Difference between revisions of "Linear and Time Invariant Systems/Classification of the Distortions"

From LNTwww
 
(135 intermediate revisions by 13 users not shown)
Line 1: Line 1:
  
 
{{Header|
 
{{Header|
Untermenü=Signalverzerrungen und Entzerrung
+
Untermenü=Signal Distortion and Equalization
|Vorherige Seite=Einige systemtheoretische Tiefpassfunktionen
+
|Vorherige Seite=Some_Low-Pass_Functions_in_Systems_Theory
|Nächste Seite=Nichtlineare Verzerrungen
+
|Nächste Seite=Nonlinear_Distortions
 
}}
 
}}
==Voraussetzungen für Kapitel 2==
 
Wir betrachten im Folgenden ein System, an dessen Eingang das Signal $x(t)$ mit zugehörigem Spektrum $X(f)$ anliegt. Das Ausgangssignal bezeichnen wir mit $y(t)$ und dessen Spektrum mit $Y(f).$
 
  
[[File:P_ID873__LZI_T_2_1_S1_neu.png|300px | Beschreibung eines linearen Systems]]
+
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
In general,&nbsp; '''&raquo;distortion&laquo;'''&nbsp; is understood to be undesirable deterministic changes in a message signal caused by a transmission system. }}
  
  
Der mit „System” bezeichnete Block kann ein Teil einer elektrischen Schaltung sein oder ein komplettes Übertragungssystem, bestehend aus Sender, Kanal und Empfänger.  
+
In addition to stochastic interferences&nbsp; $($noise,&nbsp; crosstalk, etc.$)$,&nbsp; such deterministic distortions are a critical limitation on the transmission quality and rate for many transmission systems.
  
 +
This chapter presents these distortions in a summarizing way,&nbsp; in particular:
  
Für das gesamte Kapitel 2 soll gelten:
+
#The quantitative description of such signal falsifications via the&nbsp; &raquo;distortion power&laquo;,
*Das System sei zeitinvariant. Führt das Eingangssignal $x(t)$ zum Signal $y(t)$, so wird ein späteres Eingangssignal gleicher Form, nämlich $x(t – t_0)$, das Signal $y(t – t_0)$ zur Folge haben.
+
#the distinguishing features between&nbsp; &raquo;nonlinear and linear distortions&laquo;,
*Es werden keine Rauschprozesse betrachtet, die bei realen Systemen stets vorhanden sind. Zur Beschreibung dieser Phänomene wird auf das Buch „Stochastische Signaltheorie” verwiesen.
+
#the meaning and computation of the&nbsp; &raquo;distortion factor in nonlinear systems&laquo;,&nbsp; and
*Es werden keine Detailkenntnisse über das System vorausgesetzt. Alle Systemeigenschaften werden im Folgenden allein aus den Signalen $x(t)$ und $y(t)$ bzw. deren Spektren abgeleitet.
+
#the effects of&nbsp; &raquo;linear attenuation and phase distortions&laquo;.
*Insbesondere seien vorerst keine Festlegungen hinsichtlich der Linearität gegeben. Das „System” kann linear (Voraussetzung für die Anwendung des Superpositionsprinzips) oder nichtlinear sein.
 
*Aus einem einzigen Testsignal $x(t)$ und dessen Antwort $y(t)$ sind nicht alle Systemeigenschaften erkennbar. Daher müssen ausreichend viele Testsignale zur Bewertung herangezogen werden.  
 
  
  
Nachfolgend werden wir solche Systeme näher klassifizieren.
 
  
==Ideales und verzerrungsfreies System==
+
==Prerequisites for the second main chapter==
{{Definition}}
+
<br>
Man spricht immer dann von einem idealen System, wenn das Ausgangssignal $y(t)$ exakt gleich dem Eingangssignal $x(t)$ ist:
+
[[File:P_ID873__LZI_T_2_1_S1_neu.png|frame| Description of a linear system|class=fit]]
$$y(t) = x(t)$$
 
{{end}}
 
  
 +
In the following,&nbsp; we consider always  a&nbsp; &raquo;system&laquo;
 +
*whose input is the signal &nbsp;$x(t)$&nbsp; with the corresponding spectrum &nbsp;$X(f)$,&nbsp; and
  
Anzumerken ist, dass es ein solches ideales System in der Realität nicht gibt, auch wenn man die stets existenten, in diesem Buch aber nicht betrachteten statistischen Störungen und Rauschvorgänge außer Acht lässt. Ein jedes Übertragungsmedium weist Verluste (Dämpfungen) und Laufzeiten auf. Selbst wenn diese physikalischen Phänomene sehr klein sind, so sind sie jedoch niemals 0. Deshalb ist es notwendig, ein etwas weniger strenges Qualitätsmerkmal einzuführen.  
+
*the output signal is denoted by &nbsp;$y(t)$&nbsp; and its spectrum by &nbsp;$Y(f).$
  
{{Definition}}
 
Ein verzerrungsfreies System liegt vor, wenn folgende Bedingung erfüllt ist:
 
$$y(t) = \alpha \cdot x(t - \tau).$$
 
Hierbei beschreibt $α$ den Dämpfungsfaktor und $τ$ die Laufzeit.
 
