Difference between revisions of "Theory of Stochastic Signals/Creation of Predefined ACF Properties"

From LNTwww
 
(10 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
==ACF at the output of a non-recursive filter==
 
==ACF at the output of a non-recursive filter==
 
<br>
 
<br>
We consider a &nbsp; non-recursive&nbsp; $M$&ndash;th order delay&nbsp; filter according to the following diagram.
+
We consider &nbsp; a non-recursive&nbsp; $M$&ndash;th order digital&nbsp; filter according to the following diagram.
 
[[File:P_ID555__Sto_T_5_3_S1_neu.png |frame| $M$-th order non-recursive filter]]
 
[[File:P_ID555__Sto_T_5_3_S1_neu.png |frame| $M$-th order non-recursive filter]]
 
The discrete-time input variable&nbsp; $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$&nbsp; is
 
The discrete-time input variable&nbsp; $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$&nbsp; is
* mean-free&nbsp; $(m_x = 0)$,  
+
* mean&ndash;free&nbsp; $(m_x = 0)$,  
* Gaussian distributed&nbsp; (with&nbsp; scatter&nbsp; $σ_x)$,&nbsp; and  
+
* Gaussian distributed&nbsp; (with&nbsp; standard deviation&nbsp; &rArr; &nbsp; "standard deviation"&nbsp; $σ_x)$,&nbsp; and  
* without memory ("white noise") &nbsp; &rArr; &nbsp; statistically independent samples.
+
* without memory&nbsp; ("white noise") &nbsp; &rArr; &nbsp; statistically independent samples.
  
  
 
This results in the following properties:
 
This results in the following properties:
*The discrete-time auto-correlation function (ACF) at the input is:
+
*The discrete-time auto-correlation function&nbsp; $\rm (ACF)$&nbsp; at the input is:
:$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c}  {\sigma _x ^2 } & {\rm{f\ddot{u}r}\quad {\it k} = 0,}  \\  0 & {\rm{f\ddot{u}r}\quad {\it k} \ne 0.}  \\\end{array}} \right.$$
+
:$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c}  {\sigma _x ^2 } & {\rm{for}\quad {\it k} = 0,}  \\  0 & {\rm{for}\quad {\it k} \ne 0.}  \\\end{array}} \right.$$
 
*The ACF of the discrete-time output sequence&nbsp; $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$&nbsp; is given as follows:
 
*The ACF of the discrete-time output sequence&nbsp; $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$&nbsp; is given as follows:
:$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2  \cdot \sum\limits_{\mu  = 0}^{M - k} {a_\mu  \cdot a_{\mu  + k } } \quad {\rm{f\ddot{u}r}}\quad {\it k} = 0, 1,\,\text{...}\,,\,{\it M}.$$
+
:$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2  \cdot \sum\limits_{\mu  = 0}^{M - k} {a_\mu  \cdot a_{\mu  + k } } \quad {\rm{for}}\quad {\it k} = 0, 1,\,\text{...}\,,\,{\it M}.$$
*All ACF values with&nbsp; $k > M$&nbsp; are zero, and all ACF values with&nbsp; $k < M$&nbsp; are symmetric about&nbsp; $k = 0$:  
+
*All ACF values with&nbsp; $k > M$&nbsp; are zero,&nbsp; and all ACF values with&nbsp; $k < M$&nbsp; are symmetric about&nbsp; $k = 0$:  
 
:$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$
 
:$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp; If discrete-time white noise with dispersion&nbsp; $σ_x = 2$&nbsp; is present at the input of a first-order non-recursive filter&nbsp; $($filter coefficients&nbsp; $a_0 = 0.6$,&nbsp; $a_1 = 0.8),$&nbsp; the discrete ACF values of the output signal are (all other ACF values are zero):
+
$\text{Example 1:}$&nbsp; If discrete-time white noise with standard deviation&nbsp; $σ_x = 2$&nbsp; is present at the input of a first-order non-recursive filter&nbsp; $($filter coefficients&nbsp; $a_0 = 0.6$,&nbsp; $a_1 = 0.8),$&nbsp; the discrete ACF values of the output signal are (all other ACF values are zero):
  
 
[[File:P_ID597__Sto_T_5_3_S1_b_neu.png |frame| ACF at the output of a first order filter|right]]
 
[[File:P_ID597__Sto_T_5_3_S1_b_neu.png |frame| ACF at the output of a first order filter|right]]
Line 30: Line 30:
 
:$$\varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2  \cdot a_0  \cdot a_1  = 1.92.$$
 
:$$\varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2  \cdot a_0  \cdot a_1  = 1.92.$$
  
The diagram can be interpreted as follows:
+
The graphic can be interpreted as follows:
 
*Because of&nbsp; $a_0^2 + a_1^2 = 1$,&nbsp; the output signal&nbsp; $y(t)$&nbsp; has exactly the same variance&nbsp; $σ_y^2 = φ_y(0) = 0.4$&nbsp; as the input signal: &nbsp;  $σ_x^2 = φ_x(0)$.  
 
