Difference between revisions of "Aufgaben:Exercise 4.10: Turbo Encoder for UMTS and LTE"

From LNTwww
 
(49 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Turbocodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/The_Basics_of_Turbo_Codes}}
  
[[File:P_ID3051__KC_A_4_10_v1.png|right|frame|UMTS/LTE–Turbocoder]]
+
[[File:EN_KC_A_4_10_v1.png|right|frame|Turbo encoder for UMTS and LTE]]
 +
The mobile communications standards  [[Mobile_Communications/Characteristics_of_UMTS|$\rm UMTS$]]  and  [[Mobile_Communications/General_Information_on_the_LTE_Mobile_Communications_Standard|$\rm LTE$]]  each use a turbo code that is largely identical to the encoder described in the  [[Channel_Coding/The_Basics_of_Turbo_Codes|"The Basics of Turbo Codes"]]  chapter.
 +
* The  $1/n$ convolutional code is systematic, meaning that the encoded sequence  $\underline{x}$  includes the information sequence  $\underline{u}$  as a component.
  
 +
* The parity-check sequences  $\underline{p}_1$  and  $\underline{p}_2$  are based on the same transfer function:
 +
:$$G_1(D) = G_2(D) = G(D).$$
 +
* $\underline{p}_1$  and  $\underline{p}_2$  however,  use different input sequences  $\underline{u}$  and  $\underline{u}_{\pi}$,  respectively.  Here,  ${\rm \Pi}$  marks the interleaver,  for UMTS and LTE mostly a  $S$–random interleaver.
  
  
===Fragebogen===
+
[[File:P_ID3052__KC_A_4_10b_v2.png|left|frame|Given filter structure]]
 +
<br><br><br><br><br><br>The main difference compared to the description in the theory part results from a different transfer function&nbsp; $G(D)$&nbsp; given by the recursive filter structure drawn on the left.
 +
<br clear=all>
 +
 
 +
 
 +
Hints:
 +
* The exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes| "Basics of Turbo Codes"]].
 +
 
 +
* Knowledge is expected about
 +
** the&nbsp; [[Channel_Coding/Algebraic_and_Polynomial_Description|"Algebraic and Polynomial Description of Convolutional Codes"]],
 +
** the&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram|"Code Description with State and Trellis Diagram"]].
 +
 
 +
* For further guidance on how to do this, see&nbsp; [[Aufgaben:Exercise_4.08:_Repetition_to_the_Convolutional_Codes|$\text{Exercise 4.8}$]]&nbsp; and&nbsp; [[Aufgaben:Exercise_4.09:_Recursive_Systematic_Convolutional_Codes|$\text{Exercise 4.9}$]].
 +
 
 +
* The information sequence&nbsp; $\underline{u}$&nbsp; is partially specified by its&nbsp; $D$&ndash;transform for easier description in the subtasks.&nbsp; For example:
 +
:$$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} \text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
 +
U(D) = D+  D^2\hspace{0.05cm},$$
 +
:$$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} \text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
 +
U(D) = D+  D^8\hspace{0.05cm}.$$
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{What are the characteristics of the considered turbo code&nbsp; $($memory&nbsp; $m$,&nbsp; influence length&nbsp; $\nu$,&nbsp; rate $R)$?
 +
|type="{}"}
 +
$ m \hspace{0.2cm} = \ ${ 3 3% }
 +
$ \nu \hspace{0.3cm} = \ ${ 9 3% }
 +
$R \hspace{0.2cm} = \ ${ 0.333 3% }
 +
 
 +
{What are the&nbsp; (identical)&nbsp; transfer functions&nbsp; $G_1(D) = G_2(D) = G(D)$?
 +
|type="()"}
 +
+ &nbsp; $G(D) = (1 + D + D^3)/(1 + D^2 + D^3)$.
 +
- &nbsp; $G(D) = (1 + D^2 + D^3)/(1 + D + D^3)$.
 +
 
 +
{What is the impulse response&nbsp; $\underline{g}$?
 +
|type="[]"}
 +
-&nbsp; $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \hspace{0.05cm} \text{...}\hspace{0.05cm})$
 +
+&nbsp; $\underline{g} = (1, \, 1, \, 1, \, 1, \, 0, \, 0, \, 1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 0, \, 1, \, 0, \hspace{0.05cm} \text{...}\hspace{0.05cm})$.
 +
+&nbsp; $\underline{g}$&nbsp; continues to infinity.
 +
 
 +
{Are there periodic components within the impulse response&nbsp; $\underline{g}$&nbsp;?
 +
|type="()"}
 +
+ Yes,&nbsp; with period&nbsp; $P = 7$.
 +
- Yes,&nbsp; with period&nbsp; $P = 8$.
 +
- No.
 +
 
 +
{Let $U(D) = D + D^2$. Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ The initial sequence&nbsp; $\underline{p}$&nbsp; contains a periodic component.
- false
+
+ The period&nbsp; $P$&nbsp; is unchanged from&nbsp; $\underline{g}$&nbsp;.
 +
+ The Hamming weight of the input sequence is&nbsp; $w_{\rm H}(\underline{u}) = 2$.
 +
- The Hamming weight of the output sequence is &nbsp;$w_{\rm H}(\underline{p}) = 6$.
  
