Difference between revisions of "Modulation Methods/Double-Sideband Amplitude Modulation"

From LNTwww
 
(113 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Amplitudenmodulation und AM–Demodulation
+
|Untermenü=Amplitude Modulation and Demodulation
|Vorherige Seite=Allgemeines Modell der Modulation
+
|Vorherige Seite=General Model of Modulation
|Nächste Seite=Synchrondemodulation
+
|Nächste Seite=Synchronous Demodulation
 
}}
 
}}
==Beschreibung im Frequenzbereich (1)==
 
Wir betrachten die folgende Aufgabenstellung: Ein Nachrichtensignal $q(t)$, dessen Spektrum $Q(f)$ auf den Bereich $\pm B_{\rm NF}$ bandbegrenzt ist, soll mit Hilfe einer harmonischen Schwingung der Frequenz $f_{\rm T}$, die wir im Weiteren als Trägersignal $z(t)$ bezeichnen, in einen höherfrequenten Bereich verschoben werden, in dem der Kanalfrequenzgang $H_{\rm K}(f)$ günstige Eigenschaften aufweist.
 
  
 +
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 +
<br>
 +
After some general explanations of modulation and demodulation,&nbsp; now a detailed description of&nbsp; '''&raquo;amplitude modulation&laquo;'''&nbsp; and the associated&nbsp; '''&raquo;demodulators&laquo;'''.&nbsp;
  
[[File:P_ID974__Mod_T_2_1_S1a_neu.png | Darstellung der Amplitudenmodulation im Frequenzbereich]]
+
This chapter deals in detail with:
 +
*the description and realization of&nbsp; &raquo;double-sideband amplitude modulation&laquo;&nbsp;  $\text{(DSB–AM)}$&nbsp; in frequency and time domain,
  
 +
*the characteristics of a&nbsp; &raquo;synchronous demodulator&laquo;&nbsp; and the possible applications of an&nbsp; &raquo;envelope demodulator&laquo;,
  
Die Grafik verdeutlicht die Aufgabenstellung, wobei folgende vereinfachende Annahmen getroffen sind:
+
*the similarities/differences of&nbsp; &raquo;single-sideband modulation&raquo;&nbsp; $\text{(SSB–AM)}$&nbsp; compared to DSB-AM and&nbsp; &raquo;modified AM methods&raquo;.
*Das gezeichnete Spektrum $Q(f)$ ist hier schematisch zu verstehen. Es besagt, dass in $q(t)$ nur Spektralanteile im Bereich $|f| ≤ B_{\rm NF}$ enthalten sind. $Q(f)$ könnte auch ein Linienspektrum sein.
 
*Der Kanal sei in einem Bereich der Bandbreite $B_{\rm K}$ um die Frequenz $f_{\rm M}$ ideal, das heißt, es gelte $H_{\rm K}(f) =$ 1 für $|f – f_{\rm M}| ≤ B_{\rm K}/2.$ Rauschstörungen werden vorerst nicht betrachtet.
 
*Das Trägersignal sei cosinusförmig (Phase $ϕ_T =$ 0) und besitze die Amplitude $A_{\rm T} =$ 1 (ohne Einheit). Die Trägerfrequenz $f_{\rm T}$ sei gleich der Mittenfrequenz des Übertragungsbandes.
 
*Das Spektrum des Trägersignals $z(t) = \cos(ω_{\rm T} · t)$ lautet somit (in der Grafik grün eingezeichnet):
 
$$Z(f) = \frac{1}{2} \cdot \delta (f + f_{\rm T})+\frac{1}{2} \cdot \delta (f - f_{\rm T})\hspace{0.05cm}.$$
 