*Because of&nbsp; $a_0^2 + a_1^2 = 1$,&nbsp; the output signal&nbsp; $y(t)$&nbsp; has exactly the same variance&nbsp; $σ_y^2 = φ_y(0) = 0.4$&nbsp; as the input signal: &nbsp;  $σ_x^2 = φ_x(0)$.  
*Unlike the input sequence&nbsp; $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$,&nbsp; the output sequence&nbsp; $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$&nbsp; has statistical ties between adjacent samples. }}
+
*Unlike the input sequence&nbsp; $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$,&nbsp; the output sequence&nbsp; $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$&nbsp; has statistical bindings between adjacent samples. }}
  
  
 
==Determining the coefficients==
 
==Determining the coefficients==
 
<br>
 
<br>
Now the following question is to be answered: &nbsp; How can the coefficients&nbsp; $a_0$, ... , $a_M$&nbsp; of a non-recursive filter&nbsp; $M$&ndash;th order can be determined,
+
Now the following question is to be answered: &nbsp; How can the coefficients&nbsp; $a_0$, ... , $a_M$&nbsp; of a&nbsp; $M$&ndash;th order non-recursive filter can be determined,
* if the desired ACF values&nbsp; $φ_y(0)$, ... , $φ_y(M · T_{\rm A})$&nbsp; are given, and
+
* if the desired ACF values&nbsp; $φ_y(0)$, ... ,s&nbsp; $φ_y(M · T_{\rm A})$&nbsp; are given&nbsp; and
 
* outside the range from&nbsp;  $-M · T_{\rm A}$&nbsp; to&nbsp; $+M · T_{\rm A}$&nbsp; all ACF values are to be zero.
 
* outside the range from&nbsp;  $-M · T_{\rm A}$&nbsp; to&nbsp; $+M · T_{\rm A}$&nbsp; all ACF values are to be zero.
  
  
For&nbsp; $σ_x = 1$,&nbsp; the following nonlinear system of equations is obtained, using&nbsp; $φ_k = φ_y(k · T_{\rm A})$&nbsp; for simplicity of notation:
+
For the standard deviation&nbsp; $σ_x = 1$,&nbsp; the following nonlinear system of equations is obtained,&nbsp; using&nbsp; $φ_k = φ_y(k · T_{\rm A})$&nbsp; for simplicity of notation:
 
:$$\begin{align*}\varphi _0 & = \sum\limits_{\mu  = 0}^M {a_\mu^2  ,}\\ \varphi _1 &  = \sum\limits_{\mu  = 0}^{M - 1} {a_\mu  \cdot a_{\mu  + 1} ,}  \\ & ... &\\  \varphi _{M - 1} & = a_0  \cdot a_{M - 1}  + a_1  \cdot a_M ,  \\ \varphi _M  & =  a_0  \cdot a_M .\end{align*}$$
 
:$$\begin{align*}\varphi _0 & = \sum\limits_{\mu  = 0}^M {a_\mu^2  ,}\\ \varphi _1 &  = \sum\limits_{\mu  = 0}^{M - 1} {a_\mu  \cdot a_{\mu  + 1} ,}  \\ & ... &\\  \varphi _{M - 1} & = a_0  \cdot a_{M - 1}  + a_1  \cdot a_M ,  \\ \varphi _M  & =  a_0  \cdot a_M .\end{align*}$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Conclusion:}$&nbsp;  
 
$\text{Conclusion:}$&nbsp;  
*Thus, for the&nbsp; $M + 1$&nbsp; coefficients, one also obtains&nbsp; $M + 1$&nbsp; independent equations.
+
*Thus,&nbsp; for the&nbsp; $M + 1$&nbsp; coefficients,&nbsp; one also obtains&nbsp; $M + 1$&nbsp; independent equations.
*By successive elimination of the coefficients&nbsp; $a_1$, ... , $a_M$,&nbsp; finally a nonlinear equation of higher order remains for&nbsp; $a_0$.&nbsp;}}  
+
*By successive elimination of the coefficients&nbsp; $a_1$, ... ,&nbsp; $a_M$,&nbsp; finally a nonlinear equation of higher order remains for&nbsp; $a_0$.}}  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 2:}$&nbsp; We consider the following constellation:
 