{Input-Box Frage
+
{Which statements are true for&nbsp; $U(D) = D + D^8$&nbsp;?
|type="{}"}
+
|type="[]"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
- The initial sequence&nbsp; $\underline{p}$&nbsp; contains a periodic component.
 +
- The period&nbsp; $P$&nbsp; is unchanged from&nbsp; $\underline{g}$&nbsp;.
 +
+ The Hamming weight of the input sequence is&nbsp; $w_{\rm H}(\underline{u}) = 2$.
 +
+ The Hamming weight of the output sequence&nbsp; is $w_{\rm H}(\underline{p}) = 6$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
[[File:EN_KC_A_4_10c_v3_neu2.png|right|frame|Polynomial division for subtask&nbsp;'''(3)''': $G(D) = (1 + D + D^3) \ / \ (1 + D^2 + D^3)$]]
'''(2)'''&nbsp;  
+
'''(1)'''&nbsp; The code parameters are&nbsp; $k = 1$&nbsp; and&nbsp; $n = 3$ &nbsp; &#8658; &nbsp; code rate&nbsp; $\underline{R = 1/3}$.
'''(3)'''&nbsp;  
+
*The memory is&nbsp; $\underline{m = 3}$.
'''(4)'''&nbsp;  
+
'''(5)'''&nbsp;  
+
*The influence lengths result in&nbsp; $\nu = 1, \ \nu_2 = 4$&nbsp; and&nbsp; $\nu_3 = 4$ &nbsp; &#8658; &nbsp; Total influence length&nbsp; $\underline{\nu = 9}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; As the comparison of the&nbsp; "recursive filter"&nbsp; on the data page with the&nbsp; [[Channel_Coding/Algebraic_and_Polynomial_Description#Filter_structure_with_fractional.E2.80.93rational_transfer_function|"filter structure"]]&nbsp; in the theory section for fractional&ndash;rational&nbsp; $G(D)$,&nbsp; the&nbsp; <u>proposed solution 1</u> is correct.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 2 and 3</u>:
 +
 
 +
The upper graph illustrates the polynomial division&nbsp; $(1 + D + D^3) \ / \ (1 + D^2 + D^3)$.&nbsp; For explanation:
 +
*Cancelled is the representation with the remainder&nbsp; $D^8 + D^9 = D^7 \cdot (D + D^2)$.&nbsp; Thus also holds:
 +
:$$(D^8 + D^9) \hspace{0.05cm} /\hspace{0.05cm} (1+ D^2+ D^3 ) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} D^7 \cdot (D+ D^2+ D^3 + D^6) + {\rm remainder_2}$$
 +
*After summarizing:
 +
:$$G(D) = 1 + D + D^2 + D^3 + D^6 + D^8+ D^9+ D^{10} + D^{13} + \hspace{0.05cm}\text{ ... }\hspace{0.05cm} \hspace{0.05cm}. $$
 +
 
 +
* The $D$&ndash;inverse transform gives the proposed solution 2:
 +
:$$\underline{g}= (\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{ ... }\hspace{0.05cm})\hspace{0.05cm}. $$
 +
 
 +
* The impulse response continues to infinity &nbsp; &#8658; &nbsp; Solution proposal 3 is also correct.
 +
 
 +
 
 +
 
 +
[[File:P_ID3061__KC_A_4_10d_v2.png|right|frame|State transition diagram and impulse response]]
 +
'''(4)'''&nbsp; The impulse response can be expressed as follows:
 +
:$$\underline{g}=  \Big (\hspace{0.03cm}1\hspace{0.03cm},
 +
\big [ \hspace{0.03cm} 1\hspace{0.03cm},
 +
\hspace{0.03cm} 1\hspace{0.03cm},
 +
\hspace{0.03cm} 1\hspace{0.03cm},
 +
\hspace{0.03cm} 0\hspace{0.03cm},
 +
\hspace{0.03cm} 0\hspace{0.03cm},
 +
\hspace{0.03cm} 1\hspace{0.03cm},
 +
\hspace{0.03cm} 0\hspace{0.03cm} \big ]_{\rm per}
 +
  \Big ) \hspace{0.15cm}\Rightarrow \hspace{0.15cm} \underline{P = 7}
 +
\hspace{0.05cm}. $$
 +
 