  
==Beschreibung im Frequenzbereich (2)==
 
Wer mit den Gesetzmäßigkeiten der Spektraltransformation und insbesondere mit dem Faltungssatz vertraut ist, kann sofort eine Lösung für das Spektrum $S(f)$ des Modulatorausgangssignals angeben:
 
$$\begin{align*} S(f) & = Z(f) \star Q(f) = \frac{1}{2} \cdot \delta (f + f_{\rm T})\star Q(f)+\frac{1}{2} \cdot \delta (f - f_{\rm T})\star Q(f)\\ & = \frac{1}{2} \cdot Q (f + f_{\rm T})+\frac{1}{2} \cdot Q(f - f_{\rm T})
 
\hspace{0.05cm}.\end{align*}$$
 
  
Bei dieser Gleichung ist berücksichtigt, dass die Faltung einer verschobenen Diracfunktion $δ(x – x_0)$ mit einer beliebigen Funktion $f(x)$ die verschobene Funktion $f(x – x_0)$ ergibt.  
+
==Description in the frequency domain==
 +
<br>
 +
We consider the following problem:&nbsp; a source signal&nbsp;$q(t)$,&nbsp; whose spectrum &nbsp;$Q(f)$&nbsp; is bandlimited to the range &nbsp;$\pm B_{\rm NF}$&nbsp; (subscript&nbsp; "NF"&nbsp; from German "Niederfrequenz" &nbsp; ⇒ &nbsp; low frequency),&nbsp;
 +
* is to be shifted to a higher frequency range where the channel frequency response&nbsp; $H_{\rm K}(f)$&nbsp; has favorable characteristics,&nbsp;
 +
 +
*using a harmonic oscillation of frequency &nbsp;$f_{\rm T}$, which we will refer to as the carrier signal&nbsp; $z(t)$.  
  
  
[[File:P_ID975__Mod_T_2_1_S1b_neu.png | Spektrum der ZSB–AM ohne Träger]]
+
The diagram illustrates the task, with the following simplifying assumptions:
  
 +
[[File:P_ID974__Mod_T_2_1_S1a_neu.png |right|frame|Representation of amplitude modulation in the frequency domain]]
 +
*The spectrum &nbsp;$Q(f)$&nbsp; drawn here is schematic.&nbsp; It states that only spectral components in the range &nbsp;$|f| ≤ B_{\rm NF}$&nbsp; are included in &nbsp;$q(t)$.&nbsp; $Q(f)$&nbsp; could also be a line spectrum.
  
Die Grafik zeigt das Ergebnis. Man erkennt folgende Charakteristika:
+
*Let the channel be ideal in a bandwidth range &nbsp;$B_{\rm K}$&nbsp; around frequency&nbsp; $f_{\rm M}$,&nbsp; that is, let &nbsp;$H_{\rm K}(f) = 1$&nbsp; for &nbsp;$|f - f_{\rm M}| ≤ B_{\rm K}/2.$&nbsp; Impairments by noise are ignored for now.
*Aufgrund der systemtheoretischen Betrachtungsweise mit positiven und negativen Frequenzen setzt sich $S(f)$ aus zwei Anteilen um $\pm f_{\rm T}$ zusammen, die jeweils formgleich mit $Q(f)$ sind.
+
*Der Faktor 1/2 ergibt sich wegen der Trägeramplitude $A_{\rm T} =$ 1. Somit ist $s(t = 0)$ gleich $q(t = 0)$, so dass auch die Integrale über deren Spektralfunktionen $S(f)$ bzw. $Q(f)$ gleich sein müssen.
+
*Let the carrier signal be cosine &nbsp; $($phase &nbsp;$ϕ_{\rm T} = 0)$&nbsp; and have amplitude&nbsp; $A_{\rm T} = 1$&nbsp; (without a unit).&nbsp; Let the carrier frequency &nbsp;$f_{\rm T}$&nbsp; be equal to the center frequency of the transmission band.  
*Die Kanalbandbreite $B_{\rm K}$ muss mindestens doppelt so groß sein wie die Signalbandbreite $B_{\rm NF}$, was zu der Namensgebung Zweiseitenband–Amplitudenmodulation (ZSB–AM) geführt hat.  
 
