of sufficient bandwidth can be used by several signals simultaneously.  One then speaks of
 +
*&raquo;'''Frequency Multiplex'''&laquo;&nbsp; $\rm (FM)$,&nbsp; or
 +
*&raquo;'''Frequency Division Multiplexing'''&laquo;&nbsp; $\rm (FDM),$&nbsp; or
 +
*&raquo;'''Frequency Division Multiple Access'''&laquo;&nbsp; $\rm (FDMA)$.
  
*Bei analoger Modulation ist das modulierende Signal $q(t)$ immer ein Analogsignal und damit sowohl wert– als auch zeitkontinuierlich.
 
  
*Dagegen ist bei digitaler Modulation das Eingangssignal $q_{\rm D}(t)$ des Modulators stets digital, also sowohl wertdiskret als auch zeitdiskret.  
+
[[File:EN_Mod_T_1_1_S3_neu.png|right|frame|The principle of multiplexing]]
  
*Bei digitaler Modulation eines analogen Audio– oder Videosignals $q(t)$ muss dieses zunächst A/D–gewandelt werden: $q(t) \ \rightarrow \ q_{\rm D}(t)$.  
+
The diagram illustrates the situation. &nbsp;$K$&nbsp; signals are to be transmitted simultaneously via a physical channel of appropriate bandwidth.&nbsp;  The subchannels &nbsp; (German:&nbsp; "Teilkanäle" &nbsp; &rArr;  "T")&nbsp; are marked here with &nbsp;$T_1$, ... , $T_K$&nbsp;.&nbsp;  One proceeds as follows:
 +
*One modulates the source signals &nbsp;$q_1(t)$, &nbsp;$q_2(t)$, ... , &nbsp;$q_k(t)$, ... , &nbsp;$q_K(t)$&nbsp; of users with different carrier frequencies&nbsp; $f_1$, &nbsp;$f_2$, ... , &nbsp;$f_K$.
 +
*One combines the transmitted signals &nbsp;$s_1(t)$, &nbsp;$s_2(t)$, ... , &nbsp;$s_k(t)$, ... , &nbsp;$s_K(t)$&nbsp; to form a total signal 𝑠(𝑡),&nbsp; enabling multiple use of the transmission set-up.
 +
*To demodulate the signal &nbsp;$s_k(t)$,&nbsp; one uses the special carrier frequency &nbsp;$f_k$.&nbsp; Subsequent filtering achieves &nbsp; $v_k(t) = q_k(t)$,&nbsp; but only with negligible noise.&nbsp;  This process is called&nbsp; &raquo;'''channel separation'''&laquo;.
  
*Man spricht von [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]. Diese erfordert sendeseitig  folgende Maßnahmen: Abtastung – Quantisierung – (PCM–)Codierung.
 
  
*Während die Modulatoren der beiden Systeme durchaus gleich sein können, unterscheiden sich die Demodulatoren: Der obere liefert das analoge Signal $υ(t)$, der untere das Digitalsignal $υ_{\rm D}(t)$.
 
  
*Weiter erkennen wir aus obiger Grafik, dass nach der digitalen Übertragung eines Analogsignals – beispielsweise Audio oder Video – noch eine D/A–Wandlung erfolgen muss.  
+
{{GraueBox|TEXT=
 +
$\text{Example 2:}$&nbsp;  Frequency division multiplexing has been used for many decades in analog TV and radio transmission.
 +
*This allows a sufficient number of programs to be accommodated, such as in the UHF band&nbsp; $($"ulta high frequencies"&nbsp; between&nbsp; $\text{470 MHz}$&nbsp; and&nbsp; $\text{850 MHz)}$,&nbsp; where more than forty TV programs have a channel spacing of&nbsp; $\text{8 MHz}$.
 +
*However,&nbsp; since around 2004,&nbsp; analog TV transmission in this frequency band has been increasingly displaced by the new digital video standard&nbsp; "Digital Video Broadcast Terrestrial"&nbsp; $\rm (DVB–T)$,&nbsp; which also uses FDMA.}}
  
  
{{Beispiel}}
 
Die beiden Grafiken zeigen die jeweiligen Eingangs– und Ausgangssignale des Modulators bei einem analogen und einem digitalen Übertragungssystem.
 
  
 +
{{GraueBox|TEXT=
 +
$\text{Example 3:}$&nbsp;
 +
*In optical transmission technology,&nbsp; this FDMA method is called&nbsp; &raquo;'''Wave-length Division Multiplex'''&laquo;&nbsp; $\rm (WDM)$.
 +
*At present (2005), &nbsp; $160$&nbsp; digital signals at &nbsp; $\text{10 Gbit/s}$&nbsp; each can be transmitted simultaneously via a single optical fiber &nbsp; &rArr; &nbsp; Total bit rate:&nbsp; $\text{1.6 Tbit/s}$. }}
  
[[File:P_ID936__Mod_T_1_1_S4b_neu.png | Signale bei analoger und digitaler Amplitudenmodulation]]
+
==Analog vs. digital transmission systems==
 +
<br>
 +
For the entire book&nbsp; "Modulation Methods",&nbsp; it is assumed that the source signal&nbsp; $q(t)$&nbsp; and the sink signal&nbsp; $v(t)$&nbsp; are both analog signals.
 +
*Thus, they can be continuous in both time and value.
 +
*However,&nbsp; this does not yet determine whether the actual transmission is analog or digital.  
  