{{end}}
 
  
 +
The block labelled&nbsp;  &raquo;'''system'''&laquo;&nbsp; can be a part of an&nbsp; &raquo;electrical circuit&laquo;&nbsp; or a&nbsp;complete transmission system&laquo;&nbsp; consisting of
 +
# &raquo;transmitter&laquo;,
 +
#&raquo;channel&laquo;, and
 +
# &raquo;receiver&laquo;.
 +
<br clear=all>
 +
For the whole main chapter&nbsp; &raquo;Signal Distortions and Equalization&laquo;&nbsp; the following shall apply:
 +
*The system be&nbsp; &raquo;'''time-invariant'''&laquo;.&nbsp; If the input signal &nbsp;$x(t)$&nbsp; results in the output signal &nbsp;$y(t)$,&nbsp; then a later input signal of the same form &ndash; in particular &nbsp;$x(t - t_0)$&nbsp; &ndash; will result in the signal &nbsp;$y(t - t_0)$.
 +
 +
*In the following,&nbsp; &raquo;'''no noise'''&laquo;&nbsp; is considered,&nbsp; which is always present in real systems.&nbsp; For the description of these phenomena we refer to the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
 +
 +
*About the system &nbsp; &raquo;'''no detailed knowledge'''&laquo;&nbsp; is assumed.&nbsp; In the following of this chapter,&nbsp; all system properties are derived from the signals  &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$&nbsp; or their spectra alone.
 +
 +
*In particular,&nbsp; no specifications are made here with regard to&nbsp; &raquo;'''linearity'''&laquo;.&nbsp; The&nbsp; &raquo;system&laquo; can be&nbsp; &raquo;linear&laquo;&nbsp; $($prerequisite for the application of the superposition principle$)$&nbsp; or&nbsp; &raquo;non-linear&laquo;.
 +
 +
*Not all system properties are discernible from a single test signal &nbsp;$x(t)$&nbsp; and its response &nbsp;$y(t)$&nbsp;. Therefore, &nbsp;'''sufficiently many test signals'''&nbsp; must be used for evaluation.
  
Ist diese Bedingung nicht erfüllt, so spricht man von einem verzerrenden System.
 
  
 +
In the following,&nbsp; we will classify transmission systems in more detail in this respect.
  
{{Beispiel}}
+
==Ideal and distortion-free system==
Die folgende Grafik zeigt das Eingangssignal $x(t)$ und das Ausgangssignal $y(t)$ eines zwar nicht idealen, aber verzerrungsfreien Systems. Die Systemparameter sind $α$ = 0.8 und $τ$ = 0.25 ms.
+
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
One deals with an&nbsp; &raquo;'''ideal system'''&laquo;&nbsp; if the output signal &nbsp;$y(t)$&nbsp; is identical with the input signal &nbsp;$x(t)$:
 +
:$$y(t) \equiv x(t).$$}}
  
[[File:P_ID874__LZI_T_2_1_S2_neu.png|400px | Beispielhafte Signale eines verzerrungsfreien Systems]]
 
  
{{end}}
+
#It should be noted that such an ideal system does not exist in reality even if statistical disturbances and noise processes&nbsp; $($that always exist but are not considered in this book$)$&nbsp;  are disregarded.&nbsp;
 +
#Every transmission medium exhibits losses&nbsp; $($&raquo;attenuation&laquo;$)$&nbsp; and&nbsp; &raquo;transit times&raquo;.&nbsp; Even if these physical phenomena are very small,&nbsp; they are never zero.&nbsp; Therefore  it is necessary to introduce a somewhat less strict quality characteristic.
  
  
Der Dämpfungsfaktor $α$ kann durch eine empfängerseitige Verstärkung um 1/ $α$ vollständig rückgängig gemacht werden, doch ist zu berücksichtigen, dass damit auch etwaiges Rauschen angehoben wird.  
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A&nbsp; &raquo;'''distortion-free system'''&laquo;&nbsp; exists if the following condition is fulfilled:
 +
:$$y(t) = \alpha \cdot x(t - \tau).$$
 +
#Here, &nbsp;$α$&nbsp; describes the&nbsp; &raquo;attenuation factor&laquo;&nbsp; and &nbsp;$τ$&nbsp; the&nbsp; &raquo;transit time&laquo;.
 +
#If this condition is not met,&nbsp; the system is said to be&nbsp; &raquo;''' distortive'''&laquo;.}}
  
Dagegen kann die Laufzeit $τ$ aus Kausalitätsgründen nicht kompensiert werden. Es hängt nun von der Anwendung ab, ob eine solche Laufzeit subjektiv als störend empfunden wird. Beispielsweise wird man selbst bei einer Laufzeit von einer Sekunde die (unidirektionale) TV–Übertragung einer Veranstaltung noch immer als „live” bezeichnen. Dagegen werden bei einer bidirektionalen Kommunikation – zum Beispiel bei einem Telefonat – schon Laufzeiten von 300 Millisekunden als sehr störend empfunden. Man wartet entweder auf die Reaktion des Gesprächspartners oder beide Teilnehmer fallen sich ins Wort.
 