*Zu beachten ist, dass $B_{\rm NF}$ und $B_K$ absolute und nicht etwa äquivalente Bandbreiten sind. Letztere sind über flächengleiche Rechtecke definiert und werden im Tutorial mit $Δf_q$ bzw. $Δf_{\rm K}$ bezeichnet.
 
*Die Spektralfunktion $S(f)$ beinhaltet keine Diraclinien bei der Trägerfrequenz $(\pm f_{\rm T})$. Deshalb wird das hier beschriebene Verfahren auch als ZSB–AM ohne Träger bezeichnet.
 
*Die Frequenzanteile oberhalb der Trägerfrequenz $f_{\rm T}$ nennt man das obere Seitenband (OSB), diejenigen unterhalb von $f_{\rm T}$ bezeichnet man als das untere Seitenband (USB).  
 
  
==Beschreibung im Zeitbereich (1)==
+
*Thus,&nbsp; the spectrum of the carrier signal &nbsp;$z(t) = \cos(ω_{\rm T} · t)$&nbsp; is <br>(plotted in green in the graph):
Der Faltungssatz lautet mit der auf dieses Problem angepassten Nomenklatur:
+
:$$Z(f) = {1}/{2} \cdot \delta (f + f_{\rm T})+{1}/{2} \cdot \delta (f - f_{\rm T})\hspace{0.05cm}.$$
$$S(f) = Z(f) \star Q(f)\hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} s(t) = q(t) \cdot z(t) = q(t) \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T})\hspace{0.05cm}.$$
 
Dieses Ergebnis stimmt auch dann noch, wenn die auf der letzten Seite getroffenen Einschränkungen (reellwertiges Spektrum $Q(f)$, Trägerphase $ϕ_{\rm T} =$ 0) aufgehoben werden. Im Allgemeinen ergibt sich somit eine komplexwertige Spektralfunktion $S(f)$.
 
  
 +
Those familiar with the &nbsp;[[Signal_Representation/Fourier_Transform_Laws|$\text{laws of spectral transformation}$]]&nbsp; and in particular with the &nbsp;[[Signal_Representation/The_Convolution_Theorem_and_Operation|$\text{Convolution Theorem}$]]&nbsp; can immediately give a solution for the spectrum &nbsp;$S(f)$&nbsp; of the modulator output signal:
 +
:$$S(f)= Z(f) \star Q(f) = 1/2 \cdot \delta (f + f_{\rm T})\star Q(f)+1/2 \cdot \delta (f - f_{\rm T})\star Q(f) = 1/2 \cdot Q (f + f_{\rm T})+ 1/2 \cdot Q(f - f_{\rm T})
 +
\hspace{0.05cm}.$$
  
[[File: P_ID976__Mod_T_2_1_S2a_neu.png | Modelle der ZSB–AM ohne Träger]]
+
{{BlaueBox|TEXT=
 +
$\text{Please note:}$&nbsp; This equation takes into account
 +
*that the convolution of a shifted Dirac delta function  &nbsp;$δ(x - x_0)$&nbsp; with an arbitrary function&nbsp;$f(x)$&nbsp; yields the &nbsp; &raquo;'''shifted function'''&laquo; &nbsp;$f(x - x_0)$.}}
  