 +
[[File:EN_Mod_T_1_1_S4.png|right|frame|Analog transmission system&nbsp; (above) and&nbsp;  digital transmission system&nbsp; (below)]]
  
Beim System oben steckt die Information über das analoge Quellensignal $q(t)$ direkt in der Amplitude (Hüllkurve) des modulierten Signals $s(t)$. Es handelt sich hierbei um das analoge Modulationsverfahren Zweiseitenband–Amplitudenmodulation mit Träger, das in Kapitel 2.1 beschrieben wird.  
+
<br>The two block diagrams illustrate the main differences between an analog and a digital transmission system.&nbsp; It becomes clear that:
  
Im unteren Bild ist das Modulatoreingangssignal $q_{\rm D}(t)$ digital und aus dem analogen Quellensignal $q(t)$ durch Abtastung, Quantisierung und PCM–Codierung entstanden – siehe Kapitel 4.1. Das modulierte Signal $s(t)$ zeigt, dass der Modulator eine ähnliche Funktionalität aufweist wie im oberen Beispiel. Man bezeichnet diese digitale Variante der Amplitudenmodulation als ASK (''Amplitude Shift Keying'').  
+
*In analog modulation,&nbsp; the modulating source signal &nbsp;$q(t)$&nbsp; is always an analog signal and thus both continuous in value and in time.
{{end}}
 
  
 +
*In contrast, in digital modulation, the modulator's input signal &nbsp;$q_{\rm D}(t)$&nbsp; is always digital, thus both discrete in value and discrete in time.
  
 +
*When digitally modulating an analog audio or video signal &nbsp;$q(t)$,&nbsp; it must first be&nbsp; $\rm A/D$&nbsp; converted:  &nbsp; $q(t) \ \rightarrow \ q_{\rm D}(t)$.&nbsp; This is referred to as&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|$\text{pulse code modulation}$]].&nbsp; This requires the following actions on the transmission side: &nbsp;[[Modulation_Methods/Pulse_Code_Modulation#Sampling_and_signal_reconstruction|$\text{sampling}$]]&nbsp; –&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#Quantization_and_quantization_noise|$\text{quantization}$]]&nbsp; –&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#PCM_encoding_and_decoding|$\text{PCM encoding}$]].
  
Analoge Modulationsverfahren haben derzeit (2005) vor allem für die Verbreitung von Rundfunk– und Fernsehprogrammen noch eine gewisse Bedeutung, werden aber auch in diesem Bereich mehr und mehr durch entsprechende Digitalverfahren verdrängt. Trotzdem nehmen die Analogverfahren in diesem Buch einen breiteren Raum – Kapitel 2  und Kapitel 3 – ein. Die Gründe hierfür sind:  
+
*Functionally, the modulator of the digital system&nbsp; $\rm (Mod)$&nbsp; does not differ from the modulator of the analog transmission system.&nbsp; But  the two demodulators differ in principle:
 +
:*The upper one provides the analog signal &nbsp;$v(t)$, the lower one provides the digital signal &nbsp;$v_{\rm D}(t)$.
 +
:*After the digital transmission of an analog signal &ndash; such as audio or video &ndash; a&nbsp; $\rm D/A$&nbsp; conversion must therefore still take place.
  
*Aufgrund der hohen Kosten bei der Umrüstung bestehender sowie der Einführung neuer Systeme werden auch für die Analogsysteme noch längere Laufzeiten prognostiziert.
 
*Viele Komponenten eines Analogsystems werden ebenso bei den digitalen Modulationsverfahren benötigt, zum Beispiel der in beiden Varianten verwendete Synchrondemodulator.
 
*Die typische Vorgehensweise bei der Untersuchung nachrichtentechnischer Aspekte lässt sich bei Analogsystemen umfassender – und oft auch verständlicher – erklären als bei Digitalsystemen.
 
  
 +
{{GraueBox|TEXT=
 +
$\text{Example 4:}$&nbsp; The two graphs show the respective input signals&nbsp; (each in blue dashed lines)&nbsp; and output signals&nbsp; (solid red)&nbsp; of the modulator for an analog and a digital transmission system.
  
Bevor wir uns den digitalen Modulationsverfahren zuwenden, folgen einige Daten zur geschichtlichen Entwicklung der analogen Modulation.  
+
[[File:EN_Mod_T_1_1_S4b_neu.png|right|frame|Example signals for analog and digital amplitude modulation]]
 
 
==Zur Entwicklung der analogen Modulationsverfahren==
 
Meilensteine für die Entwicklung der analogen Modulationsverfahren auf Trägerfrequenzbasis waren:
 
*Einführung des regulären Rundfunkdienstes (1923)
 
*Beginn der Trägerfrequenztelefonie (1923)
 
*Einführung des regulären Fernsehdienstes (1935)
 
*Erste Satellitenübertragung (1945)
 
*Einführung des NTSC–Farbfernsehens (1953)
 
*Einführung des PAL–Farbfernsehens (1967)
 
  
 +
*In the analog transmission system (above), the information about the analog source signal &nbsp;$q(t)$&nbsp; is directly in the amplitude (envelope) of the modulated signal &nbsp;$s(t)$.&nbsp; This is the analog modulation method&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Double-Sideband_Amplitude_Modulation_with_carrier|"double-sideband amplitude modulation with carrier"]] &nbsp; &rArr; &nbsp; $\text{(DSB-AM)}$.
  