  
==Quantitatives Maß für die Signalverzerrungen==
+
{{GraueBox|TEXT=
Wir betrachten nun ein verzerrendes System anhand von Eingangs– und Ausgangssignal. Dabei setzen wir zunächst voraus, dass außer den Signalverzerrungen nicht zusätzlich noch ein für alle Frequenzen konstanter Dämpfungsfaktor $α$ und eine für alle Frequenzen konstante Laufzeit $τ$ wirksam sind. Bei den nachfolgend skizzierten Signalausschnitten sind diese Voraussetzungen erfüllt.  
+
$\text{Example 1:}$&nbsp;
 +
The following diagram shows the input signal &nbsp;$x(t)$&nbsp; and the output signal &nbsp;$y(t)$&nbsp; of a nonideal but distortion-free system.&nbsp; The system parameters are &nbsp;= 0.8$&nbsp; and &nbsp;= 0.25 \ \rm ms$.  
  
[[File:P_ID875__LZI_T_2_1_S3_neu.png|500px | Ein– und Ausgang eines verzerrenden Systems und Fehlersignal]]
+
[[File:P_ID874__LZI_T_2_1_S2_neu.png|frame|Exemplary signals of a distortion-free system|class=fit]]
  
In der Grafik ist zusätzlich zu den Signalen $x(t)$ und $y(t)$ auch das Differenzsignal
+
$\text{Note:}$  
$$\varepsilon(t) = y(t) - x(t)$$
+
*The attenuation factor &nbsp;$α$&nbsp; can be completely reversed by a receiver-side gain of &nbsp;$1/α = 1.25$,&nbsp; but it must be taken into account that this also increases any noise.
eingezeichnet. Als ein quantitatives Maß für die Stärke der Verzerrungen eignet sich zum Beispiel der quadratische Mittelwert dieses Differenzsignals:
+
$$\overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int\limits_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t\hspace{0.4cm}  \left( = P_{\rm V} \right).$$
+
*However,&nbsp; the transit time &nbsp;$τ$&nbsp; cannot be compensated due to&nbsp; [[Signal_Representation/Signal_classification#Causal_and_non-causal_signals|&raquo;causality reasons&laquo;]].&nbsp; It now depends on the application whether such a transit time is subjectively perceived as disturbing or not.  
  
Zu dieser Gleichung ist Folgendes zu bemerken:  
+
:#For example,&nbsp; even with a transit time of one second the&nbsp; $($unidirectional$)$&nbsp; TV broadcast of an event is still described as "live".&nbsp;
*Die Messdauer $T_M$ zur Bestimmung dieses Mittelwertes muss hinreichend groß gewählt werden. Eigentlich müsste diese Gleichung mit Grenzübergang formuliert werden.
+
:#In contrast to this,&nbsp; transit times of&nbsp; $\text{300 ms}$&nbsp; are already perceived as very disturbing in bidirectional communication – e.g. a telephone call.&nbsp;
*Der oben angegebene quadratische Mittelwert wird oft auch als der mittlere quadratische Fehler (MQF) oder als die Verzerrungsleistung $P_V$ bezeichnet.
+
:#You either wait for the other person to react or both participants interrupt each other.}}
*Sind $x(t)$ und $y(t)$ Spannungssignale, so besitzt $P_V$ die Einheit $„V^2”$, das heißt, die Leistung ist nach obiger Definition auf den Widerstand 1 $Ω$ bezogen.  
 
*Mit der in gleicher Weise definierten Leistung $P_x$ des Eingangssignals $x(t)$ – also ebenfalls auf 1 $Ω$ bezogen – kann das Signal–zu–Verzerrungs–Leistungsverhältnis angegeben werden:
 
$$\rho_{\rm V} = \frac{ P_{x}}{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
 
10 \cdot \lg \hspace{0.1cm}\frac{ P_{x}}{P_{\rm V}}\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right).$$
 
  
Bei den in der Grafik dargestellten Signalen gilt $P_x$ = 4 $V^2$, $P_V$ = 0.04 $V^2$ und damit 10 · lg $ρV$ = 20 dB.
+
==Quantitative measure for the signal distortions==
 +
<br>
 +
[[File:P_ID875__LZI_T_2_1_S3_neu.png|right|frame|Input and output of a distortive system and difference signal (below)|class=fit]]
 +
We now consider a distortive system on the basis of the input and output signal.&nbsp;
 +
 +
*We assume that apart from the signal distortions there is no additional frequency-independent attenuation factor &nbsp; $α$&nbsp;  and no additional transit time&nbsp; $τ$.&nbsp; These conditions are fulfilled for the signal sections sketched on the right.  
  