  
Nach dieser Gleichung kann man zwei Modelle für die Zweiseitenband–Amplitudenmodulation angeben. Diese sind wie folgt zu interpretieren:  
+
The diagram displays the result.&nbsp; One can identify the following characteristics:  
*Das erste Modell beschreibt direkt den oben angegebenen Zusammenhang, wobei hier der Träger $z(t) = \cos(ω_{\rm T}t + ϕ_{\rm T})$ ohne Einheit angesetzt ist.  
+
[[File:EN_Mod_T_2_1_S1b.png|right|frame|Spectrum of double-sideband amplitude modulation without carrier; <br>other name:&nbsp; "double-sideband amplitude modulation with carrier suppression"]]
*Das zweite Modell entspricht eher den physikalischen Gegebenheiten, nachdem jedes Signal auch eine Einheit besitzt. Sind $q(t)$ und $z(t)$ jeweils Spannungen, so ist im Modell noch eine Skalierung mit der Modulatorkonstanten $K_{\rm AM}$ (Einheit: ${\rm V^{–1} }$) vorzusehen, damit auch das Ausgangssignal $s(t)$ einen Spannungsverlauf darstellt.  
+
*Due to the system-theoretic approach with positive and negative frequencies,&nbsp;$S(f)$&nbsp; is composed of two parts around &nbsp;$\pm f_{\rm T}$,&nbsp; each of which have the same shape as &nbsp;$Q(f)$.
*Wählt man $K_{\rm AM} = 1/A_{\rm T}$, so sind beide Modelle gleich. Im Folgenden werden wir stets vom ersten, also dem einfacheren Modell ausgehen.
+
 +
*The factor &nbsp;$1/2$&nbsp; results from the carrier amplitude &nbsp;$A_{\rm T} = 1$.&nbsp; Thus,&nbsp; $s(t = 0) = q(t = 0)$&nbsp;  and the integrals over their spectral functions&nbsp; $S(f)$&nbsp; and &nbsp;$Q(f)$&nbsp; must also be equal.
 +
 +
*The channel bandwidth &nbsp;$B_{\rm K}$&nbsp;  must be at least twice the signal bandwidth &nbsp;$B_{\rm NF}$,&nbsp; which gives the name&nbsp; <br>&raquo;'''Double-Sideband Amplitude Modulation'''&laquo;&nbsp; $\text{(DSB–AM)}$.
 +
 +
*It should be noted that&nbsp;$B_{\rm NF}$ and $B_{\rm K}$&nbsp; are absolute and &nbsp;[[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|$\text{non-equivalent bandwidths}$]].&nbsp; The latter are defined over rectangles of equal area and are denoted  in our tutorial by&nbsp; $Δf_q$&nbsp; and&nbsp; $Δf_{\rm K}$,&nbsp; resp.  
  
==Beschreibung im Zeitbereich (2)==
+
*The spectral function &nbsp;$S(f)$&nbsp; does not include any Dirac-lines at the carrier frequency &nbsp;$(\pm f_{\rm T})$.&nbsp; Therefore, this method is also referred to as&nbsp; "DSB-AM '''without carrier'''".
{{Beispiel}}
+
Die beiden Grafiken zeigen in roter Farbe die Sendesignale $s(t)$ bei ZSB–AM für zwei unterschiedliche Trägerfrequenzen. Das in beiden Fällen gleiche Quellensignal $q(t)$ mit der Bandbreite $B_{\rm NF} =$ 4 kHz ist durchgehend blau gezeichnet und das Signal – $q(t)$ gestrichelt.  
+
*The frequency components
 +
:*above the carrier frequency  &nbsp;$f_{\rm T}$&nbsp; are called the&nbsp; "upper sideband"&nbsp; $\rm  (USB)$,
 +
:*and those below &nbsp;$f_{\rm T}$&nbsp; are the&nbsp; "lower sideband"&nbsp; $\rm  (LSB)$.  
  
 +
==Description in the time domain==
 +
<br>
 +
Adapting the notation and nomenclature to this problem,&nbsp; the convolution theorem reads:
  
[[File:P_ID977__Mod_T_2_1_S2b_neu.png | Signalverläufe bei der ZSB–AM ohne Träger]]
+
:$$S(f)  = Z(f) \star Q(f)\hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} s(t) = q(t) \cdot z(t) = q(t) \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T})\hspace{0.05cm}.$$
 +
[[File:Mod_T_2_1_S2a_version2.png|right|frame|Models of DSB–AM without carrier]]  
 +
This result is still true if the restrictions made in the last section are removed:
 +
#real-valued spectrum &nbsp;$Q(f)$,&nbsp;
 +
#carrier phase &nbsp;$ϕ_{\rm T} = 0$.&nbsp;
  
 +
In general,&nbsp; this results in a complex-valued spectrum  &nbsp;$S(f)$.
  