 +
*In the state transition diagram&nbsp; $($right$)$,&nbsp; the impulse response&nbsp; $\underline{g}$&nbsp; is highlighted in yellow.&nbsp;
 +
 
 +
*The impulse response results as the parity-check sequence &nbsp; $\underline{p}$ &nbsp; for the information sequence &nbsp; $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, \text{ ... })$.
 +
 
 +
* The transitions in the diagram are labeled&nbsp; "$u_i\hspace{0.05cm}|\hspace{0.05cm}\underline{x}_i$",&nbsp; which is equivalent to&nbsp; "$u_i\hspace{0.05cm}|\hspace{0.05cm}u_i \hspace{0.05cm}p_i$".
 +
 +
*The parity-check sequence &nbsp; $\underline{p} \ (=$ impulse response&nbsp; $\underline{g})$ &nbsp; thus results from the respective second coder output symbol.
 +
 
 +
* The impulse response&nbsp; $\underline{g}$&nbsp; is represented by the following states:
 +
:$$S_0 &#8594; [S_1 &#8594; S_2 &#8594; S_5 &#8594; S_3 &#8594; S_7 &#8594; S_6 &#8594; S_4 ] &#8594; [S_1 &#8594; \ ... \ &#8594; S_4] &#8594; \ \text{ ... } $$
 +
 
 +
 
 +
'''(5)'''&nbsp; The following graph shows the solution using the generator matrix&nbsp; $\mathbf{G}$.&nbsp; It holds&nbsp; $\underline{u} = (0, \, 1, \, 1, \, 0, \, 0, \, \text{ ... } )$.
 +
 
 +
[[File:EN_KC_A_4_10e_v1.png|right|frame|$\underline{p} = (0, \, 1, \, 1, \, \text{ ... } ) \cdot \mathbf{G}$]]
 +
 
 +
[[File:EN_KC_A_4_10f_v1.png|right|frame|$\underline{p} = (0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{ ... }) \cdot \mathbf{G}$]]
 +
 
 +
It can be seen that&nbsp; <u>solutions 1, 2 and 3</u>&nbsp; are correct:
 +
* The present parity-check sequence&nbsp; $\underline{p}$&nbsp; has the same period&nbsp; $P = 7$&nbsp; as the impulse response&nbsp; $\underline{g}$.
 +
 
 +
* The Hamming weight of the&nbsp; $($limited$)$&nbsp; input sequence is actually&nbsp; $w_{\rm H}(\underline{u}) = 2$.
 +
 
 +
* Proposition 4 is incorrect.&nbsp; Rather,&nbsp; for the semi&ndash;infinite output sequence: &nbsp; $w_{\rm H}(\underline{p}) &#8594; \infty$.
 +
 
 +
*In the transition diagram,&nbsp; the states
 +
:$$S_0 &#8594; S_0 &#8594; S_1 &#8594; S_3 &#8594; S_7 &#8594; S_6 &#8594; S_4 &#8594; S_1$$
 +
: are passed through first.&nbsp;
 +
 
 +
*This is followed&nbsp; $($infinitely often$)$ by the periodic portion
 +
:$$S_1 &#8594; S_2 &#8594; S_5 &#8594; S_3 &#8594; S_7 &#8594; S_6 &#8594; S_4 &#8594; S_1.$$
 +
 
 +
 
 +
'''(6)'''&nbsp; The last graph shows the solution for&nbsp;
 +
:$$U(D) = D + D^8$$
 +
:$$ \Rightarrow \hspace{0.3cm}\underline{u} = (0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{ ... }).$$
 +
*Correct are the&nbsp; <u>proposed solutions 3 and 4</u>:
 +
 +
*The input sequence&nbsp; $\underline{u}$&nbsp; contains two&nbsp; "ones"&nbsp; and the output sequence&nbsp; $\underline{p}$&nbsp; six&nbsp; "ones".
 +
 