==Berücksichtigung von Dämpfung und Laufzeit==
+
*In addition to the signals &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$,&nbsp; the difference signal is shown in the diagram:
Die auf der letzten Seite angegebenen Gleichungen führen dann nicht zu verwertbaren Aussagen, wenn zusätzlich eine Dämpfung $α$ und/oder eine Laufzeit $τ$ im System wirksam ist.
+
:$$\varepsilon(t) = y(t) - x(t).$$
 +
As a quantitative measure of the strength of distortions,&nbsp; the&nbsp; &raquo;mean square value of this difference signal&laquo; is applicable:
 +
:$$\overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t\hspace{0.4cm}  \left( = P_{\rm V} \right).$$
  
[[File:P_ID876__LZI_T_2_1_S4_neu.png|300px | Berücksichtigung von Dämpfung und Laufzeit]]
+
The following should be noted about this equation:  
 +
#The measuring time&nbsp; $T_{\rm M}$&nbsp; must be chosen sufficiently large.&nbsp; Actually, this equation should be formulated as a limit process.
 +
#This expression is called&nbsp; &raquo;'''mean squared error'''&laquo;&nbsp; $\rm (MSE)$&nbsp; or &nbsp; &raquo;'''distortion power'''&laquo;&nbsp; $P_{\rm V}$&nbsp; $($because of&nbsp; "distortion" &nbsp; &rArr; &nbsp; German:&nbsp; "Verzerrung" &nbsp; &rArr; &nbsp; subscript&nbsp; "$\rm V$"$)$.
 +
#If &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$&nbsp; are voltage signals,&nbsp; then &nbsp;$P_{\rm V}$&nbsp; has the unit of &nbsp;${\rm V}^2$,&nbsp; meaning the power is related to the resistance &nbsp;$R = 1 \ Ω$&nbsp; according to the above definition.  
  
Die obere Grafik zeigt das gedämpfte, verzögerte und verzerrte Signal
 
$$y(t) = \alpha \cdot x(t - \tau) + \varepsilon_1(t),$$
 
wobei im Term $ε_1(t)$ alle Verzerrungen zusammengefasst sind. Man erkennt an der grünen Fläche, dass das Fehlersignal $ε_1(t)$ relativ klein ist.
 
  
Sind dagegen die Dämpfung $α$ und die Laufzeit $τ$ unbekannt, so ist Folgendes zu beachten:
+
{{BlaueBox|TEXT= 
*Das so ermittelte Fehlersignal $ε_2(t) = y(t) – x(t)$ ist trotz kleiner Verzerrungen $ε_1(t)$ relativ groß.
+
$\text{Definition:}$&nbsp; Making use of the power&nbsp; $P_x$&nbsp; $($based on &nbsp;$R = 1 \ Ω)$&nbsp;  of the input signal &nbsp;$x(t)$&nbsp; the &nbsp; &raquo;'''signal–to–distortion (power) ratio'''&laquo;&nbsp; can be given as:
*Anstelle der Verzerrungsleistung muss hier die Verzerrungsenergie betrachtet werden, da $x(t)$ und $y(t)$ energiebegrenzte Signale sind.
+
:$$\rho_{\rm V} = \frac{ P_{x} }{P_{\rm V} } \hspace{0.3cm} \Rightarrow \hspace{0.3cm10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
*Die Verzerrungsenergie erhält man, in dem die unbekannten Größen $α$ und $τ$ variiert werden und auf diese Weise das Minimum des mittleren quadratischen Fehlers ermittelt wird:
+
10 \cdot \lg \hspace{0.1cm}\frac{ P_{x} }{P_{\rm V} }\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right).$$
$$E_{\rm V} = \min_{\alpha, \tau} \int\limits_{ - \infty }^{ + \infty}
 
  {\left[y(t) - \left(\alpha \cdot x(t - \tau) \right) \right]^2}\hspace{0.1cm}{\rm d}t.$$
 
*Die Energie des gedämpften und verzögerten Signals $α · x(t – τ)$ ist unabhängig von der Laufzeit $τ$ gleich $α^2 · E_x$. Somit gilt hier für das Signal–zu–Verzerrungs–Leistungsverhältnis:
 
$$\rho_{\rm V} = \frac{ \alpha^2 \cdot E_{x}}{E_{\rm V}}\hspace{0.3cm}{\rm bzw.}\hspace{0.3cm}\rho_{\rm V}= \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} .$$
 
*Die erste dieser beiden Gleichungen gilt für zeitlich begrenzte und damit energiebegrenzte Signale, die zweite für zeitlich unbegrenzte, also leistungsbegrenzte Signale.
 
