Difference between revisions of "Linear and Time Invariant Systems/Classification of the Distortions"

From LNTwww
 
(64 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
 
{{Header|
 
{{Header|
Untermenü=Signalverzerrungen und Entzerrung
+
Untermenü=Signal Distortion and Equalization
|Vorherige Seite=Einige systemtheoretische Tiefpassfunktionen
+
|Vorherige Seite=Some_Low-Pass_Functions_in_Systems_Theory
|Nächste Seite=Nichtlineare Verzerrungen
+
|Nächste Seite=Nonlinear_Distortions
 
}}
 
}}
  
Line 10: Line 10:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$   
 
$\text{Definition:}$   
Generally, undesirable deterministic changes of a message signal by a transmission system are considered as  '''distortions''' . }}
+
In general,  '''»distortion«'''  is understood to be undesirable deterministic changes in a message signal caused by a transmission system. }}
  
  
In addition to stochastic interferences (noise, crosstalk, etc.), such deterministic distortions are a critical limitation on transmission quality and rate for many messaging systems.
+
In addition to stochastic interferences  $($noise,  crosstalk, etc.$)$,  such deterministic distortions are a critical limitation on the transmission quality and rate for many transmission systems.
  
This chapter presents these distortions in a summarising way, in particular:
+
This chapter presents these distortions in a summarizing way,  in particular:
  
*the quantitative detection of such signal falsifications via the distortion power,
+
#The quantitative description of such signal falsifications via the  »distortion power«,
*the distinguishing features between nonlinear and linear distortions,
+
#the distinguishing features between  »nonlinear and linear distortions«,
*the meaning and computation of the distortion factor in nonlinear systems and
+
#the meaning and computation of the  »distortion factor in nonlinear systems«,  and
*the effects of linear distortions of attenuation and phase distortions.
+
#the effects of  »linear attenuation and phase distortions«.
  
  
Further information on the topic of "distortions" as well as tasks, simulations and programming exercises can be found in
 
*Chapter 6: Linear Time-Invariant Systems (Programme lzi)
 
  
 
+
==Prerequisites for the second main chapter==
of the practical course "Simulation Methods in Communications Engineering". This (former) LNT course at TU Munich is based on
 
*the educational software package  [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim]   ⇒   Link refers to the ZIP-version of the programme, and
 
*this practical course guide  [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung]    ⇒   Link refers to the PDF-version; Chapter 6: pages 99-118.
 
 
 
 
 
==Prerequisites for the Entire Second Main Chapter==
 
 
<br>
 
<br>
In the following, we consider a system whose input is the signal &nbsp;$x(t)$&nbsp; with the corresponding spectrum &nbsp;$X(f)$&nbsp;. The output signal is denoted by &nbsp;$y(t)$&nbsp; and its spectrum by &nbsp;$Y(f).$
+
[[File:P_ID873__LZI_T_2_1_S1_neu.png|frame| Description of a linear system|class=fit]]
  
[[File:P_ID873__LZI_T_2_1_S1_neu.png|frame| Description of a linear system|class=fit]]
+
In the following,&nbsp; we consider always  a&nbsp; &raquo;system&laquo;
 +
*whose input is the signal &nbsp;$x(t)$&nbsp; with the corresponding spectrum &nbsp;$X(f)$,&nbsp; and
  
The block labelled "system" can be a part of an electrical circuit or a complete transmission system consisting of transmitter, channel and receiver.  
+
*the output signal is denoted by &nbsp;$y(t)$&nbsp; and its spectrum by &nbsp;$Y(f).$
  
  
For the whole main chapter &rdquo;Signal Distortions and Equalisation&rdquo; the following shall apply:  
+
The block labelled&nbsp;  &raquo;'''system'''&laquo;&nbsp; can be a part of an&nbsp; &raquo;electrical circuit&laquo;&nbsp; or a&nbsp;complete transmission system&laquo;&nbsp; consisting of
*The system be&nbsp;'''time-invariant'''. If the input signal &nbsp;$x(t)$&nbsp; results in the output signal &nbsp;$y(t)$, then a later input signal of the same form &ndash; in particular &nbsp;$x(t - t_0)$&nbsp; &ndash; will result in the signal &nbsp;$y(t - t_0)$&nbsp;.  
+
# &raquo;transmitter&laquo;,
*&nbsp;'''No noise'''&nbsp; is considered, which is always present in real systems.&nbsp; For the description of these phenomena we refer to the&nbsp; $\rm LNTwww$&ndash;book&nbsp; [[Stochastische Signaltheorie]].  
+
#&raquo;channel&laquo;, and
*&nbsp;'''No detailed knowledge'''&nbsp; about the system is assumed.&nbsp; In the following, all system properties are derived from the signals  &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$&nbsp; or their spectra alone.  
+
# &raquo;receiver&laquo;.
*In particular, no specifications are given with regards to&nbsp; '''linearity''' for the time being.&nbsp; The "system" can be linear (prerequisite for the application of the superposition principle) or non-linear.  
+
<br clear=all>
 +
For the whole main chapter&nbsp; &raquo;Signal Distortions and Equalization&laquo;&nbsp; the following shall apply:  
 +
*The system be&nbsp; &raquo;'''time-invariant'''&laquo;.&nbsp; If the input signal &nbsp;$x(t)$&nbsp; results in the output signal &nbsp;$y(t)$,&nbsp; then a later input signal of the same form &ndash; in particular &nbsp;$x(t - t_0)$&nbsp; &ndash; will result in the signal &nbsp;$y(t - t_0)$.
 +
 +
*In the following,&nbsp; &raquo;'''no noise'''&laquo;&nbsp; is considered,&nbsp; which is always present in real systems.&nbsp; For the description of these phenomena we refer to the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
 +
 +
*About the system &nbsp; &raquo;'''no detailed knowledge'''&laquo;&nbsp; is assumed.&nbsp; In the following of this chapter,&nbsp; all system properties are derived from the signals  &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$&nbsp; or their spectra alone.
 +
 +
*In particular,&nbsp; no specifications are made here with regard to&nbsp; &raquo;'''linearity'''&laquo;.&nbsp; The&nbsp; &raquo;system&laquo; can be&nbsp; &raquo;linear&laquo;&nbsp; $($prerequisite for the application of the superposition principle$)$&nbsp; or&nbsp; &raquo;non-linear&laquo;.
 +
 