  
Voraussetzungen für diese Entwicklungen waren u. A. folgende Erfindungen in der Vergangenheit:
+
*The bottom graph refers to&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|"Amplitude Shift Keying"]]&nbsp; $\rm (ASK)$,&nbsp; the digital variant of amplitude modulation.&nbsp; Here, the modulator input signal &nbsp;$q_{\rm D}(t)$&nbsp; is digital and derived from the analog source signal&nbsp; $q(t)$&nbsp; by sampling, quantization, and PCM encoding.
*Elektrische Übertragung von Sprache – Philip Reis  – 1861
 
*Erstes kommerziell nutzbares Telefon – Alexander Graham Bell  – 1876
 
*Entwicklung des Zeilenabtastverfahrens – Paul Nipkow  – 1884
 
*Entdeckung der elektromagnetischen Wellen – Heinrich Hertz  – 1887
 
*Erfindung der Elektronenröhre – Robert von Lieben  und Lee de Forest  – 1906
 
*Erfindung des Transistors – William Shockley , Walter Brattain  und John Bardeen  – 1948
 
  
==Vorteile der digitalen Modulationsverfahren==
 
  
Die Vorteile der digitalen Modulationsverfahren sind vielfältig:
+
*The modulated signal &nbsp;$s(t)$&nbsp; shows that the modulator also has similar functionality in the digital transmission system as in the&nbsp; (above)&nbsp; analog transmission system.}}
  
*Die Realisierung eines Digitalsystems kann ebenfalls digital erfolgen und die Schaltungen sind in hohem Maße integrierbar (VLSI – ''Very Large Scale Integration'').
 
  
 +
Analog modulation methods currently (2005)&nbsp; still have a certain significance,&nbsp; especially for the distribution of radio and television programs,&nbsp; but they are being increasingly displaced by corresponding digital methods in this area.&nbsp; Nevertheless,&nbsp; we will devote more space to analog methods in&nbsp;[[Modulation_Methods|"this book"]]&nbsp;:
 +
* Chapter 2: &nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|$\text{Amplitude modulation and demodulation}$]],
 +
* Chapter 3: &nbsp; [[Modulation_Methods/Phase_Modulation_(PM)|$\text{Angle modulation and demodulation}$]].
  
*Die Übertragungsqualität ist meist sehr gut, da sich (Rausch–) Störungen nur dann bemerkbar machen, wenn sie größer als ein vorgegebener Schwellenwert sind.
 
  
 +
{{BlaueBox|TEXT=
 +
$\text{The reasons for this are:}$ 
  
*Wegen der möglichen Signalregenerierung in regelmäßigen Abständen durch sog. Regeneratoren können sehr große Entfernungen mit hinreichend guter Übertragungsqualität überbrückt werden.  
+
*Due to the high costs of retrofitting existing systems or introducing new ones,&nbsp; ever longer runtimes are predicted for analog systems. 
 +
*Many components of an analog system are also required for the digital modulation processes,&nbsp; for example the synchronous demodulator used in both variants.  
 +
*The typical procedure for investigating aspects of a communications technology can be explained more comprehensively – and often more comprehensibly – for analog systems than for digital systems.}}
  
  
*Die Datenübertragung – zum Beispiel zwischen Server und Client – bietet sich in digitaler Form an, da jedes Datensignal bereits digital ist. Analogsignale werden vor der Übertragung digitalisiert.
+
==The historical development of analog modulation methods==
 +
<br>
 +
The following dates represent milestones for the development of analog modulation methods using carrier frequencies:
  
 +
*The introduction of regular broadcasting service&nbsp; (1923),
 +
*the start of carrier-frequency telephony&nbsp; (1923),
 +
*the introduction of regular television service&nbsp; (1935),
 +
*the first satellite transmission&nbsp; (1945),
 +
*the introduction of NTSC color television&nbsp; (1953),
 +
*the introduction of PAL color television&nbsp; (1967).
  
*Durch die einheitliche Übertragung von Sprach–, Bild– und Datensignalen ist es möglich, ein gemeinsames und leistungsfähiges Netz für viele Telekommunikationsdienste aufzubauen.
 