Das Trägersignal $z(t)$ hat in beiden Fällen einen cosinusförmigen Verlauf. Für das obere Bild wurde die Trägerfrequenz $f_{\rm T} =$ 20 kHz zugrundegelegt und für das untere Bild $f_{\rm T} =$ 100 kHz.
+
According to this equation, two models can be given for double-sideband amplitude modulation.&nbsp;  These are to be interpreted as follows:
{{end}}  
+
*The upper model directly describes the relationship given above,&nbsp; where the carrier &nbsp;$z(t) = \cos(ω_{\rm T}t + ϕ_{\rm T})$&nbsp; is applied without a unit.
 +
 +
*The lower model is more in line with the physical condition&nbsp; "each signal also has a unit".&nbsp;  If &nbsp;$q(t)$&nbsp; and &nbsp;$z(t)$&nbsp; are voltages,&nbsp; the model still needs to provide a scaling with the modulator constant &nbsp;$K_{\rm AM}$&nbsp; with unit&nbsp; &nbsp;$\rm 1/V$,&nbsp; so that the output signal &nbsp;$s(t)$&nbsp; also represents a voltage waveform.
 +
 +
*If we set &nbsp;$K_{\rm AM} = 1/A_{\rm T}$,&nbsp; both models are the same.&nbsp; In the following,&nbsp; we will always assume the lower, simpler model.
 +
<br clear=all>
 +
[[File:P_ID977__Mod_T_2_1_S2b_neu.png|right|frame|Signal waveforms in DSB–AM without carrier]]
 +
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp; The graph shows in red the transmitted signals &nbsp;$s(t)$&nbsp; for DSB–AM with two different carrier frequencies.&nbsp;
 +
 +
The source signal &nbsp;$q(t)$&nbsp; with bandwidth &nbsp;$B_{\rm NF} = 4\text{ kHz}$,&nbsp; which is the same in both cases,&nbsp; is drawn in solid blue and the signal &nbsp;$-q(t)$&nbsp; is dashed.
  
==Ringmodulator (1)==
+
The carrier signal &nbsp;$z(t)$&nbsp; has a cosine shape in both cases.&nbsp; In the upper sketch,&nbsp; the carrier frequency&nbsp; (German:&nbsp; "Trägersignal" &nbsp; &rArr; &nbsp; subscript "T")&nbsp; is &nbsp;$f_{\rm T} = 20\text{ kHz}$&nbsp; and in the lower sketch &nbsp;$f_{\rm T} = 100\text{ kHz}$.}}
Eine Möglichkeit zur Realisierung der „Zweiseitenband–Amplitudenmodulation mit Trägerunterdrückung” bietet der sog. Ringmodulator, der auch unter der Bezeichnung Doppelgegentakt–Diodenmodulator bekannt ist. Nachfolgend sehen Sie links die Schaltung und rechts ein einfaches Funktionsschaltbild.  
 
  
 +
==Ring modulator==
 +
<br>
 +
One possibility to realize&nbsp; "double-sideband amplitude modulation with carrier suppression"&nbsp; is offered by a so-called&nbsp; &raquo;'''ring modulator'''&laquo;,&nbsp; also known as&nbsp; "double push-pull diode modulator".&nbsp;  Below you can see the circuit on the left and a simple functional diagram on the right.
  
[[File:P_ID978__Mod_T_2_1_S3a_neu.png | Ringmodulator zur Realisierung der ZSB–AM ohne Träger]]
+
Without claiming to be complete, the principle can be stated as follows:
 +
[[File:P_ID978__Mod_T_2_1_S3a_neu.png|right|frame|Ring modulator to realize DSB–AM without carrier]]
 +
*Let the amplitude of the harmonic carrier oscillation&nbsp; $z(t)$&nbsp; be much larger than the maximum value &nbsp;$q_{\rm max}$&nbsp; of the source signal&nbsp; $q(t)$.&nbsp; Thus,&nbsp; all diodes are operated as switches.
  