*Not all system properties are discernible from a single test signal &nbsp;$x(t)$&nbsp; and its response &nbsp;$y(t)$&nbsp;. Therefore, &nbsp;'''sufficiently many test signals'''&nbsp; must be used for evaluation.  
 
*Not all system properties are discernible from a single test signal &nbsp;$x(t)$&nbsp; and its response &nbsp;$y(t)$&nbsp;. Therefore, &nbsp;'''sufficiently many test signals'''&nbsp; must be used for evaluation.  
  
  
In the following, we will classify transmission systems in more detail in this respect.  
+
In the following,&nbsp; we will classify transmission systems in more detail in this respect.  
  
==Ideal and Distortion-free System==
+
==Ideal and distortion-free system==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
One deals with an&nbsp; '''ideal system''' if the output signal &nbsp;$y(t)$&nbsp; is exactly equal to the input signal &nbsp;$x(t)$&nbsp;:
+
One deals with an&nbsp; &raquo;'''ideal system'''&laquo;&nbsp; if the output signal &nbsp;$y(t)$&nbsp; is identical with the input signal &nbsp;$x(t)$:
 
:$$y(t) \equiv x(t).$$}}
 
:$$y(t) \equiv x(t).$$}}
  
  
It should be noted that such an ideal system does not exist in reality even if statistical disturbances and noise processes, that always exist but are not considered in this book, are disregarded. Every transmission medium exhibits losses (attenuations) and transit times. Even if these physical phenomena are very small, they are never zero. It is therefore necessary to introduce a somewhat less strict quality characteristic.  
+
#It should be noted that such an ideal system does not exist in reality even if statistical disturbances and noise processes&nbsp; $($that always exist but are not considered in this book$)$&nbsp;  are disregarded.&nbsp;
 +
#Every transmission medium exhibits losses&nbsp; $($&raquo;attenuation&laquo;$)$&nbsp; and&nbsp; &raquo;transit times&raquo;.&nbsp; Even if these physical phenomena are very small,&nbsp; they are never zero.&nbsp; Therefore  it is necessary to introduce a somewhat less strict quality characteristic.  
 +
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
A&nbsp; '''distortion-free system'''&nbsp; exists if the following condition is fulfilled:
+
A&nbsp; &raquo;'''distortion-free system'''&laquo;&nbsp; exists if the following condition is fulfilled:
 
:$$y(t) = \alpha \cdot x(t - \tau).$$
 
:$$y(t) = \alpha \cdot x(t - \tau).$$
Here, &nbsp;$α$&nbsp; describes the damping factor and &nbsp;$τ$&nbsp; the transit time.}}
+
#Here, &nbsp;$α$&nbsp; describes the&nbsp; &raquo;attenuation factor&laquo;&nbsp; and &nbsp;$τ$&nbsp; the&nbsp; &raquo;transit time&laquo;.
 
+
#If this condition is not met,&nbsp; the system is said to be&nbsp; &raquo;''' distortive'''&laquo;.}}  
  
If this condition is not met, the system is said to be distortive.
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;  
 
$\text{Example 1:}$&nbsp;  
The following graph shows the input signal &nbsp;$x(t)$&nbsp; and the output signal &nbsp;$y(t)$&nbsp; of a nonideal but distortion-free system.&nbsp; The system parameters are &nbsp;$α = 0.8$&nbsp; and &nbsp;$τ = 0.25 \ \rm ms$.  
+
The following diagram shows the input signal &nbsp;$x(t)$&nbsp; and the output signal &nbsp;$y(t)$&nbsp; of a nonideal but distortion-free system.&nbsp; The system parameters are &nbsp;$α = 0.8$&nbsp; and &nbsp;$τ = 0.25 \ \rm ms$.  
  
 
[[File:P_ID874__LZI_T_2_1_S2_neu.png|frame|Exemplary signals of a distortion-free system|class=fit]]
 
[[File:P_ID874__LZI_T_2_1_S2_neu.png|frame|Exemplary signals of a distortion-free system|class=fit]]
  
Note:  
+
$\text{Note:}$
*The damping factor &nbsp;$α$&nbsp; can be completely reversed by a receiver-side gain of &nbsp;$1/α = 1.25$, but it must be taken into account that this also increases any noise.  
+
*The attenuation factor &nbsp;$α$&nbsp; can be completely reversed by a receiver-side gain of &nbsp;$1/α = 1.25$,&nbsp; but it must be taken into account that this also increases any noise.
*However, the transit time &nbsp;$τ$&nbsp; cannot be compensated due to&nbsp; [[Signal_Representation/Signal_classification#Kausale_und_akausale_Signale|Kausalitätsgründen]]&nbsp;.&nbsp; It now depends on the application whether such a transit time is subjectively perceived as disturbing or not. }}
+
 
+
*However,&nbsp; the transit time &nbsp;$τ$&nbsp; cannot be compensated due to&nbsp; [[Signal_Representation/Signal_classification#Causal_and_non-causal_signals|&raquo;causality reasons&laquo;]].&nbsp; It now depends on the application whether such a transit time is subjectively perceived as disturbing or not.  
  