$\text{Example 2:}$&nbsp; We consider the following constellation:
*a recursive filter of first order &nbsp; ⇒  &nbsp; $M = 1$,  
+
#a recursive filter of first order &nbsp; ⇒  &nbsp; $M = 1$,  
*a discrete-time input sequence&nbsp; $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$&nbsp; with mean&nbsp; $m_x =$ 0 &nbsp; and&nbsp; dispersion&nbsp; $σ_x = 1$,  
+
#a discrete-time input sequence&nbsp; $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$&nbsp; with mean&nbsp; $m_x =$ 0 &nbsp; and&nbsp; standard deviation&nbsp; $σ_x = 1$,  
*desired ACF values of the sequence&nbsp; $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$: &nbsp; $ φ_y(0) = φ_0 =0.58$&nbsp; and&nbsp; $φ_y(±T_{\rm A}) = φ_1 = 0.21$.  
+
#desired ACF values of the sequence&nbsp; $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$: &nbsp; $ φ_y(0) = φ_0 =0.58$, &nbsp; $φ_y(±T_{\rm A}) = φ_1 = 0.21$.  
  
  
Thus, the above system of equations is:
+
*Thus,&nbsp; the above system of equations is:
 
:$$\varphi _0  = a_0 ^2  + a_1 ^2  = 0.58,$$
 
:$$\varphi _0  = a_0 ^2  + a_1 ^2  = 0.58,$$
 
:$$\varphi _1  = a_0  \cdot a_1  = 0.21.$$
 
:$$\varphi _1  = a_0  \cdot a_1  = 0.21.$$
This leads to an equation of degree&nbsp; $4$, namely
+
*This leads to an equation of degree&nbsp; $4$,&nbsp;
 
:$$a_0 ^2  + \left( { { {0.21} }/{ {a_0 } } } \right)^2  = 0.58\quad  \Rightarrow \quad a_0 ^4  - 0.58 \cdot a_0 ^2  + 0.21^2  = 0.$$
 
:$$a_0 ^2  + \left( { { {0.21} }/{ {a_0 } } } \right)^2  = 0.58\quad  \Rightarrow \quad a_0 ^4  - 0.58 \cdot a_0 ^2  + 0.21^2  = 0.$$
A solution represents&nbsp; $a_0 = 0.7$.&nbsp; &nbsp; By inserting it into the second equation, we find&nbsp; $a_1 = 0.3$. }}
+
*A solution represents&nbsp; $a_0 = 0.7$.&nbsp; &nbsp; By inserting it into the second equation, we find&nbsp; $a_1 = 0.3$.  
  
  
One recognizes from this example that already in the simplest case &nbsp;  ⇒ &nbsp;  $M = 1$&nbsp; for&nbsp; $a_0$&nbsp; a nonlinear determination equation of degree&nbsp; $4$&nbsp; results.  
+
One recognizes from this example that already in the simplest case &nbsp;  ⇒ &nbsp;  $M = 1$&nbsp; for&nbsp; $a_0$&nbsp; a nonlinear determination equation of degree&nbsp; $4$&nbsp; results.}}
  
==Ambiguities in the determination of coefficients==
+
==Ambiguities in the determination of the coefficients==
 
<br>
 
<br>
As the last example showed, with&nbsp; $M = 1$&nbsp; the determination equation for&nbsp; $a_0$&nbsp; is of degree&nbsp; $4$.&nbsp; At the same time, this means that there are also four sets of coefficients, all leading to the same ACF.
+
As the last example showed,&nbsp; with&nbsp; $M = 1$&nbsp; the determination equation for&nbsp; $a_0$&nbsp; is of degree&nbsp; $4$.&nbsp; At the same time,&nbsp; this means that there are also four sets of coefficients,&nbsp; all leading to the same ACF.
  
 
This is obvious for the following reasons:  
 
This is obvious for the following reasons:  
 
*The coefficients&nbsp; $a_0$&nbsp; and&nbsp; $a_1$&nbsp; can change sign simultaneously without changing the system of equations.
 
*The coefficients&nbsp; $a_0$&nbsp; and&nbsp; $a_1$&nbsp; can change sign simultaneously without changing the system of equations.
*Replacing&nbsp; $a_0$&nbsp; by&nbsp; $a_1$&nbsp; and vice versa results in the same equation of determination.
+
*Replacing&nbsp; $a_0$ &nbsp; by&nbsp; $a_1$ &nbsp; and vice versa results in the same equation of determination.
 