 +
*From position 10&nbsp; the output sequence is&nbsp; $\underline{p} \equiv\underline{0}$ &nbsp; <br>&#8658; &nbsp; proposals 1 and 2 therefore do not apply.
 +
<br clear=all>
 +
<u>Further notes:</u>
 +
# For turbo codes,&nbsp; especially those input sequences&nbsp; $\underline{u}$&nbsp; whose&nbsp; $D$&ndash;transforms are representable as&nbsp; $U(D) = f(D) \cdot [1 + D^{P}]$&nbsp; are extremely unfavorable.
 +
#They cause the error floor as seen on the&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes#Performance_of_the_turbo_codes|"Performance of Turbo Codes"]] page in the theory section.
 +
#$P$&nbsp; indicates here the period of the impulse response&nbsp; $\underline{g}$.&nbsp; In our example&nbsp; $f(D) = D$&nbsp; and&nbsp; $P = 7$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^4.3 Grundlegendes zu den Turbocodes^]]
+
[[Category:Channel Coding: Exercises|^4.3 About the Turbo Codes^]]

Latest revision as of 16:11, 22 December 2022

Turbo encoder for UMTS and LTE

The mobile communications standards  $\rm UMTS$  and  $\rm LTE$  each use a turbo code that is largely identical to the encoder described in the  "The Basics of Turbo Codes"  chapter.

  • The  $1/n$ convolutional code is systematic, meaning that the encoded sequence  $\underline{x}$  includes the information sequence  $\underline{u}$  as a component.
  • The parity-check sequences  $\underline{p}_1$  and  $\underline{p}_2$  are based on the same transfer function:
$$G_1(D) = G_2(D) = G(D).$$
  • $\underline{p}_1$  and  $\underline{p}_2$  however,  use different input sequences  $\underline{u}$  and  $\underline{u}_{\pi}$,  respectively.  Here,  ${\rm \Pi}$  marks the interleaver,  for UMTS and LTE mostly a  $S$–random interleaver.


Given filter structure







The main difference compared to the description in the theory part results from a different transfer function  $G(D)$  given by the recursive filter structure drawn on the left.


Hints:

  • The information sequence  $\underline{u}$  is partially specified by its  $D$–transform for easier description in the subtasks.  For example:
$$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} \text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^2\hspace{0.05cm},$$
$$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} \text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^8\hspace{0.05cm}.$$



Questions

1

What are the characteristics of the considered turbo code  $($memory  $m$,  influence length  $\nu$,  rate $R)$?

$ m \hspace{0.2cm} = \ $

$ \nu \hspace{0.3cm} = \ $

$R \hspace{0.2cm} = \ $

2

What are the  (identical)  transfer functions  $G_1(D) = G_2(D) = G(D)$?

  $G(D) = (1 + D + D^3)/(1 + D^2 + D^3)$.
  $G(D) = (1 + D^2 + D^3)/(1 + D + D^3)$.

3

What is the impulse response  $\underline{g}$?

  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \hspace{0.05cm} \text{...}\hspace{0.05cm})$
  $\underline{g} = (1, \, 1, \, 1, \, 1, \, 0, \, 0, \, 1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 0, \, 1, \, 0, \hspace{0.05cm} \text{...}\hspace{0.05cm})$.
  $\underline{g}$  continues to infinity.

4

Are there periodic components within the impulse response  $\underline{g}$ ?

Yes,  with period  $P = 7$.
Yes,  with period  $P = 8$.
No.

5

Let $U(D) = D + D^2$. Which statements are true?

The initial sequence  $\underline{p}$  contains a periodic component.
The period  $P$  is unchanged from  $\underline{g}$ .
The Hamming weight of the input sequence is  $w_{\rm H}(\underline{u}) = 2$.
The Hamming weight of the output sequence is  $w_{\rm H}(\underline{p}) = 6$.

6

Which statements are true for  $U(D) = D + D^8$ ?

The initial sequence  $\underline{p}$  contains a periodic component.
The period  $P$  is unchanged from  $\underline{g}$ .
The Hamming weight of the input sequence is  $w_{\rm H}(\underline{u}) = 2$.
The Hamming weight of the output sequence  is $w_{\rm H}(\underline{p}) = 6$.


Solution

Polynomial division for subtask (3): $G(D) = (1 + D + D^3) \ / \ (1 + D^2 + D^3)$

(1)  The code parameters are  $k = 1$  and  $n = 3$   ⇒   code rate  $\underline{R = 1/3}$.

  • The memory is  $\underline{m = 3}$.
  • The influence lengths result in  $\nu = 1, \ \nu_2 = 4$  and  $\nu_3 = 4$   ⇒   Total influence length  $\underline{\nu = 9}$.


(2)  As the comparison of the  "recursive filter"  on the data page with the  "filter structure"  in the theory section for fractional–rational  $G(D)$,  the  proposed solution 1 is correct.