  
==Lineare und nichtlineare Verzerrungen==
+
For the signals shown in the diagram above &nbsp; &rArr; &nbsp; $P_x = 4  \ {\rm V}^2$, &nbsp;$P_{\rm V} = 0.04  \ {\rm V}^2$;
Man unterscheidet zwischen linearen und nichtlinearen Verzerrungen:  
+
:$$10 \cdot {\rm  lg} \ ρ_{\rm V} = 20 \ \rm dB.$$ }}
  
Ist das System linear und zeitinvariant (LZI), so wird es vollständig durch seinen Frequenzgang $H(f)$ charakterisiert, und es lässt sich Folgendes feststellen:
 
*Entspechend der $H(f)$-Definition gilt für das Ausgangsspektrum: $Y(f)$ = $X(f) · H(f)$. Daraus folgt, dass $Y(f)$ keine Frequenzanteile beinhalten kann, die nicht auch in $X(f)$ enthalten sind.
 
*Die Umkehrung besagt: Das Ausgangssignal $y(t)$ kann jede Frequenz $f_0$ beinhalten, die bereits im Eingangssignal $x(t)$ enthalten ist. Voraussetzung ist also, dass $X(f_0) ≠$ 0 gilt.
 
*Bei einem LZI–System ist die absolute Bandbreite des Ausgangssignals $(B_y)$ nie größer als die des Eingangssignals $(B_x)$:
 
$$B_y \le B_x .$$
 
  
 +
We reference the interactive applet &nbsp;[[Applets:Linear_Distortions_of_Periodic_Signals|&raquo;Linear Distortions of Periodic Signals&laquo;]].
  
In der oberen Grafik gilt $B_y$ = $B_x$. Lineare Verzerrungen liegen vor, da sich in diesem Frequenzband $X(f)$ und $Y(f)$ unterscheiden. Eine Bandbegrenzung $(B_y < B_x)$ ist eine Sonderform linearer Verzerrungen, die im Kapitel 2.3  ausführlich behandelt werden.
+
==Elimination of attenuation factor and transit time==
 +
<br>
 +
The equations given in the last section do not result in applicable statements if the system is additionally affected by an attenuation factor &nbsp;$α$&nbsp; and/or a transit time &nbsp;$τ$.&nbsp; The diagram shows the attenuated,&nbsp; delayed and distorted signal
  
[[File:P_ID877__LZI_T_2_1_S5_neu.png |400px | Lineare und nichtlineare Verzerrungen]]
+
[[File:P_ID876__LZI_T_2_1_S4_neu.png|right|frame|Elimination of attenuation factor&nbsp;$α$&nbsp;
 +
<br>and transit time&nbsp; $τ$|class=fit]]
  
Die untere Grafik zeigt ein Beispiel für nichtlineare Verzerrungen, da $B_y$ größer als $B_x$ ist. Für ein solches System kann kein Frequenzgang $H(f)$ angegeben werden. Welche Beschreibungsgrößen für nichtlineare Systeme geeignet sind, wird im Kapitel 2.2  dargelegt.  
+
:$$y(t) = \alpha \cdot x(t - \tau) + \varepsilon_1(t).$$
 +
*Here,&nbsp; instead of the&nbsp; &raquo;distortion power&laquo;&nbsp; the&nbsp; &raquo;distortion energy&laquo;&nbsp; must be considered because &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$&nbsp; are energy-limited signals.
  
Bei den meisten realen Übertragungskanälen treten sowohl lineare als auch nichtlineare Verzerrungen auf. Für eine ganze Reihe von Problemstellungen ist jedoch die klare Trennung der beiden Verzerrungsarten essentiell.
+
*The term &nbsp;$ε_1(t)$&nbsp; summarizes all distortions.&nbsp; It can be seen from the green area that the difference signal &nbsp; &rArr; &nbsp; &raquo;error  signal&laquo;&nbsp;$ε_1(t)$&nbsp; is relatively small.  
  
  
 +
In contrast to this,&nbsp; if the attenuation factor  &nbsp;$α$&nbsp; and the transit time &nbsp;$τ$&nbsp; are unknown,&nbsp; the following should be noted:
 +
*In the second example the difference signal &nbsp;$ε_2(t) = y(t) - x(t)$&nbsp; determined in this way is relatively large despite small distortions &nbsp;$ε_1(t)$.
 
   
 
   
 +
*The distortion energy is obtained by varying the unknown quantities &nbsp;$α$&nbsp; and &nbsp;$τ$&nbsp; and thus finding the minimum of the&nbsp; &raquo;mean squared error&laquo;:
 +
:$$E_{\rm V}  = \min_{\alpha, \ \tau} \int_{ - \infty }^{ + \infty}
 +
{\big[y(t) - \left(\alpha \cdot x(t - \tau) \right) \big]^2}\hspace{0.1cm}{\rm d}t.$$
 +
*The energy of the attenuated and delayed signal &nbsp;$α · x(t - τ)$&nbsp; is &nbsp;$E_{\rm V}  =α^2 · E_x$ independent of the transit time &nbsp;$τ$.&nbsp;  Thus for the signal-to-distortion&nbsp; $($energy or power$)$&nbsp; ratio the following is applicable:
 +
:$$\rho_{\rm V} = \frac{ \alpha^2 \cdot E_{x}}{E_{\rm V}}\hspace{0.3cm}{\rm or}\hspace{0.3cm}\rho_{\rm V}= \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} .$$
 +
*The first of these two equations applies to time-limited and thus energy-limited signals,&nbsp; the second one to time-unlimited and thus power-limited signals according to the section &nbsp;[[Signal_Representation/Signal_classification#Energy.E2.80.93limited_and_power.E2.80.93limited_signals|&raquo;Energy-limited and power-limited signals&laquo;]]&nbsp; in the book&nbsp; &raquo;Signal Representation&laquo;.
  