For example, even with a transit time of one second the (unidirectional) TV broadcast of an event is still described as "live".&nbsp; In contrast to this, transit times of&nbsp; $\text{300 ms}$&nbsp; are already perceived as very disturbing in bidirectional communication – for example, a telephone call. You either wait for the other person to react or both participants interrupt each other.
+
:#For example,&nbsp; even with a transit time of one second the&nbsp; $($unidirectional$)$&nbsp; TV broadcast of an event is still described as "live".&nbsp;  
 +
:#In contrast to this,&nbsp; transit times of&nbsp; $\text{300 ms}$&nbsp; are already perceived as very disturbing in bidirectional communication – e.g. a telephone call.&nbsp;
 +
:#You either wait for the other person to react or both participants interrupt each other.}}
  
==Quantitative Measure of Signal Distortion==
+
==Quantitative measure for the signal distortions==
 
<br>
 
<br>
We now consider a distortive system on the basis of the input and output signal.&nbsp; In doing so, we first assume that apart from the signal distortions theres is no additional constant damping factor for all frequencies&nbsp; $α$&nbsp; and no transit time&nbsp; $τ$&nbsp; that is constant for all frequencies. These conditions are fulfilled for the signal sections sketched below.  
+
[[File:P_ID875__LZI_T_2_1_S3_neu.png|right|frame|Input and output of a distortive system and difference signal (below)|class=fit]]
 
+
We now consider a distortive system on the basis of the input and output signal.&nbsp;
[[File:P_ID875__LZI_T_2_1_S3_neu.png|right|frame|Input and output of a distortive system and error signal (below)|class=fit]]
+
 +
*We assume that apart from the signal distortions there is no additional frequency-independent attenuation factor &nbsp; $α$&nbsp; and no additional transit time&nbsp; $τ$.&nbsp; These conditions are fulfilled for the signal sections sketched on the right.  
  
In der Grafik ist zusätzlich zu den Signalen &nbsp;$x(t)$&nbsp; und &nbsp;$y(t)$&nbsp; auch das Differenzsignal eingezeichnet:
+
*In addition to the signals &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$,&nbsp; the difference signal is shown in the diagram:
 
:$$\varepsilon(t) = y(t) - x(t).$$
 
:$$\varepsilon(t) = y(t) - x(t).$$
Als quantitatives Maß für die Stärke der Verzerrungen eignet sich zum Beispiel der&nbsp; '''quadratische Mittelwert dieses Differenzsignals''':
+
As a quantitative measure of the strength of distortions,&nbsp; the&nbsp; &raquo;mean square value of this difference signal&laquo; is applicable:
 
:$$\overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t\hspace{0.4cm}  \left( = P_{\rm V} \right).$$
 
:$$\overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t\hspace{0.4cm}  \left( = P_{\rm V} \right).$$
<br clear=all>
+
 
Zu dieser Gleichung ist Folgendes anzumerken:  
+
The following should be noted about this equation:  
*Die Messdauer&nbsp; $T_{\rm M}$&nbsp; muss hinreichend groß gewählt werden.&nbsp; Eigentlich müsste diese Gleichung mit Grenzübergang formuliert werden.  
+
#The measuring time&nbsp; $T_{\rm M}$&nbsp; must be chosen sufficiently large.&nbsp; Actually, this equation should be formulated as a limit process.  
*Der oben angegebene quadratische Mittelwert wird oft auch als der ''mittlere quadratische Fehler''&nbsp; $\rm (MQF)$&nbsp; oder als die&nbsp; '''Verzerrungsleistung'''&nbsp; $P_{\rm V}$&nbsp; bezeichnet.  
+
#This expression is called&nbsp; &raquo;'''mean squared error'''&laquo;&nbsp; $\rm (MSE)$&nbsp; or &nbsp; &raquo;'''distortion power'''&laquo;&nbsp; $P_{\rm V}$&nbsp; $($because of&nbsp; "distortion" &nbsp; &rArr; &nbsp; German:&nbsp; "Verzerrung" &nbsp; &rArr; &nbsp; subscript&nbsp; "$\rm V$"$)$.
*Sind &nbsp;$x(t)$&nbsp; und &nbsp;$y(t)$&nbsp; Spannungssignale, so besitzt &nbsp;$P_{\rm V}$&nbsp; die Einheit &nbsp;${\rm V}^2$, das heißt, die Leistung ist nach obiger Definition auf den Widerstand &nbsp;$R = 1 \ Ω$&nbsp; bezogen.  
+
#If &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$&nbsp; are voltage signals,&nbsp; then &nbsp;$P_{\rm V}$&nbsp; has the unit of &nbsp;${\rm V}^2$,&nbsp; meaning the power is related to the resistance &nbsp;$R = 1 \ Ω$&nbsp; according to the above definition.  
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Mit der&nbsp; (auf &nbsp;$R = 1 \ Ω$&nbsp; bezogenen)&nbsp; Leistung &nbsp;$P_x$&nbsp; des Eingangssignals &nbsp;$x(t)$&nbsp; kann das&nbsp; '''Signal–zu–Verzerrungs–Leistungsverhältnis'''&nbsp; angegeben werden:
+
$\text{Definition:}$&nbsp; Making use of the power&nbsp; $P_x$&nbsp; $($based on &nbsp;$R = 1 \ Ω)$&nbsp; of the input signal &nbsp;$x(t)$&nbsp; the &nbsp; &raquo;'''signal–to–distortion (power) ratio'''&laquo;&nbsp; can be given as:
 