(3)  Correct are the  proposed solutions 2 and 3:

The upper graph illustrates the polynomial division  $(1 + D + D^3) \ / \ (1 + D^2 + D^3)$.  For explanation:

  • Cancelled is the representation with the remainder  $D^8 + D^9 = D^7 \cdot (D + D^2)$.  Thus also holds:
$$(D^8 + D^9) \hspace{0.05cm} /\hspace{0.05cm} (1+ D^2+ D^3 ) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} D^7 \cdot (D+ D^2+ D^3 + D^6) + {\rm remainder_2}$$
  • After summarizing:
$$G(D) = 1 + D + D^2 + D^3 + D^6 + D^8+ D^9+ D^{10} + D^{13} + \hspace{0.05cm}\text{ ... }\hspace{0.05cm} \hspace{0.05cm}. $$
  • The $D$–inverse transform gives the proposed solution 2:
$$\underline{g}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{ ... }\hspace{0.05cm})\hspace{0.05cm}. $$
  • The impulse response continues to infinity   ⇒   Solution proposal 3 is also correct.


State transition diagram and impulse response

(4)  The impulse response can be expressed as follows:

$$\underline{g}= \Big (\hspace{0.03cm}1\hspace{0.03cm}, \big [ \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 0\hspace{0.03cm}, \hspace{0.03cm} 0\hspace{0.03cm}, \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 0\hspace{0.03cm} \big ]_{\rm per} \Big ) \hspace{0.15cm}\Rightarrow \hspace{0.15cm} \underline{P = 7} \hspace{0.05cm}. $$
  • In the state transition diagram  $($right$)$,  the impulse response  $\underline{g}$  is highlighted in yellow. 
  • The impulse response results as the parity-check sequence   $\underline{p}$   for the information sequence   $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, \text{ ... })$.
  • The transitions in the diagram are labeled  "$u_i\hspace{0.05cm}|\hspace{0.05cm}\underline{x}_i$",  which is equivalent to  "$u_i\hspace{0.05cm}|\hspace{0.05cm}u_i \hspace{0.05cm}p_i$".
  • The parity-check sequence   $\underline{p} \ (=$ impulse response  $\underline{g})$   thus results from the respective second coder output symbol.
  • The impulse response  $\underline{g}$  is represented by the following states:
$$S_0 → [S_1 → S_2 → S_5 → S_3 → S_7 → S_6 → S_4 ] → [S_1 → \ ... \ → S_4] → \ \text{ ... } $$


(5)  The following graph shows the solution using the generator matrix  $\mathbf{G}$.  It holds  $\underline{u} = (0, \, 1, \, 1, \, 0, \, 0, \, \text{ ... } )$.

$\underline{p} = (0, \, 1, \, 1, \, \text{ ... } ) \cdot \mathbf{G}$
$\underline{p} = (0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{ ... }) \cdot \mathbf{G}$

It can be seen that  solutions 1, 2 and 3  are correct:

  • The present parity-check sequence  $\underline{p}$  has the same period  $P = 7$  as the impulse response  $\underline{g}$.
  • The Hamming weight of the  $($limited$)$  input sequence is actually  $w_{\rm H}(\underline{u}) = 2$.
  • Proposition 4 is incorrect.  Rather,  for the semi–infinite output sequence:   $w_{\rm H}(\underline{p}) → \infty$.
  • In the transition diagram,  the states
$$S_0 → S_0 → S_1 → S_3 → S_7 → S_6 → S_4 → S_1$$
are passed through first. 
  • This is followed  $($infinitely often$)$ by the periodic portion
$$S_1 → S_2 → S_5 → S_3 → S_7 → S_6 → S_4 → S_1.$$


(6)  The last graph shows the solution for 

$$U(D) = D + D^8$$
$$ \Rightarrow \hspace{0.3cm}\underline{u} = (0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{ ... }).$$
  • Correct are the  proposed solutions 3 and 4:
  • The input sequence  $\underline{u}$  contains two  "ones"  and the output sequence  $\underline{p}$  six  "ones".
  • From position 10  the output sequence is  $\underline{p} \equiv\underline{0}$  
    ⇒   proposals 1 and 2 therefore do not apply.


Further notes:

  1. For turbo codes,  especially those input sequences  $\underline{u}$  whose  $D$–transforms are representable as  $U(D) = f(D) \cdot [1 + D^{P}]$  are extremely unfavorable.
  2. They cause the error floor as seen on the  "Performance of Turbo Codes" page in the theory section.
  3. $P$  indicates here the period of the impulse response  $\underline{g}$.  In our example  $f(D) = D$  and  $P = 7$.