 +
==Linear and nonlinear distortions==
 +
<br>
 +
A distinction is made between&nbsp; &raquo;linear distortions&laquo;&nbsp; and&nbsp; &raquo;nonlinear distortions&laquo;:
  
 +
If the system is linear and time-invariant&nbsp; $(\rm LTI)$,&nbsp; then it is fully characterized by its&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_.E2.80.93_Transfer_function|$\text{frequency response}$]]&nbsp; $H(f)$&nbsp; and the following can be stated:
 +
#According to the&nbsp; $H(f)$&nbsp; definition the following holds for the output spectrum: &nbsp; $Y(f)=X(f) · H(f)$. &nbsp;
 +
#As a consequence according to the calculation rules of multiplication, &nbsp;$Y(f)$&nbsp; cannot contain any frequency components that are not already contained in &nbsp;$X(f)$.
 +
#The inverse implies: &nbsp; The output signal &nbsp;$y(t)$&nbsp; can include any frequency &nbsp;$f_0$&nbsp; already contained in the input &nbsp;$x(t)$&nbsp;. The prerequisite is therefore that &nbsp;$X(f_0) ≠ 0$.
 +
#For an LTI system the absolute bandwidth &nbsp;$B_y$&nbsp; of the output signal is never greater than the bandwidth &nbsp;$B_x$&nbsp; of the input signal: &nbsp; $B_y \le B_x .$
  
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;
 +
The differences between linear and non-linear distortions are illustrated by the following diagram:
  
 +
[[File:EN_LZI_T_2_1_S5_neu.png|frame| Linear and nonlinear distortions|class=fit]]
 +
$\rm (A)$ &nbsp; In the upper diagram&nbsp; $B_y = B_x$&nbsp; holds. There are&nbsp; &raquo;'''linear distortions'''&laquo;&nbsp; because in this frequency band&nbsp; $X(f)$&nbsp; and&nbsp; $Y(f)$&nbsp; differ.
 +
 +
:A band limitation&nbsp; $(B_y < B_x)$&nbsp; is a special form of linear distortions,&nbsp; which will be discussed in the&nbsp; [[Linear_and_Time_Invariant_Systems/Lineare_Verzerrungen|&raquo;chapter after next&laquo;]].
  
 +
 +
$\rm (B)$ &nbsp; The lower diagram shows an example of&nbsp; &raquo;'''non-linear distortions'''&laquo;&nbsp; $(B_y > B_x)$.&nbsp; For such a system no frequency response&nbsp; $H(f)$&nbsp; can be given.
 +
 +
:Descriptive quantities applicable for nonlinear systems will be explained in the next chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|&raquo;Non-linear Distortions&laquo;]]&nbsp;.
 +
 +
 +
In most real transmission channels both linear and nonlinear distortions occur.&nbsp; However,&nbsp; for a whole range of problems the precise separation of the two types of distortions is essential.&nbsp; In&nbsp; [Kam04]<ref>Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>&nbsp;  a corresponding substitute model is shown. }}
 +
 +
 +
We refer here to the&nbsp; $($German language$)$&nbsp; learning video &nbsp;[[Lineare_und_nichtlineare_Verzerrungen_(Lernvideo)|&raquo;Lineare und nichtlineare Verzerrungen]] &nbsp; &rArr; &nbsp; &raquo;Linear and nonlinear distortions&laquo;.
 +
 +
==Exercises for the chapter==
 +
 +
[[Aufgaben:Exercise_2.1:_Linear%3F_Or_Non-Linear%3F| Exercise 2.1: Linear? Or Non-Linear?]]
 +
 +
[[Aufgaben:Exercise_2.1Z:_Distortion_and_Equalisation|Exercise 2.1Z: Distortion and Equalisation]]
 +
 +
[[Aufgaben:Exercise_2.2:_Distortion_Power|Exercise 2.2: Distortion Power]]
 +
 +
[[Aufgaben:Exercise_2.2Z:_Distortion_Power_again|Exercise 2.2Z: Distortion Power again]]
  
 
{{Display}}
 
{{Display}}
 +
 +
==References==
 +
<references/>

Latest revision as of 16:30, 9 November 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


$\text{Definition:}$  In general,  »distortion«  is understood to be undesirable deterministic changes in a message signal caused by a transmission system.


In addition to stochastic interferences  $($noise,  crosstalk, etc.$)$,  such deterministic distortions are a critical limitation on the transmission quality and rate for many transmission systems.