:$$\rho_{\rm V} = \frac{ P_{x} }{P_{\rm V} } \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
 
:$$\rho_{\rm V} = \frac{ P_{x} }{P_{\rm V} } \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
 
  10 \cdot \lg \hspace{0.1cm}\frac{ P_{x} }{P_{\rm V} }\hspace{0.3cm}  \left( {\rm in \hspace{0.15cm} dB} \right).$$
 
  10 \cdot \lg \hspace{0.1cm}\frac{ P_{x} }{P_{\rm V} }\hspace{0.3cm}  \left( {\rm in \hspace{0.15cm} dB} \right).$$
  
Bei den in der oberen Grafik dargestellten Signalen gilt &nbsp;$P_x = 4  \ {\rm V}^2$, &nbsp;$P_{\rm V} = 0.04  \ {\rm V}^2$&nbsp; und damit &nbsp;$10 \cdot {\rm  lg} \ ρ_{\rm V} = 20 \ \rm dB$.}}
+
For the signals shown in the diagram above &nbsp; &rArr; &nbsp; $P_x = 4  \ {\rm V}^2$, &nbsp;$P_{\rm V} = 0.04  \ {\rm V}^2$;
 +
:$$10 \cdot {\rm  lg} \ ρ_{\rm V} = 20 \ \rm dB.$$ }}
  
  
Wir verweisen auf das interaktive Applet &nbsp;[[Applets:Lineare_Verzerrungen_periodischer_Signale|Lineare Verzerrungen periodischer Signale]].
+
We reference the interactive applet &nbsp;[[Applets:Linear_Distortions_of_Periodic_Signals|&raquo;Linear Distortions of Periodic Signals&laquo;]].
  
==Berücksichtigung von Dämpfung und Laufzeit==
+
==Elimination of attenuation factor and transit time==
 
<br>
 
<br>
Die auf der letzten Seite angegebenen Gleichungen führen dann nicht zu verwertbaren Aussagen, wenn zusätzlich eine Dämpfung &nbsp;$α$&nbsp; und/oder eine Laufzeit &nbsp;$τ$&nbsp; im System wirksam ist.&nbsp; Die Grafik zeigt das gedämpfte, verzögerte und verzerrte Signal
+
The equations given in the last section do not result in applicable statements if the system is additionally affected by an attenuation factor &nbsp;$α$&nbsp; and/or a transit time &nbsp;$τ$.&nbsp; The diagram shows the attenuated,&nbsp; delayed and distorted signal
  
[[File:P_ID876__LZI_T_2_1_S4_neu.png|right|frame|Berücksichtigung von Dämpfung und Laufzeit|class=fit]]
+
[[File:P_ID876__LZI_T_2_1_S4_neu.png|right|frame|Elimination of attenuation factor&nbsp;$α$&nbsp;
 +
<br>and transit time&nbsp; $τ$|class=fit]]
  
 
:$$y(t) = \alpha \cdot x(t - \tau) + \varepsilon_1(t).$$
 
:$$y(t) = \alpha \cdot x(t - \tau) + \varepsilon_1(t).$$
Im Term &nbsp;$ε_1(t)$&nbsp; sind alle Verzerrungen zusammengefasst.&nbsp; Man erkennt an der grünen Fläche, dass das Fehlersignal &nbsp;$ε_1(t)$&nbsp; relativ klein ist.  
+
*Here,&nbsp; instead of the&nbsp; &raquo;distortion power&laquo;&nbsp; the&nbsp; &raquo;distortion energy&laquo;&nbsp; must be considered because &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$&nbsp; are energy-limited signals.
 +
 
 +
*The term &nbsp;$ε_1(t)$&nbsp; summarizes all distortions.&nbsp; It can be seen from the green area that the difference signal &nbsp; &rArr; &nbsp; &raquo;error  signal&laquo;&nbsp;$ε_1(t)$&nbsp; is relatively small.  
 +
 
  
Sind dagegen die Dämpfung &nbsp;$α$&nbsp; und die Laufzeit &nbsp;$τ$&nbsp; unbekannt, so ist Folgendes zu beachten:  
+
In contrast to this,&nbsp; if the attenuation factor  &nbsp;$α$&nbsp; and the transit time &nbsp;$τ$&nbsp; are unknown,&nbsp; the following should be noted:  
*Das so ermittelte Fehlersignal &nbsp;$ε_2(t) = y(t) - x(t)$&nbsp; ist trotz kleiner Verzerrungen &nbsp;$ε_1(t)$&nbsp; relativ groß.  
+
*In the second example the difference signal &nbsp;$ε_2(t) = y(t) - x(t)$&nbsp; determined in this way is relatively large despite small distortions &nbsp;$ε_1(t)$.
*Anstelle der Verzerrungsleistung muss hier die Verzerrungsenergie betrachtet werden, da &nbsp;$x(t)$&nbsp; und &nbsp;$y(t)$&nbsp; energiebegrenzte Signale sind.
+
*Die Verzerrungsenergie erhält man, in dem man die unbekannten Größen &nbsp;$α$&nbsp; und &nbsp;$τ$&nbsp; variiert und auf diese Weise das Minimum des mittleren quadratischen Fehlers ermittelt:
+
*The distortion energy is obtained by varying the unknown quantities &nbsp;$α$&nbsp; and &nbsp;$τ$&nbsp; and thus finding the minimum of the&nbsp; &raquo;mean squared error&laquo;:
 