  
 +
The following inventions,&nbsp; among others,&nbsp; were necessary for these developments:
  
*Es existieren einfache und sehr effiziente Verschlüsselungs– und Datensicherungsmechanismen für Digitalsignale, was eine wichtige Voraussetzung für sicherheitskritische Anwendungen ist.  
+
*1861:&nbsp; The electrical transmission of speech &nbsp; &rArr; &nbsp;  [https://en.wikipedia.org/wiki/Philipp_Reis $\text{Philip Reis}$],
 +
*1876:&nbsp; the first commercially usable telephone &nbsp; &rArr; &nbsp;  [https://en.wikipedia.org/wiki/Alexander_Graham_Bell $\text{Alexander Graham Bell}$],
 +
*1884:&nbsp; the development of line scanning &nbsp; &rArr; &nbsp;  [https://en.wikipedia.org/wiki/Paul_Nipkow Paul $\text{Julius Gottlieb Nipkow}$],
 +
*1887:&nbsp; the discovery of electromagnetic waves &nbsp; &rArr; &nbsp;  [https://en.wikipedia.org/wiki/Heinrich_Hertz $\text{Heinrich Hertz}$],
 +
*1906:&nbsp; the invention of the electron tube &nbsp; &rArr; &nbsp;  [https://en.wikipedia.org/wiki/Robert_von_Lieben $\text{Robert von Lieben}$]&nbsp;  and&nbsp; [https://en.wikipedia.org/wiki/Lee_De_Forest $\text{Lee de Forest}$],
 +
*1948:&nbsp; the invention of the transistor &nbsp; &rArr; &nbsp;  [https://en.wikipedia.org/wiki/William_Bradford_Shockley $\text{William Bradford Shockley}$],&nbsp; [https://en.wikipedia.org/wiki/Walter_Houser_Brattain $\text{Walter Houser Brattain}$]&nbsp;  and&nbsp; [https://en.wikipedia.org/wiki/John_Bardeen $\text{John Bardeen}$].  
  
 +
==Advantages of digital modulation methods==
 +
<br>
 +
The advantages of digital modulation methods are numerous:
  
*Bei einem Digitalsystem können eventuell zusätzlich zu Frequenzmultiplex auch die Vorteile von Zeitmultiplexverfahren genutzt werden, die nachfolgend beschrieben werden.  
+
*The realization of a digital system can also be done digitally and the circuits can be easily integrated&nbsp; (VLSI "Very Large Scale Integration").
 +
*The transmission quality is usually very good,&nbsp; since noise is only noticeable if it is greater than a predefined threshold.
 +
*Because signals can be regenerated at regular intervals by so-called regenerators,&nbsp; very large distances can be bridged with sufficiently good transmission quality.
 +
*Data transmission&nbsp; – e.g. between server and client –&nbsp; is best done digitally,&nbsp; since every data signal is already digital.&nbsp; Analog signals must first be digitalized.
 +
*Uniform transmission of voice, image and data signals makes it possible to build a shared,&nbsp; high-performance network for many telecommunications services.
 +
*Simple and highly efficient encryption and data security mechanisms exist for digital signals,&nbsp; which is an important prerequisite for safety-critical applications.
 +
*In a digital system,&nbsp; the advantages of time-division multiplexing – as a possible addition to frequency division multiplexing can also be exploited,&nbsp; as described below.
  
  
 +
All systems developed in recent years are digital, for example:
  
Alle in den letzten Jahren entwickelten Systeme sind digital, zum Beispiel:
+
*&nbsp; "Compact Disc"&nbsp; (CD) – digital storage medium&nbsp; (Philips, 1982),  
*CD (''Compact Disc'') – digitales Speichermedium (Philips, 1982),  
+
*&nbsp; "Digital European Cordless Telephone"&nbsp; (DECT) – cordless telephone&nbsp; (1992),  
*DECT (''Digital European Cordless Telephone'') – schnurloses Telefon (1992),  
+
*&nbsp; "Global System for Mobile Communication" (GSM) – European mobile communications system&nbsp; (1992),  
*GSM (''Global System for Mobile Communication'') – europäisches Mobilfunksystem (1992),  
+
*&nbsp; "Integrated Services Digital Network"&nbsp; (ISDN) – digital telephone network&nbsp; (in Europe, 1993),  
*ISDN (''Integrated Services Digital Network'') – digitales Telefonnetz (in Europa 1993),  
+
*&nbsp; "Digital Audio Broadcast"&nbsp; (DAB) – digital radio broadcasting&nbsp; (2001),  
*DAB (''Digital Audio Broadcast'') – digitaler Rundfunk (2001),  
+
*&nbsp; "Digital Video Broadcast"&nbsp; (DVB) – digital television&nbsp; (2002),  
*DVB (''Digital Video Broadcast'') – digitales Fernsehen (2002),  
+
*&nbsp; "Digital Subscriber Line"&nbsp; (DSL) – high-speed computer linkage&nbsp; (2002),  
*DSL (''Digital Subscriber Line'') – schnelle Rechnerkopplung (2002),  
+
*&nbsp; "Universal Mobile Telephone System"&nbsp;  (UMTS) – 3rd generation mobile communications (2003),  
*UMTS (''Universal Mobile Telephone System'') – Mobilfunk der 3. Generation (2003),  
+
*&nbsp; "Long Term Evolution"&nbsp; (LTE) – 4th generation mobile communications (2011).  
*LTE (''Long Term Evolution'') – Mobilfunk der 4. Generation (2011).  
 