*This operation corresponds to a mirroring and shifting of the impulse response.
 
*This operation corresponds to a mirroring and shifting of the impulse response.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 3:}$&nbsp; As shown in the&nbsp; [[Theory_of_Stochastic_Signals/Creation_of_Predefined_ACF_Properties#Ambiguities_in_the_determination_of_coefficients|last section]],&nbsp; the parameter set&nbsp;$a_0 = 0.7$, &nbsp;$a_1 = 0.3$&nbsp; is suitable to generate the ACF values&nbsp;$φ_0 = 0.58$&nbsp; and &nbsp;$φ_1 = 0.21$.&nbsp; The desired ACF of the output sequence is then in detailed notation:
+
$\text{Example 3:}$&nbsp; As shown in the&nbsp; [[Theory_of_Stochastic_Signals/Creation_of_Predefined_ACF_Properties#Ambiguities_in_the_determination_of_the_coefficients|"last section"]],&nbsp; the parameter set&nbsp;$a_0 = 0.7$, &nbsp;$a_1 = 0.3$&nbsp; is suitable to generate the ACF values&nbsp;$φ_0 = 0.58$&nbsp; and &nbsp;$φ_1 = 0.21$.&nbsp; The desired ACF of the output sequence is then in detailed notation:
 
[[File:P_ID557__Sto_T_5_3_S2_b_neu_100.png |frame| Example of ACF calculation|right]]  
 
[[File:P_ID557__Sto_T_5_3_S2_b_neu_100.png |frame| Example of ACF calculation|right]]  
 
:$$\varphi_y(\tau) = 0.58 \cdot \delta(\tau) + 0.21 \cdot \delta(\tau - T_{\rm A})  
 
:$$\varphi_y(\tau) = 0.58 \cdot \delta(\tau) + 0.21 \cdot \delta(\tau - T_{\rm A})  
Line 99: Line 99:
 
==Exercises for the chapter==
 
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Exercise_5.5:_ACF-Equivalent_Filters|Exercise 5.5: ACF-Equivalent Filters]]
+
[[Aufgaben:Exercise_5.5:_ACF-Equivalent_Filters|Exercise 5.5: ACF-equivalent Filters]]
  
[[Aufgaben:Exercise_5.5Z:_ACF_after_1st_order_filter|Exercise 5.5Z: ACF after 1st order filter]]
+
[[Aufgaben:Exercise_5.5Z:_ACF_after_1st_Order_Filter|Exercise 5.5Z: ACF after 1st Order Filter]]
  
 
[[Aufgaben:Exercise_5.6:_Filter_Dimensioning|Exercise 5.6: Filter Dimensioning]]
 
[[Aufgaben:Exercise_5.6:_Filter_Dimensioning|Exercise 5.6: Filter Dimensioning]]

Latest revision as of 19:55, 21 December 2022

ACF at the output of a non-recursive filter


We consider   a non-recursive  $M$–th order digital  filter according to the following diagram.

$M$-th order non-recursive filter

The discrete-time input variable  $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$  is

  • mean–free  $(m_x = 0)$,
  • Gaussian distributed  (with  standard deviation  ⇒   "standard deviation"  $σ_x)$,  and
  • without memory  ("white noise")   ⇒   statistically independent samples.


This results in the following properties:

  • The discrete-time auto-correlation function  $\rm (ACF)$  at the input is:
$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c} {\sigma _x ^2 } & {\rm{for}\quad {\it k} = 0,} \\ 0 & {\rm{for}\quad {\it k} \ne 0.} \\\end{array}} \right.$$
  • The ACF of the discrete-time output sequence  $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$  is given as follows:
$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2 \cdot \sum\limits_{\mu = 0}^{M - k} {a_\mu \cdot a_{\mu + k } } \quad {\rm{for}}\quad {\it k} = 0, 1,\,\text{...}\,,\,{\it M}.$$
  • All ACF values with  $k > M$  are zero,  and all ACF values with  $k < M$  are symmetric about  $k = 0$:
$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$

$\text{Example 1:}$  If discrete-time white noise with standard deviation  $σ_x = 2$  is present at the input of a first-order non-recursive filter  $($filter coefficients  $a_0 = 0.6$,  $a_1 = 0.8),$  the discrete ACF values of the output signal are (all other ACF values are zero):

ACF at the output of a first order filter
$$\varphi _y (0) = \sigma _x ^2 \cdot ( {a_0 ^2 + a_1 ^2 }) = 4,$$
$$\varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot a_0 \cdot a_1 = 1.92.$$

The graphic can be interpreted as follows:

  • Because of  $a_0^2 + a_1^2 = 1$,  the output signal  $y(t)$  has exactly the same variance  $σ_y^2 = φ_y(0) = 0.4$  as the input signal:   $σ_x^2 = φ_x(0)$.
  • Unlike the input sequence  $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$,  the output sequence  $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$  has statistical bindings between adjacent samples.