:$$E_{\rm V}  = \min_{\alpha, \ \tau} \int_{ - \infty }^{ + \infty}
 
:$$E_{\rm V}  = \min_{\alpha, \ \tau} \int_{ - \infty }^{ + \infty}
 
  {\big[y(t) - \left(\alpha \cdot x(t - \tau) \right) \big]^2}\hspace{0.1cm}{\rm d}t.$$
 
  {\big[y(t) - \left(\alpha \cdot x(t - \tau) \right) \big]^2}\hspace{0.1cm}{\rm d}t.$$
*Die Energie des gedämpften und verzögerten Signals &nbsp;$α · x(t - τ)$&nbsp; ist unabhängig von der Laufzeit &nbsp;$τ$&nbsp; gleich &nbsp;$α^2 · E_x$.  Für das Signal–zu–Verzerrungs–Leistungsverhältnis gilt somit:
+
*The energy of the attenuated and delayed signal &nbsp;$α · x(t - τ)$&nbsp; is &nbsp;$E_{\rm V}  =α^2 · E_x$ independent of the transit time &nbsp;$τ$.&nbsp; Thus for the signal-to-distortion&nbsp; $($energy or power$)$&nbsp; ratio the following is applicable:
:$$\rho_{\rm V} = \frac{ \alpha^2 \cdot E_{x}}{E_{\rm V}}\hspace{0.3cm}{\rm bzw.}\hspace{0.3cm}\rho_{\rm V}= \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} .$$
+
:$$\rho_{\rm V} = \frac{ \alpha^2 \cdot E_{x}}{E_{\rm V}}\hspace{0.3cm}{\rm or}\hspace{0.3cm}\rho_{\rm V}= \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} .$$
*Die erste dieser beiden Gleichungen gilt für zeitlich begrenzte und damit energiebegrenzte Signale, die zweite für zeitlich unbegrenzte, also leistungsbegrenzte Signale entsprechend der Seite &nbsp;[[Signal_Representation/Signal_classification#Energiebegrenzte_und_leistungsbegrenzte_Signale|Energiebegrenzte und leistungsbegrenzte Signale]]&nbsp; im Buch &bdquo;Signaldarstellung&rdquo;.
+
*The first of these two equations applies to time-limited and thus energy-limited signals,&nbsp; the second one to time-unlimited and thus power-limited signals according to the section &nbsp;[[Signal_Representation/Signal_classification#Energy.E2.80.93limited_and_power.E2.80.93limited_signals|&raquo;Energy-limited and power-limited signals&laquo;]]&nbsp; in the book&nbsp; &raquo;Signal Representation&laquo;.
  
==Lineare und nichtlineare Verzerrungen==
+
==Linear and nonlinear distortions==
 
<br>
 
<br>
Man unterscheidet zwischen linearen und nichtlinearen Verzerrungen:  
+
A distinction is made between&nbsp; &raquo;linear distortions&laquo;&nbsp; and&nbsp; &raquo;nonlinear distortions&laquo;:  
  
Ist das System linear und zeitinvariant&nbsp; $(\rm LZI)$, so wird es vollständig durch seinen&nbsp; [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; $H(f)$ charakterisiert, und es lässt sich Folgendes feststellen:  
+
If the system is linear and time-invariant&nbsp; $(\rm LTI)$,&nbsp; then it is fully characterized by its&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_.E2.80.93_Transfer_function|$\text{frequency response}$]]&nbsp; $H(f)$&nbsp; and the following can be stated:  
*Entspechend der&nbsp; $H(f)$&ndash;Definition gilt für das Ausgangsspektrum: &nbsp; $Y(f)=X(f) · H(f)$. &nbsp; Daraus folgt nach den Rechenregeln der Multiplkation, dass &nbsp;$Y(f)$&nbsp; keine Frequenzanteile beinhalten kann, die nicht schon in &nbsp;$X(f)$&nbsp; enthalten sind.  
+
#According to the&nbsp; $H(f)$&nbsp; definition the following holds for the output spectrum: &nbsp; $Y(f)=X(f) · H(f)$. &nbsp;  
*Die Umkehrung besagt: &nbsp; Das Ausgangssignal &nbsp;$y(t)$&nbsp; kann jede Frequenz &nbsp;$f_0$&nbsp; beinhalten, die bereits im Eingangssignal &nbsp;$x(t)$&nbsp; enthalten ist. Voraussetzung ist also, dass &nbsp;$X(f_0) ≠ 0$&nbsp; gilt.  
+
#As a consequence according to the calculation rules of multiplication, &nbsp;$Y(f)$&nbsp; cannot contain any frequency components that are not already contained in &nbsp;$X(f)$.  
*Bei einem LZI–System ist die absolute Bandbreite &nbsp;$(B_y)$&nbsp; des Ausgangssignals nie größer als die Bandbreite &nbsp;$(B_x)$&nbsp; des Eingangssignals: &nbsp; $B_y \le B_x .$
+
#The inverse implies: &nbsp; The output signal &nbsp;$y(t)$&nbsp; can include any frequency &nbsp;$f_0$&nbsp; already contained in the input &nbsp;$x(t)$&nbsp;. The prerequisite is therefore that &nbsp;$X(f_0) ≠ 0$.  
 +
#For an LTI system the absolute bandwidth &nbsp;$B_y$&nbsp; of the output signal is never greater than the bandwidth &nbsp;$B_x$&nbsp; of the input signal: &nbsp; $B_y \le B_x .$
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
Die Unterschiede zwischen linearen und nichtlinearen Verzerrungen sollen anhand einses Schaubildes verdeutlicht werden:
+
The differences between linear and non-linear distortions are illustrated by the following diagram:
 +
 