  
  
Die Zahlen in Klammern geben jeweils die Jahreszahl des ersten Einsatzes an. Meistens hat es von der Erfindung über die Standardisierung bis hin zur Entwicklung eines einsatzfähigen Systems mehr als ein Jahrzehnt gedauert.  
+
The numbers in parentheses indicate the year of first use in each case.  In most cases, it took more than a decade from invention, and then standardization, to the development of an operational system.  
  
In Kapitel 4 dieses Buches sind die digitalen Modulationsverfahren zusammenfassend dargestellt. Eine detaillierte Beschreibung – unter Anderem die Berechnung der Fehlerwahrscheinlichkeit sowie Aspekte der Systemoptimierung – finden Sie im folgenden Buch [[Digitalsignalübertragung]].  
+
*Digital modulation methods are summarized in the fourth main chapter of &nbsp;[[Modulation_Methods|"this book"]].
 +
*A detailed description&nbsp; (calculation of error probability,&nbsp; aspects of system optimization,&nbsp; etc.)&nbsp; can be found in the book&nbsp; [[Digital_Signal_Transmission|"Digital Signal Transmission"]].  
  
==Zeitmultiplexverfahren==
+
==Time Division Multiplex methods==
Bei einem Digitalsystem kann zur gemeinsamen Nutzung eines Übertragungskanals durch mehrere Nutzer neben Frequenzmultiplex auch die Zeitmultiplextechnik eingesetzt werden.  
+
<br>
 +
[[File:Mod_T_1_1_S7_version2.png|right|frame|Illustration of Time Division Multiplex]]
  
 +
In a digital system,&nbsp; time division multiplexing can be used in addition to frequency division multiplexing to share a transmission channel between several users.&nbsp; 
  
[[File:P_ID937__Mod_T_1_1_S7_neu.png | Zur Verdeutlichung von Zeitmultiplex]]
+
The diagram is intended to illustrate the principle using an example:  
  
 +
*The user signals&nbsp; $q_1(t)$,&nbsp; $q_2(t)$&nbsp; and&nbsp; $q_3(t)$&nbsp; are binary and are fully characterized by amplitude coefficients&nbsp; $(0$&nbsp; or&nbsp; $1)$. &nbsp; A&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|$\text{time-discrete signal representation}$]]&nbsp; is present &nbsp; $($symbol duration &nbsp;$T = 1\ \rm &micro; s)$.
 +
* For the bit rates of the first two signals, &nbsp;$R_1 = R_2 = 1/T = \text{1 Mbit/s}$&nbsp; applies in each case.&nbsp;  In contrast,&nbsp; the bit rate of &nbsp;$q_3(t)$&nbsp; is twice as large, i.e. &nbsp; $R_3 =  \text{2 Mbit/s}$.
 +
*The common time-division multiplexed output signal &nbsp;$q(t)$&nbsp; is shown below.&nbsp;  The reference to the input signals is color-coded.&nbsp; The total bit rate is &nbsp;$R = R_1 + R_2 + R_3 = \text{4 Mbit/s}$.
 +
*After transmitting &nbsp;$q(t)$&nbsp; via the physical channel,&nbsp; the partial signals &nbsp;$v_1(t)$, ... ,&nbsp; $v_3(t)$&nbsp; are separated again at the receiver.&nbsp;  This functional unit is called&nbsp; "demultiplexer".
 +
*In practice,&nbsp; multiplexing is usually not done bit by bit,&nbsp; but the nodes are provided with time slots in a fixed grid in which bit frames are transmitted.
  
Die Grafik soll das Prinzip an einem Beispiel verdeutlichen:
+
==Exercises for the chapter==
*Die Quellensignale $q_1(t), q_2(t)$ und $q_3(t)$ sind binär und werden durch die Amplitudenkoeffizienten (0 oder 1) vollständig beschrieben. Es liegt somit eine zeitdiskrete Signaldarstellung vor.
+
<br>
*Die Bitraten der beiden oberen Signale betragen jeweils $R_1 = R_2 =$ 1/(1μs) = 1 Mbit/s. Dagegen ist die Bitrate von $q_3(t)$ doppelt so groß, also $R_3 =$ 2 Mbit/s.
+
[[Aufgaben:Exercise_1.1:_Multiplexing_in_the_GSM_System|Exercise 1.1: Multiplexing in the GSM System]]
*Unten dargestellt ist das Ausgangssignal $q(t)$ einer Zeitmultiplexeinrichtung mit der Gesamtbitrate $R = R_1 + R_2 + R_3 =$ 4 Mbit/s. Der Bezug zu den Eingangssignalen ist farblich gekennzeichnet.
 
*Nach der Übertragung von $q(t)$ über den physikalischen Kanal müssen die Teilsignale $υ_1(t), υ_2(t)$ und $υ_3(t)$ beim Empfänger getrennt werden. Man nennt diese Funktionseinheit den Demultiplexer.  
 
*In der Praxis erfolgt das Multiplexen meist nicht bitweise, sondern den Teilnehmern werden in einem festen Raster Zeitschlitze zur Verfügung gestellt, in denen Bitrahmen übertragen werden.
 