 +
*When the half-wave of the carrier is positive &nbsp;$(z(t) > 0)$&nbsp; the two magenta diodes conduct while the light green ones block. Thus, without considering losses,&nbsp; it holds&nbsp; $s(t) = q(t)$.
  
Ohne Anspruch auf Vollständigkeit kann das Prinzip wie folgt dargestellt werden:
+
*For a negative half-wave,&nbsp; the light green diodes conduct and the diodes in the longitudinal branches block.&nbsp; As can be seen on the right,&nbsp; $s(t) = \ – q(t)$&nbsp; holds for this lower switch position.  
*Die Amplitude der harmonischen Trägerschwingung $z(t)$ sei sehr viel größer als der Maximalwert $q_{\rm max}$ des Nachrichtensignals $q(t)$. Somit werden alle Dioden als Schalter betrieben.
 
*Bei positiver Halbwelle der Trägerschwingung $(z(t)$ > 0) leiten die zwei magentafarbenen Dioden, während die olivfarbenen sperren. Ohne Berücksichtigung von Verlusten gilt somit $s(t) = q(t)$.
 
*Bei negativer Halbwelle leiten die olivfarbenen Dioden und die Dioden in den Längszweigen sperren. Wie aus dem rechten Bild hervorgeht, gilt bei dieser unteren Schalterstellung $s(t) = \ – q(t)$.
 
*Wegen des Schalterbetriebs kann die harmonische Schwingung $z(t)$ auch durch ein periodisches Rechtecksignal gleicher Periodendauer ersetzt werden:
 
$$z_{\rm R}(t) = \left\{ \begin{array}{c} +1 \\ -1 \\  \end{array} \right.\quad \begin{array}{*{10}c}    {\rm{f\ddot{u}r}} \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c} {z(t) >0,}  \\ {z(t) <0.}  \\ \end{array}$$
 
*Das modulierte Signal $s(t)$ ergibt sich dann als das Produkt des Nachrichtensignals $q(t)$ mit diesem Rechtecksignal $z_{\rm R}(t)$, während bei idealer ZSB–AM mit einem Cosinussignal multipliziert wird.
 
*Der Träger $z(t)$ selbst ist im Signal $s(t)$ nicht enthalten. Da dieser über die Mittelanzapfungen der Übertrager zugeführt wird, heben sich die induzierten Spannungen auf („ZSB–AM ohne Träger”).  
 
  
 +
*Due to the operation of this switch,&nbsp; the harmonic oscillation&nbsp; $z(t)$&nbsp; can also be replaced by a periodic&nbsp; (rectangular)&nbsp; square wave signal with identical period duration:
 +
:$$z_{\rm R}(t) = \left\{ \begin{array}{c} +1 \\ -1 \\  \end{array} \right.\quad \begin{array}{*{10}c}    {\rm{for}} \\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c} {z(t) >0,}  \\ {z(t) <0.}  \\ \end{array}$$
  
Im nächsten Abschnitt wird die Wirkungsweise des Ringmodulators anhand beispielhafter Signalverläufe nochmals beschrieben.  
+
*The modulated signal&nbsp; $s(t)$&nbsp; is then obtained as the product of the source signal &nbsp;$q(t)$&nbsp; and this  rectangular signal  &nbsp;$z_{\rm R}(t)$,&nbsp; whereas in ideal DSB-AM one multiplies&nbsp;$q(t)$&nbsp; by a cosine signal.&nbsp; The carrier &nbsp;$z(t)$&nbsp; is not itself included in the signal&nbsp;$s(t)$.&nbsp; Since this is supplied via the center taps of the transformers, the induced voltages cancel out &nbsp; &rArr; &nbsp;  &raquo;'''DSB-AM without carrier'''&laquo;.  
  
==Ringmodulator (2)==
 
Die obere Grafik zeigt die Signale $q(t)$ und – $q(t)$ als magenta- bzw. olivfarbene Kurvenverläufe. Dazu ist blau-gestrichelt das bipolare Rechtecksignal $z_{\rm R}(t)$ dargestellt, das die Werte ±1 annimmt.
 