Determining the coefficients


Now the following question is to be answered:   How can the coefficients  $a_0$, ... , $a_M$  of a  $M$–th order non-recursive filter can be determined,

  • if the desired ACF values  $φ_y(0)$, ... ,s  $φ_y(M · T_{\rm A})$  are given  and
  • outside the range from  $-M · T_{\rm A}$  to  $+M · T_{\rm A}$  all ACF values are to be zero.


For the standard deviation  $σ_x = 1$,  the following nonlinear system of equations is obtained,  using  $φ_k = φ_y(k · T_{\rm A})$  for simplicity of notation:

$$\begin{align*}\varphi _0 & = \sum\limits_{\mu = 0}^M {a_\mu^2 ,}\\ \varphi _1 & = \sum\limits_{\mu = 0}^{M - 1} {a_\mu \cdot a_{\mu + 1} ,} \\ & ... &\\ \varphi _{M - 1} & = a_0 \cdot a_{M - 1} + a_1 \cdot a_M , \\ \varphi _M & = a_0 \cdot a_M .\end{align*}$$

$\text{Conclusion:}$ 

  • Thus,  for the  $M + 1$  coefficients,  one also obtains  $M + 1$  independent equations.
  • By successive elimination of the coefficients  $a_1$, ... ,  $a_M$,  finally a nonlinear equation of higher order remains for  $a_0$.


$\text{Example 2:}$  We consider the following constellation:

  1. a recursive filter of first order   ⇒   $M = 1$,
  2. a discrete-time input sequence  $〈\hspace{0.05cm}x_ν\hspace{0.05cm}〉$  with mean  $m_x =$ 0   and  standard deviation  $σ_x = 1$,
  3. desired ACF values of the sequence  $〈\hspace{0.05cm}y_ν\hspace{0.05cm}〉$:   $ φ_y(0) = φ_0 =0.58$,   $φ_y(±T_{\rm A}) = φ_1 = 0.21$.


  • Thus,  the above system of equations is:
$$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$
$$\varphi _1 = a_0 \cdot a_1 = 0.21.$$
  • This leads to an equation of degree  $4$, 
$$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$
  • A solution represents  $a_0 = 0.7$.    By inserting it into the second equation, we find  $a_1 = 0.3$.


One recognizes from this example that already in the simplest case   ⇒   $M = 1$  for  $a_0$  a nonlinear determination equation of degree  $4$  results.

Ambiguities in the determination of the coefficients


As the last example showed,  with  $M = 1$  the determination equation for  $a_0$  is of degree  $4$.  At the same time,  this means that there are also four sets of coefficients,  all leading to the same ACF.

This is obvious for the following reasons:

  • The coefficients  $a_0$  and  $a_1$  can change sign simultaneously without changing the system of equations.
  • Replacing  $a_0$   by  $a_1$   and vice versa results in the same equation of determination.
  • This operation corresponds to a mirroring and shifting of the impulse response.


$\text{Example 3:}$  As shown in the  "last section",  the parameter set $a_0 = 0.7$,  $a_1 = 0.3$  is suitable to generate the ACF values $φ_0 = 0.58$  and  $φ_1 = 0.21$.  The desired ACF of the output sequence is then in detailed notation:

Example of ACF calculation
$$\varphi_y(\tau) = 0.58 \cdot \delta(\tau) + 0.21 \cdot \delta(\tau - T_{\rm A}) + 0.21 \cdot \delta(\tau + T_{\rm A}) .$$

The same ACF is also obtained with the coefficients

  • $a_0 = - 0.7,\quad a_1 = -0.3,$
  • $a_0 = +0.3,\quad a_1 = +0.7,$
  • $a_0 = - 0.3,\quad a_1 = -0.7.$


These configurations are obtained by

  • simultaneously multiplying all coefficients by  $-1$,  and
  • swapping the numerical values of  $a_0$  and  $a_1$.


The diagram shows the respective impulse responses leading to the desired ACF.

Exercises for the chapter


Exercise 5.5: ACF-equivalent Filters

Exercise 5.5Z: ACF after 1st Order Filter

Exercise 5.6: Filter Dimensioning

Exercise 5.6Z: Filter Dimensioning again