  
 +
[[Aufgaben:Exercise_1.1Z:_VHF_II_Broadcasting|Exercise 1.1Z: VHF II Broadcasting]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:09, 23 January 2023

# OVERVIEW OF THE FIRST MAIN CHAPTER #


This book deals with »modulation« and »demodulation«,  two classical and important methods for Communications Engineering,  which already have a very long tradition but are nevertheless constantly developing. 

Before  »analog amplitude and angle modulation«  are described in detail in the following chapters,  along with today's more relevant digital modulation methods,  this first chapter introduces the definitions and descriptive variables which are equally valid for all systems. 

This chapter deals in detail with:

  1. the  »objectives«  of modulation and demodulation,
  2. the  »differences and similarities«  between analog and digital modulation techniques,
  3. the  »signal-to-noise power ratio«  as a very general quality criterion,
  4. »linear" and  »non-linear distortions«  due to modulation/demodulation,
  5. degradation in the presence of  »stochastic interference«,  such as  »noise«,
  6. a  »unified model«  for describing of amplitude and angle modulation,
  7. descriptions using the  »analytical signal«  and the  »equivalent low–pass signal«.

The communication system under consideration


The communication system considered in the book "Modulation Methods"

Throughout the book  "Modulation Methods",  we will be basing our communication system on the block diagram shown here.

The  »transmission medium«   ⇒   »physical transmission channel«  is characterized here by its  $\text{frequency response}$  $H_{\rm K}(f)$.  We will consider:

  • »electrical lines«  (coaxial cable, twisted pair, etc.), 
  • »optical fibers«  (multimode or single mode),
  • »radio connections«  (satellite radio, mobile radio, etc.).


Further considerations:

  • Let the source signal  $q(t)$  be an $\text{analog signal}$, for example, speech, music or the (analog) output of a camera.  Let the corresponding spectrum  $Q(f)$  lie in the frequency range  $|f| ≤ B_{\rm NF}$ , where the subscript stands for  "low frequency"  (German:  "Niederfrequenz").
  • The middle block in the above sketch also includes disturbances  (interferences,  crosstalk from other users,  pulse interference from power lines, etc.) and noise sources such as thermal and semiconductor noise.  These are captured by the $\text{noise power-spectral density}$  ${\it Φ}_n(f)$.
  • The task of such a communication system is to transmit the message or information contained in the source signal  $q(t)$  – note the  $\text{different meaning of these quantities}$  – to the spatially distant sink, with the proviso that the sink signal $v(t)$  differs  "as little as possible"  from  $q(t)$.


  • A common problem is that the channel is often unsuitable for direct transmission of the source signal $q(t)$ because it contains  "inconvenient frequencies".  For example,  a music signal with frequencies up to about $\text{15 kHz}$  cannot be transmitted directly by radio,  since radio propagation is only possible from around $\text{100 kHz}$.
  • The only solution here is a signal conversion at the transmitter known as  »modulation«.  The output signal of the modulator will be uniformly referred to as the transmitted signal  $s(t)$  in the following.  This is generally at higher frequencies than the source signal  $q(t)$.
  • The signal reset at the receiver to recover the low-frequency sink signal  $v(t) ≈ q(t)$  from the high-frequency received signal  $r(t)$  is called  »demodulation«.  With real channels, the desired result $v(t) \equiv q(t)$  is not possible due to the noise  $n(t)$  that is always present.


Adapting to the channel frequency response and noise power density


The primary task of modulation  (in the sense meant here)  is adding a higher frequency carrier signal with carrier frequency  $f_{\rm T}$  to shift the source signal to a different frequency position with

  • a more favorable channel frequency response  $H_{\rm K}(f)$  and/or
  • a more favorable noise power-spectral density  ${\it Φ}_n(f)$.


$\text{Example 1:}$  The graph shows the source spectrum  $Q(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ q(t)$  with bandwidth  $B_{\rm NF}$  (subscript for  "low-frequency"  (German: "Niederfreuenz")  in blue. 

Illustrating modulation and demodulation.  Notation:
$\bullet$  Source signal  $q(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ Q(f)$,     with low-frequency bandwidth  $B_{\rm NF}$,
$\bullet$  Transmitted signal  $s(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ S(f)$,     with high-frequency bandwidth  $B_{\rm HF}$,
$\bullet$  Received signal  $r(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ R(f)$,     with high-frequency bandwidth  $B_{\rm HF}$,
$\bullet$  Sink signal  $v(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ V(f)$,     with low-frequency bandwidth  $B_{\rm NF}$,
$\bullet$  Attenuation curve  $a_{\rm K}(f) = –\ln \ \vert H_{\rm K}(f) \vert $  of channel  ⇒   German:  "Kanal"  ⇒  "K",
$\bullet$  Frequency of the carrier  ⇒   German:  "Träger"  ⇒  "T": $f_{\rm T}$
$\bullet$  Noise power-spectral density  ${\it Φ}_n(f)$  with center $f_{\rm N}$.
  • The attenuation curve  $a_{\rm K}(f) = \ –\ln \ \vert H_{\rm K}(f) \vert $  of the channel is plotted in green,  which here shows favorable characteristics with constant low attenuation in a sufficiently large frequency range.
  • In dark yellow,  you can see the noise power-spectral density ${\it Φ}_n(f)$,  which does not disappear throughout the frequency range due to thermal noise and,  in our constructed example,  takes on particularly large values around the (center) frequency $f_{\rm N}$  due to external interferences.