 +
[[File:EN_LZI_T_2_1_S5_neu.png|frame| Linear and nonlinear distortions|class=fit]]
 +
$\rm (A)$ &nbsp; In the upper diagram&nbsp; $B_y = B_x$&nbsp; holds. There are&nbsp; &raquo;'''linear distortions'''&laquo;&nbsp; because in this frequency band&nbsp; $X(f)$&nbsp; and&nbsp; $Y(f)$&nbsp; differ.
 +
 +
:A band limitation&nbsp; $(B_y < B_x)$&nbsp; is a special form of linear distortions,&nbsp; which will be discussed in the&nbsp; [[Linear_and_Time_Invariant_Systems/Lineare_Verzerrungen|&raquo;chapter after next&laquo;]].
  
[[File:EN_LZI_T_2_1_S5_neu.png|frame| Lineare und nichtlineare Verzerrungen|class=fit]]
 
*In der oberen Grafik gilt&nbsp; $B_y = B_x$.&nbsp; Es liegen&nbsp; '''lineare Verzerrungen'''&nbsp; vor, da sich in diesem Frequenzband&nbsp; $X(f)$&nbsp; und&nbsp; $Y(f)$&nbsp; unterscheiden.
 
*Eine Bandbegrenzung&nbsp; $(B_y < B_x)$&nbsp; ist eine Sonderform linearer Verzerrungen, die im&nbsp; [[Linear_and_Time_Invariant_Systems/Lineare_Verzerrungen|übernächsten Kapitel]]&nbsp;  behandelt werden.
 
  
 +
$\rm (B)$ &nbsp; The lower diagram shows an example of&nbsp; &raquo;'''non-linear distortions'''&laquo;&nbsp; $(B_y > B_x)$.&nbsp; For such a system no frequency response&nbsp; $H(f)$&nbsp; can be given.
  
 +
:Descriptive quantities applicable for nonlinear systems will be explained in the next chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|&raquo;Non-linear Distortions&laquo;]]&nbsp;.
  
  
*Die untere Grafik zeigt ein Beispiel für&nbsp; '''nichtlineare Verzerrungen'''&nbsp; $(B_y > B_x)$.&nbsp; Für ein solches System kann kein Frequenzgang&nbsp; $H(f)$&nbsp; angegeben werden.
+
In most real transmission channels both linear and nonlinear distortions occur.&nbsp; However,&nbsp; for a whole range of problems the precise separation of the two types of distortions is essential.&nbsp; In&nbsp; [Kam04]<ref>Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>&nbsp;  a corresponding substitute model is shown. }}
*Welche Beschreibungsgrößen für nichtlineare Systeme geeignet sind, wird im nächsten Kapitel&nbsp; [[Linear_and_Time_Invariant_Systems/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]]&nbsp;  dargelegt.
 
<br clear=all>
 
Bei den meisten realen Übertragungskanälen treten sowohl lineare als auch nichtlineare Verzerrungen auf.&nbsp; Für eine ganze Reihe von Problemstellungen ist jedoch die klare Trennung der beiden Verzerrungsarten essentiell.&nbsp; In&nbsp; [Kam04]<ref>Kammeyer, K.D.: ''Nachrichtenübertragung''. Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>&nbsp;  wird ein entsprechendes Ersatzmodell angegeben. }}
 
  
  
Wir verweisen hier auf das Lernvideo &nbsp;[[Lineare_und_nichtlineare_Verzerrungen_(Lernvideo)|Lineare und nichtlineare Verzerrungen]]&nbsp;.
+
We refer here to the&nbsp; $($German language$)$&nbsp; learning video &nbsp;[[Lineare_und_nichtlineare_Verzerrungen_(Lernvideo)|&raquo;Lineare und nichtlineare Verzerrungen]] &nbsp; &rArr; &nbsp; &raquo;Linear and nonlinear distortions&laquo;.
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
  
[[Aufgaben:2.1_Linear%3F_-_Nichtlinear%3F| Aufgabe 2.1: Linear? - Nichtlinear?]]
+
[[Aufgaben:Exercise_2.1:_Linear%3F_Or_Non-Linear%3F| Exercise 2.1: Linear? Or Non-Linear?]]
  