This chapter presents these distortions in a summarizing way,  in particular:

  1. The quantitative description of such signal falsifications via the  »distortion power«,
  2. the distinguishing features between  »nonlinear and linear distortions«,
  3. the meaning and computation of the  »distortion factor in nonlinear systems«,  and
  4. the effects of  »linear attenuation and phase distortions«.


Prerequisites for the second main chapter


Description of a linear system

In the following,  we consider always a  »system«

  • whose input is the signal  $x(t)$  with the corresponding spectrum  $X(f)$,  and
  • the output signal is denoted by  $y(t)$  and its spectrum by  $Y(f).$


The block labelled  »system«  can be a part of an  »electrical circuit«  or a complete transmission system«  consisting of

  1. »transmitter«,
  2. »channel«, and
  3. »receiver«.


For the whole main chapter  »Signal Distortions and Equalization«  the following shall apply:

  • The system be  »time-invariant«.  If the input signal  $x(t)$  results in the output signal  $y(t)$,  then a later input signal of the same form – in particular  $x(t - t_0)$  – will result in the signal  $y(t - t_0)$.
  • In the following,  »no noise«  is considered,  which is always present in real systems.  For the description of these phenomena we refer to the book  »Theory of Stochastic Signals«.
  • About the system   »no detailed knowledge«  is assumed.  In the following of this chapter,  all system properties are derived from the signals  $x(t)$  and  $y(t)$  or their spectra alone.
  • In particular,  no specifications are made here with regard to  »linearity«.  The  »system« can be  »linear«  $($prerequisite for the application of the superposition principle$)$  or  »non-linear«.
  • Not all system properties are discernible from a single test signal  $x(t)$  and its response  $y(t)$ . Therefore,  sufficiently many test signals  must be used for evaluation.


In the following,  we will classify transmission systems in more detail in this respect.

Ideal and distortion-free system


$\text{Definition:}$  One deals with an  »ideal system«  if the output signal  $y(t)$  is identical with the input signal  $x(t)$:

$$y(t) \equiv x(t).$$


  1. It should be noted that such an ideal system does not exist in reality even if statistical disturbances and noise processes  $($that always exist but are not considered in this book$)$  are disregarded. 
  2. Every transmission medium exhibits losses  $($»attenuation«$)$  and  »transit times».  Even if these physical phenomena are very small,  they are never zero.  Therefore it is necessary to introduce a somewhat less strict quality characteristic.


$\text{Definition:}$  A  »distortion-free system«  exists if the following condition is fulfilled:

$$y(t) = \alpha \cdot x(t - \tau).$$
  1. Here,  $α$  describes the  »attenuation factor«  and  $τ$  the  »transit time«.
  2. If this condition is not met,  the system is said to be  » distortive«.


$\text{Example 1:}$  The following diagram shows the input signal  $x(t)$  and the output signal  $y(t)$  of a nonideal but distortion-free system.  The system parameters are  $α = 0.8$  and  $τ = 0.25 \ \rm ms$.

Exemplary signals of a distortion-free system

$\text{Note:}$

  • The attenuation factor  $α$  can be completely reversed by a receiver-side gain of  $1/α = 1.25$,  but it must be taken into account that this also increases any noise.
  • However,  the transit time  $τ$  cannot be compensated due to  »causality reasons«.  It now depends on the application whether such a transit time is subjectively perceived as disturbing or not.
  1. For example,  even with a transit time of one second the  $($unidirectional$)$  TV broadcast of an event is still described as "live". 
  2. In contrast to this,  transit times of  $\text{300 ms}$  are already perceived as very disturbing in bidirectional communication – e.g. a telephone call. 
  3. You either wait for the other person to react or both participants interrupt each other.

Quantitative measure for the signal distortions


Input and output of a distortive system and difference signal (below)

We now consider a distortive system on the basis of the input and output signal. 

  • We assume that apart from the signal distortions there is no additional frequency-independent attenuation factor   $α$  and no additional transit time  $τ$.  These conditions are fulfilled for the signal sections sketched on the right.
  • In addition to the signals  $x(t)$  and  $y(t)$,  the difference signal is shown in the diagram:
$$\varepsilon(t) = y(t) - x(t).$$

As a quantitative measure of the strength of distortions,  the  »mean square value of this difference signal« is applicable:

$$\overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t\hspace{0.4cm} \left( = P_{\rm V} \right).$$

The following should be noted about this equation:

  1. The measuring time  $T_{\rm M}$  must be chosen sufficiently large.  Actually, this equation should be formulated as a limit process.
  2. This expression is called  »mean squared error«  $\rm (MSE)$  or   »distortion power«  $P_{\rm V}$  $($because of  "distortion"   ⇒   German:  "Verzerrung"   ⇒   subscript  "$\rm V$"$)$.
  3. If  $x(t)$  and  $y(t)$  are voltage signals,  then  $P_{\rm V}$  has the unit of  ${\rm V}^2$,  meaning the power is related to the resistance  $R = 1 \ Ω$  according to the above definition.