These boundary conditions make clear:

  • One must select the carrier frequency  $f_{\rm T}$  approximately as drawn so that  $S(f)$  can be transmitted in the best possible way with respect to distortions and interferences/noise. 
  • This results in a high-frequency band of sufficient quality   ⇒   high signal-to-noise power ratio with  bandwidth  $B_{\rm HF} = 2 · B_{\rm NF}$.
  • This shift of the source signal spectrum  $Q(f)$  by the carrier frequency  $f_{\rm T}$  to the right – and also by the same distance to the left due to system theory – represents the  "modulation".
  • "Demodulation"  is the same procedure in the opposite direction.  Starting from the received spectrum  $R(f)$,  which differs at least slightly from the transmitted spectrum  $S(f)$  due to attenuation and noise,  one arrives at the spectral function  $V(f) ≈ Q(f)$.


Further reasons for modulation and demodulation are given in the following sections.

Channel bundling – Frequency Division Multiplexing


Another advantage of modulation with a harmonic oscillation as a carrier signal is that a single transmission channel of sufficient bandwidth can be used by several signals simultaneously. One then speaks of

  • »Frequency Multiplex«  $\rm (FM)$,  or
  • »Frequency Division Multiplexing«  $\rm (FDM),$  or
  • »Frequency Division Multiple Access«  $\rm (FDMA)$.


The principle of multiplexing

The diagram illustrates the situation.  $K$  signals are to be transmitted simultaneously via a physical channel of appropriate bandwidth.  The subchannels   (German:  "Teilkanäle"   ⇒ "T")  are marked here with  $T_1$, ... , $T_K$ .  One proceeds as follows:

  • One modulates the source signals  $q_1(t)$,  $q_2(t)$, ... ,  $q_k(t)$, ... ,  $q_K(t)$  of users with different carrier frequencies  $f_1$,  $f_2$, ... ,  $f_K$.
  • One combines the transmitted signals  $s_1(t)$,  $s_2(t)$, ... ,  $s_k(t)$, ... ,  $s_K(t)$  to form a total signal 𝑠(𝑡),  enabling multiple use of the transmission set-up.
  • To demodulate the signal  $s_k(t)$,  one uses the special carrier frequency  $f_k$.  Subsequent filtering achieves   $v_k(t) = q_k(t)$,  but only with negligible noise.  This process is called  »channel separation«.


$\text{Example 2:}$  Frequency division multiplexing has been used for many decades in analog TV and radio transmission.

  • This allows a sufficient number of programs to be accommodated, such as in the UHF band  $($"ulta high frequencies"  between  $\text{470 MHz}$  and  $\text{850 MHz)}$,  where more than forty TV programs have a channel spacing of  $\text{8 MHz}$.
  • However,  since around 2004,  analog TV transmission in this frequency band has been increasingly displaced by the new digital video standard  "Digital Video Broadcast – Terrestrial"  $\rm (DVB–T)$,  which also uses FDMA.


$\text{Example 3:}$ 

  • In optical transmission technology,  this FDMA method is called  »Wave-length Division Multiplex«  $\rm (WDM)$.
  • At present (2005),   $160$  digital signals at   $\text{10 Gbit/s}$  each can be transmitted simultaneously via a single optical fiber   ⇒   Total bit rate:  $\text{1.6 Tbit/s}$.

Analog vs. digital transmission systems


For the entire book  "Modulation Methods",  it is assumed that the source signal  $q(t)$  and the sink signal  $v(t)$  are both analog signals.

  • Thus, they can be continuous in both time and value.
  • However,  this does not yet determine whether the actual transmission is analog or digital.
Analog transmission system  (above) and  digital transmission system  (below)


The two block diagrams illustrate the main differences between an analog and a digital transmission system.  It becomes clear that:

  • In analog modulation,  the modulating source signal  $q(t)$  is always an analog signal and thus both continuous in value and in time.
  • In contrast, in digital modulation, the modulator's input signal  $q_{\rm D}(t)$  is always digital, thus both discrete in value and discrete in time.
  • Functionally, the modulator of the digital system  $\rm (Mod)$  does not differ from the modulator of the analog transmission system.  But the two demodulators differ in principle:
  • The upper one provides the analog signal  $v(t)$, the lower one provides the digital signal  $v_{\rm D}(t)$.
  • After the digital transmission of an analog signal – such as audio or video – a  $\rm D/A$  conversion must therefore still take place.


$\text{Example 4:}$  The two graphs show the respective input signals  (each in blue dashed lines)  and output signals  (solid red)  of the modulator for an analog and a digital transmission system.

Example signals for analog and digital amplitude modulation
  • In the analog transmission system (above), the information about the analog source signal  $q(t)$  is directly in the amplitude (envelope) of the modulated signal  $s(t)$.  This is the analog modulation method  "double-sideband amplitude modulation with carrier"   ⇒   $\text{(DSB-AM)}$.