[[Aufgaben:2.1Z_Verzerrung_und_Entzerrung|Aufgabe 2.1Z: Verzerrung und Entzerrung]]
+
[[Aufgaben:Exercise_2.1Z:_Distortion_and_Equalisation|Exercise 2.1Z: Distortion and Equalisation]]
  
[[Aufgaben:2.2_Verzerrungsleistung|Aufgabe 2.2: Verzerrungsleistung]]
+
[[Aufgaben:Exercise_2.2:_Distortion_Power|Exercise 2.2: Distortion Power]]
  
[[Aufgaben:2.2Z_Nochmals_Verzerrungsleistung|Aufgabe 2.2Z: Nochmals Verzerrungsleistung]]
+
[[Aufgaben:Exercise_2.2Z:_Distortion_Power_again|Exercise 2.2Z: Distortion Power again]]
  
 
{{Display}}
 
{{Display}}
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>

Latest revision as of 16:30, 9 November 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


$\text{Definition:}$  In general,  »distortion«  is understood to be undesirable deterministic changes in a message signal caused by a transmission system.


In addition to stochastic interferences  $($noise,  crosstalk, etc.$)$,  such deterministic distortions are a critical limitation on the transmission quality and rate for many transmission systems.

This chapter presents these distortions in a summarizing way,  in particular:

  1. The quantitative description of such signal falsifications via the  »distortion power«,
  2. the distinguishing features between  »nonlinear and linear distortions«,
  3. the meaning and computation of the  »distortion factor in nonlinear systems«,  and
  4. the effects of  »linear attenuation and phase distortions«.


Prerequisites for the second main chapter


Description of a linear system

In the following,  we consider always a  »system«

  • whose input is the signal  $x(t)$  with the corresponding spectrum  $X(f)$,  and
  • the output signal is denoted by  $y(t)$  and its spectrum by  $Y(f).$


The block labelled  »system«  can be a part of an  »electrical circuit«  or a complete transmission system«  consisting of

  1. »transmitter«,
  2. »channel«, and
  3. »receiver«.


For the whole main chapter  »Signal Distortions and Equalization«  the following shall apply:

  • The system be  »time-invariant«.  If the input signal  $x(t)$  results in the output signal  $y(t)$,  then a later input signal of the same form – in particular  $x(t - t_0)$  – will result in the signal  $y(t - t_0)$.
  • In the following,  »no noise«  is considered,  which is always present in real systems.  For the description of these phenomena we refer to the book  »Theory of Stochastic Signals«.
  • About the system   »no detailed knowledge«  is assumed.  In the following of this chapter,  all system properties are derived from the signals  $x(t)$  and  $y(t)$  or their spectra alone.
  • In particular,  no specifications are made here with regard to  »linearity«.  The  »system« can be  »linear«  $($prerequisite for the application of the superposition principle$)$  or  »non-linear«.
  • Not all system properties are discernible from a single test signal  $x(t)$  and its response  $y(t)$ . Therefore,  sufficiently many test signals  must be used for evaluation.


In the following,  we will classify transmission systems in more detail in this respect.

Ideal and distortion-free system


$\text{Definition:}$  One deals with an  »ideal system«  if the output signal  $y(t)$  is identical with the input signal  $x(t)$:

$$y(t) \equiv x(t).$$


  1. It should be noted that such an ideal system does not exist in reality even if statistical disturbances and noise processes  $($that always exist but are not considered in this book$)$  are disregarded. 
  2. Every transmission medium exhibits losses  $($»attenuation«$)$  and  »transit times».  Even if these physical phenomena are very small,  they are never zero.  Therefore it is necessary to introduce a somewhat less strict quality characteristic.


$\text{Definition:}$  A  »distortion-free system«  exists if the following condition is fulfilled:

$$y(t) = \alpha \cdot x(t - \tau).$$
  1. Here,  $α$  describes the  »attenuation factor«  and  $τ$  the  »transit time«.
  2. If this condition is not met,  the system is said to be  » distortive«.


$\text{Example 1:}$  The following diagram shows the input signal  $x(t)$  and the output signal  $y(t)$  of a nonideal but distortion-free system.  The system parameters are  $α = 0.8$  and  $τ = 0.25 \ \rm ms$.

Exemplary signals of a distortion-free system

$\text{Note:}$

  • The attenuation factor  $α$  can be completely reversed by a receiver-side gain of  $1/α = 1.25$,  but it must be taken into account that this also increases any noise.
  • However,  the transit time  $τ$  cannot be compensated due to  »causality reasons«.  It now depends on the application whether such a transit time is subjectively perceived as disturbing or not.
  1. For example,  even with a transit time of one second the  $($unidirectional$)$  TV broadcast of an event is still described as "live". 
  2. In contrast to this,  transit times of  $\text{300 ms}$  are already perceived as very disturbing in bidirectional communication – e.g. a telephone call. 
  3. You either wait for the other person to react or both participants interrupt each other.

Quantitative measure for the signal distortions


Input and output of a distortive system and difference signal (below)

We now consider a distortive system on the basis of the input and output signal. 

  • We assume that apart from the signal distortions there is no additional frequency-independent attenuation factor   $α$  and no additional transit time  $τ$.  These conditions are fulfilled for the signal sections sketched on the right.
  • In addition to the signals  $x(t)$  and  $y(t)$,  the difference signal is shown in the diagram:
$$\varepsilon(t) = y(t) - x(t).$$

As a quantitative measure of the strength of distortions,  the  »mean square value of this difference signal« is applicable:

$$\overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t\hspace{0.4cm} \left( = P_{\rm V} \right).$$

The following should be noted about this equation:

  1. The measuring time  $T_{\rm M}$  must be chosen sufficiently large.  Actually, this equation should be formulated as a limit process.
  2. This expression is called  »mean squared error«  $\rm (MSE)$  or   »distortion power«  $P_{\rm V}$  $($because of  "distortion"   ⇒   German:  "Verzerrung"   ⇒   subscript  "$\rm V$"$)$.
  3. If  $x(t)$  and  $y(t)$  are voltage signals,  then  $P_{\rm V}$  has the unit of  ${\rm V}^2$,  meaning the power is related to the resistance  $R = 1 \ Ω$  according to the above definition.