  
Die mittlere Grafik zeigt das modulierte Signal $s_{\rm RM}(t) = q(t) · z_{\rm R}(t)$ des Ringmodulators. Zum Vergleich dazu ist in der unteren Skizze das herkömmliche ZSB–AM–Signal $s(t) = q(t) · \cos(ω_{\rm T} · t)$ dargestellt. Diese Bilder gelten für die Trägerfrequenz $f_{\rm T} =$ 10 kHz.  
+
{{GraueBox|TEXT=
 +
$\text{Example 2:}$&nbsp; Now we will explain the operation mode of a ring modulator using exemplary  signal characteristics.&nbsp; Let the carrier frequency be &nbsp;$f_{\rm T} = 10\text{ kHz}$.
  
 +
[[File:EN_Mod_T_2_1_S3a.png|right|frame|Signals to illustrate a ring modulator]]
 +
<br><br><br><br>
 +
*The top graph shows the signals &nbsp;$q(t)$&nbsp; and &nbsp;$-q(t)$&nbsp; as magenta and light green waveforms respectively.&nbsp; The bipolar square wave&nbsp; (rectangular)&nbsp; signal&nbsp;$z_{\rm R}(t)$&nbsp; is shown in blue dashes,&nbsp; and takes the values &nbsp;$±1$&nbsp;.
 +
 +
*The middle chart shows the modulated signal from the ring modulator:
 +
:$$s_{\rm RM}(t) = q(t) · z_{\rm R}(t).$$
  
[[File:P_ID979__Mod_T_2_1_S3b_ganz_neu.png | Signale zur Verdeutlichung des Ringmodulators]]
+
*For comparison, the conventional DSB-AM signal is shown in the bottom graph:
 +
:$$s(t) = q(t) · \cos(ω_{\rm T} · t).$$
 +
<br clear=all>
 +
One can see significant differences, but these can be compensated for in a simple way:
 +
*The Fourier series representation of the periodic rectangular signal&nbsp;$z_{\rm R}(t)$&nbsp; is:
 +
:$$z_{\rm R}(t) = \frac{4}{\pi} \cdot \cos(\omega_{\rm T}\cdot t)-\frac{4}{3\pi} \cdot \cos(3\omega_{\rm T}\cdot t) +\frac{4}{5\pi} \cdot \cos(5\omega_{\rm T}\cdot t)- \text{ ...}$$
 +
*The associated spectral function consists of Dirac delta lines at &nbsp;$±f_{\rm T}, ±3f_{\rm T}, ±5f_{\rm T}$, etc.&nbsp; Convolution with &nbsp;$Q(f)$&nbsp; leads to the spectrum <br>(the subscript stands for "ring modulator"):
 +
:$$S_{\rm RM}(f) = \frac{2}{\pi} \cdot Q (f \pm f_{\rm T})-\frac{2}{3\pi} \cdot Q (f \pm 3f_{\rm
 +
T})+\frac{2}{5\pi} \cdot Q (f \pm 5f_{\rm T}) -\text{ ...} \hspace{0.05cm}$$
 +
*From this, it can be seen that by appropriately band-limiting $($e.g. to &nbsp;$±2f_{\rm T})$ and attenuating with  &nbsp;$π/4 ≈ 0.785$&nbsp; the familiar DSB-AM spectrum can be obtained:
 +
:$$S(f) = {1}/{2} \cdot Q (f \pm f_{\rm T})\hspace{0.05cm}.$$
 +
Here it must be taken into account that in the above reasoning, &nbsp;$B_{\rm NF} \ll f_{\rm T}$&nbsp; must hold.}}
  
 +
==AM signals and spectra with a harmonic input signal==
 +
<br>
 +
Now we consider a special case which is important for testing purposes,&nbsp; where not only the carrier&nbsp; $z(t)$&nbsp;  is a harmonic oscillation,&nbsp; but also the signal&nbsp; $q(t)$&nbsp; to be modulated:
 +
:$$\begin{align*}q(t) & = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}, \\ \\ z(t) & = \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(\omega_{\rm T} \cdot t + \phi_{\rm T})\hspace{0.05cm}.\end{align*}$$
  