$\text{Definition:}$  Making use of the power  $P_x$  $($based on  $R = 1 \ Ω)$  of the input signal  $x(t)$  the   »signal–to–distortion (power) ratio«  can be given as:

$$\rho_{\rm V} = \frac{ P_{x} }{P_{\rm V} } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} = 10 \cdot \lg \hspace{0.1cm}\frac{ P_{x} }{P_{\rm V} }\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right).$$

For the signals shown in the diagram above   ⇒   $P_x = 4 \ {\rm V}^2$,  $P_{\rm V} = 0.04 \ {\rm V}^2$;

$$10 \cdot {\rm lg} \ ρ_{\rm V} = 20 \ \rm dB.$$


We reference the interactive applet  »Linear Distortions of Periodic Signals«.

Elimination of attenuation factor and transit time


The equations given in the last section do not result in applicable statements if the system is additionally affected by an attenuation factor  $α$  and/or a transit time  $τ$.  The diagram shows the attenuated,  delayed and distorted signal

Elimination of attenuation factor $α$ 
and transit time  $τ$
$$y(t) = \alpha \cdot x(t - \tau) + \varepsilon_1(t).$$
  • Here,  instead of the  »distortion power«  the  »distortion energy«  must be considered because  $x(t)$  and  $y(t)$  are energy-limited signals.
  • The term  $ε_1(t)$  summarizes all distortions.  It can be seen from the green area that the difference signal   ⇒   »error signal« $ε_1(t)$  is relatively small.


In contrast to this,  if the attenuation factor  $α$  and the transit time  $τ$  are unknown,  the following should be noted:

  • In the second example the difference signal  $ε_2(t) = y(t) - x(t)$  determined in this way is relatively large despite small distortions  $ε_1(t)$.
  • The distortion energy is obtained by varying the unknown quantities  $α$  and  $τ$  and thus finding the minimum of the  »mean squared error«:
$$E_{\rm V} = \min_{\alpha, \ \tau} \int_{ - \infty }^{ + \infty} {\big[y(t) - \left(\alpha \cdot x(t - \tau) \right) \big]^2}\hspace{0.1cm}{\rm d}t.$$
  • The energy of the attenuated and delayed signal  $α · x(t - τ)$  is  $E_{\rm V} =α^2 · E_x$ independent of the transit time  $τ$.  Thus for the signal-to-distortion  $($energy or power$)$  ratio the following is applicable:
$$\rho_{\rm V} = \frac{ \alpha^2 \cdot E_{x}}{E_{\rm V}}\hspace{0.3cm}{\rm or}\hspace{0.3cm}\rho_{\rm V}= \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} .$$
  • The first of these two equations applies to time-limited and thus energy-limited signals,  the second one to time-unlimited and thus power-limited signals according to the section  »Energy-limited and power-limited signals«  in the book  »Signal Representation«.

Linear and nonlinear distortions


A distinction is made between  »linear distortions«  and  »nonlinear distortions«:

If the system is linear and time-invariant  $(\rm LTI)$,  then it is fully characterized by its  $\text{frequency response}$  $H(f)$  and the following can be stated:

  1. According to the  $H(f)$  definition the following holds for the output spectrum:   $Y(f)=X(f) · H(f)$.  
  2. As a consequence according to the calculation rules of multiplication,  $Y(f)$  cannot contain any frequency components that are not already contained in  $X(f)$.
  3. The inverse implies:   The output signal  $y(t)$  can include any frequency  $f_0$  already contained in the input  $x(t)$ . The prerequisite is therefore that  $X(f_0) ≠ 0$.
  4. For an LTI system the absolute bandwidth  $B_y$  of the output signal is never greater than the bandwidth  $B_x$  of the input signal:   $B_y \le B_x .$


$\text{Conclusion:}$  The differences between linear and non-linear distortions are illustrated by the following diagram:

Linear and nonlinear distortions

$\rm (A)$   In the upper diagram  $B_y = B_x$  holds. There are  »linear distortions«  because in this frequency band  $X(f)$  and  $Y(f)$  differ.

A band limitation  $(B_y < B_x)$  is a special form of linear distortions,  which will be discussed in the  »chapter after next«.


$\rm (B)$   The lower diagram shows an example of  »non-linear distortions«  $(B_y > B_x)$.  For such a system no frequency response  $H(f)$  can be given.

Descriptive quantities applicable for nonlinear systems will be explained in the next chapter  »Non-linear Distortions« .


In most real transmission channels both linear and nonlinear distortions occur.  However,  for a whole range of problems the precise separation of the two types of distortions is essential.  In  [Kam04][1]  a corresponding substitute model is shown.


We refer here to the  $($German language$)$  learning video  »Lineare und nichtlineare Verzerrungen   ⇒   »Linear and nonlinear distortions«.

Exercises for the chapter

Exercise 2.1: Linear? Or Non-Linear?

Exercise 2.1Z: Distortion and Equalisation

Exercise 2.2: Distortion Power

Exercise 2.2Z: Distortion Power again



References

  1. Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4. Auflage, 2004.