$\text{Definition:}$  Making use of the power  $P_x$  $($based on  $R = 1 \ Ω)$  of the input signal  $x(t)$  the   »signal–to–distortion (power) ratio«  can be given as:

$$\rho_{\rm V} = \frac{ P_{x} }{P_{\rm V} } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} = 10 \cdot \lg \hspace{0.1cm}\frac{ P_{x} }{P_{\rm V} }\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right).$$

For the signals shown in the diagram above   ⇒   $P_x = 4 \ {\rm V}^2$,  $P_{\rm V} = 0.04 \ {\rm V}^2$;

$$10 \cdot {\rm lg} \ ρ_{\rm V} = 20 \ \rm dB.$$


We reference the interactive applet  »Linear Distortions of Periodic Signals«.

Elimination of attenuation factor and transit time


The equations given in the last section do not result in applicable statements if the system is additionally affected by an attenuation factor  $α$  and/or a transit time  $τ$.  The diagram shows the attenuated,  delayed and distorted signal

Elimination of attenuation factor $α$ 
and transit time  $τ$
$$y(t) = \alpha \cdot x(t - \tau) + \varepsilon_1(t).$$
  • Here,  instead of the  »distortion power«  the  »distortion energy«  must be considered because  $x(t)$  and  $y(t)$  are energy-limited signals.
  • The term  $ε_1(t)$  summarizes all distortions.  It can be seen from the green area that the difference signal   ⇒   »error signal« $ε_1(t)$  is relatively small.


In contrast to this,  if the attenuation factor  $α$  and the transit time  $τ$  are unknown,  the following should be noted:

  • In the second example the difference signal  $ε_2(t) = y(t) - x(t)$  determined in this way is relatively large despite small distortions  $ε_1(t)$.
  • The distortion energy is obtained by varying the unknown quantities  $α$  and  $τ$  and thus finding the minimum of the  »mean squared error«:
$$E_{\rm V} = \min_{\alpha, \ \tau} \int_{ - \infty }^{ + \infty} {\big[y(t) - \left(\alpha \cdot x(t - \tau) \right) \big]^2}\hspace{0.1cm}{\rm d}t.$$
  • The energy of the attenuated and delayed signal  $α · x(t - τ)$  is  $E_{\rm V} =α^2 · E_x$ independent of the transit time  $τ$.  Thus for the signal-to-distortion  $($energy or power$)$  ratio the following is applicable:
$$\rho_{\rm V} = \frac{ \alpha^2 \cdot E_{x}}{E_{\rm V}}\hspace{0.3cm}{\rm or}\hspace{0.3cm}\rho_{\rm V}= \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} .$$
  • The first of these two equations applies to time-limited and thus energy-limited signals,  the second one to time-unlimited and thus power-limited signals according to the section  »Energy-limited and power-limited signals«  in the book  »Signal Representation«.

Linear and nonlinear distortions


A distinction is made between  »linear distortions«  and  »nonlinear distortions«:

If the system is linear and time-invariant  $(\rm LTI)$,  then it is fully characterized by its  $\text{frequency response}$  $H(f)$  and the following can be stated:

  1. According to the  $H(f)$  definition the following holds for the output spectrum:   $Y(f)=X(f) · H(f)$.  
  2. As a consequence according to the calculation rules of multiplication,  $Y(f)$  cannot contain any frequency components that are not already contained in  $X(f)$.
  3. The inverse implies:   The output signal  $y(t)$  can include any frequency  $f_0$  already contained in the input  $x(t)$ . The prerequisite is therefore that  $X(f_0) ≠ 0$.
  4. For an LTI system the absolute bandwidth  $B_y$  of the output signal is never greater than the bandwidth  $B_x$  of the input signal:   $B_y \le B_x .$


$\text{Conclusion:}$  The differences between linear and non-linear distortions are illustrated by the following diagram:

Linear and nonlinear distortions

$\rm (A)$   In the upper diagram  $B_y = B_x$  holds. There are  »linear distortions«  because in this frequency band  $X(f)$  and  $Y(f)$  differ.

A band limitation  $(B_y < B_x)$  is a special form of linear distortions,  which will be discussed in the  »chapter after next«.


$\rm (B)$   The lower diagram shows an example of  »non-linear distortions«  $(B_y > B_x)$.  For such a system no frequency response  $H(f)$  can be given.

Descriptive quantities applicable for nonlinear systems will be explained in the next chapter  »Non-linear Distortions« .


In most real transmission channels both linear and nonlinear distortions occur.  However,  for a whole range of problems the precise separation of the two types of distortions is essential.  In  [Kam04][1]  a corresponding substitute model is shown.


We refer here to the  $($German language$)$  learning video  »Lineare und nichtlineare Verzerrungen   ⇒   »Linear and nonlinear distortions«.

Exercises for the chapter

Exercise 2.1: Linear? Or Non-Linear?

Exercise 2.1Z: Distortion and Equalisation

Exercise 2.2: Distortion Power

Exercise 2.2Z: Distortion Power again



References

  1. Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4. Auflage, 2004.