  • The bottom graph refers to  "Amplitude Shift Keying"  $\rm (ASK)$,  the digital variant of amplitude modulation.  Here, the modulator input signal  $q_{\rm D}(t)$  is digital and derived from the analog source signal  $q(t)$  by sampling, quantization, and PCM encoding.


  • The modulated signal  $s(t)$  shows that the modulator also has similar functionality in the digital transmission system as in the  (above)  analog transmission system.


Analog modulation methods currently (2005)  still have a certain significance,  especially for the distribution of radio and television programs,  but they are being increasingly displaced by corresponding digital methods in this area.  Nevertheless,  we will devote more space to analog methods in "this book" :


$\text{The reasons for this are:}$

  • Due to the high costs of retrofitting existing systems or introducing new ones,  ever longer runtimes are predicted for analog systems.
  • Many components of an analog system are also required for the digital modulation processes,  for example the synchronous demodulator used in both variants.
  • The typical procedure for investigating aspects of a communications technology can be explained more comprehensively – and often more comprehensibly – for analog systems than for digital systems.


The historical development of analog modulation methods


The following dates represent milestones for the development of analog modulation methods using carrier frequencies:

  • The introduction of regular broadcasting service  (1923),
  • the start of carrier-frequency telephony  (1923),
  • the introduction of regular television service  (1935),
  • the first satellite transmission  (1945),
  • the introduction of NTSC color television  (1953),
  • the introduction of PAL color television  (1967).


The following inventions,  among others,  were necessary for these developments:

Advantages of digital modulation methods


The advantages of digital modulation methods are numerous:

  • The realization of a digital system can also be done digitally and the circuits can be easily integrated  (VLSI – "Very Large Scale Integration").
  • The transmission quality is usually very good,  since noise is only noticeable if it is greater than a predefined threshold.
  • Because signals can be regenerated at regular intervals by so-called regenerators,  very large distances can be bridged with sufficiently good transmission quality.
  • Data transmission  – e.g. between server and client –  is best done digitally,  since every data signal is already digital.  Analog signals must first be digitalized.
  • Uniform transmission of voice, image and data signals makes it possible to build a shared,  high-performance network for many telecommunications services.
  • Simple and highly efficient encryption and data security mechanisms exist for digital signals,  which is an important prerequisite for safety-critical applications.
  • In a digital system,  the advantages of time-division multiplexing – as a possible addition to frequency division multiplexing – can also be exploited,  as described below.


All systems developed in recent years are digital, for example:

  •   "Compact Disc"  (CD) – digital storage medium  (Philips, 1982),
  •   "Digital European Cordless Telephone"  (DECT) – cordless telephone  (1992),
  •   "Global System for Mobile Communication" (GSM) – European mobile communications system  (1992),
  •   "Integrated Services Digital Network"  (ISDN) – digital telephone network  (in Europe, 1993),
  •   "Digital Audio Broadcast"  (DAB) – digital radio broadcasting  (2001),
  •   "Digital Video Broadcast"  (DVB) – digital television  (2002),
  •   "Digital Subscriber Line"  (DSL) – high-speed computer linkage  (2002),
  •   "Universal Mobile Telephone System"  (UMTS) – 3rd generation mobile communications (2003),
  •   "Long Term Evolution"  (LTE) – 4th generation mobile communications (2011).


The numbers in parentheses indicate the year of first use in each case. In most cases, it took more than a decade from invention, and then standardization, to the development of an operational system.

  • Digital modulation methods are summarized in the fourth main chapter of  "this book".
  • A detailed description  (calculation of error probability,  aspects of system optimization,  etc.)  can be found in the book  "Digital Signal Transmission".

Time Division Multiplex methods


Illustration of Time Division Multiplex

In a digital system,  time division multiplexing can be used in addition to frequency division multiplexing to share a transmission channel between several users. 

The diagram is intended to illustrate the principle using an example:

  • The user signals  $q_1(t)$,  $q_2(t)$  and  $q_3(t)$  are binary and are fully characterized by amplitude coefficients  $(0$  or  $1)$.   A  $\text{time-discrete signal representation}$  is present   $($symbol duration  $T = 1\ \rm µ s)$.
  • For the bit rates of the first two signals,  $R_1 = R_2 = 1/T = \text{1 Mbit/s}$  applies in each case.  In contrast,  the bit rate of  $q_3(t)$  is twice as large, i.e.   $R_3 = \text{2 Mbit/s}$.
  • The common time-division multiplexed output signal  $q(t)$  is shown below.  The reference to the input signals is color-coded.  The total bit rate is  $R = R_1 + R_2 + R_3 = \text{4 Mbit/s}$.
  • After transmitting  $q(t)$  via the physical channel,  the partial signals  $v_1(t)$, ... ,  $v_3(t)$  are separated again at the receiver.  This functional unit is called  "demultiplexer".
  • In practice,  multiplexing is usually not done bit by bit,  but the nodes are provided with time slots in a fixed grid in which bit frames are transmitted.

Exercises for the chapter


Exercise 1.1: Multiplexing in the GSM System

Exercise 1.1Z: VHF II Broadcasting