Man erkennt deutliche Unterschiede, die sich jedoch auf einfache Weise kompensieren lassen:
+
Please note: &nbsp; Since we are describing modulation processes,&nbsp; the phase term is used with a plus sign in the above equations.
*Die Fourierreihendarstellung des periodischen Rechtecksignals $z_{\rm R}(t)$ lautet:
+
*Thus, &nbsp;$ϕ_{\rm N} = - 90^\circ$&nbsp; represents a sinusoidal input signal &nbsp;$q(t)$&nbsp; and&nbsp; $ϕ_{\rm T} = - 90^\circ$&nbsp; denotes a sinusoidal carrier signal&nbsp; $z(t)$.
$$z_{\rm R}(t) = \frac{4}{\pi} \cdot \cos(\omega_{\rm T}\cdot t)-\frac{4}{3\pi} \cdot \cos(3\omega_{\rm T}\cdot t) +\frac{4}{5\pi} \cdot \cos(5\omega_{\rm T}\cdot t)- ...$$
+
*Die dazugehörige Spektralfunktion besteht demnach aus Diraclinien bei $±f_{\rm T}, ±3f_{\rm T}, ±5f_{\rm T}$ usw. Die Faltung mit $Q(f)$ führt zu der Spektralfunktion (der Index steht für „Ringmodulator”):
+
*Therefore,&nbsp; the equation for the modulated signal is:
$$S_{\rm RM}(f) = \frac{2}{\pi} \cdot Q (f \pm f_{\rm T})-\frac{2}{3\pi} \cdot Q (f \pm 3f_{\rm
+
:$$s(t) = q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm
T})+\frac{2}{5\pi} \cdot Q (f \pm 5f_{\rm T}) - ... \hspace{0.05cm}.$$
+
N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$
*Daraus ist ersichtlich, dass durch eine geeignete Bandbegrenzung (zum Beispiel auf $±2f_{\rm T})$ und eine Dämpfung mit π/4 ≈ 0.785 das bekannte ZSB–AM–Spektrum gewonnen werden kann:
+
 
$$S(f) = \frac{1}{2} \cdot Q (f \pm f_{\rm T})\hspace{0.05cm}.$$
+
This equation can be transformed using the trigonometric addition theorem:
 +
:$$s(t) = A_{\rm N}/{2} \cdot \cos \big [(\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N} \big ] + A_{\rm N}/{2} \cdot \cos \big [(\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N} \big ]\hspace{0.05cm}.$$
 +
 
 +
*For cosinusoidal signals&nbsp; $(ϕ_{\rm T} = ϕ_{\rm N} = 0)$,&nbsp; this equation simplifies to
 +
:$$s(t) = {A_{\rm N}}/{2} \cdot \cos\big[(\omega_{\rm T}+\omega_{\rm N})\cdot t\big]  + {A_{\rm N}}/{2} \cdot \cos\big[(\omega_{\rm T} -\omega_{\rm N})\cdot t \big]\hspace{0.05cm}.$$  
 +
 
 +
*Using a Fourier transform we arrive at the spectral function:
 +
:$$S(f) = {A_{\rm N}}/{4} \cdot \big[\delta ( f - f_{\rm T} - f_{\rm
 +
N})+\delta ( f + f_{\rm T} + f_{\rm N})\big)] +  {A_{\rm N}}/{4} \cdot \big[ \delta ( f - f_{\rm T}+ f_{\rm N})+\delta ( f+ f_{\rm T} - f_{\rm N} ) \big]\hspace{0.05cm}.$$
  
 +
This result,&nbsp; which would also have been arrived at via convolution,&nbsp; states:
 +
#The spectrum consists of four Dirac delta lines at frequencies &nbsp;$±(f_{\rm T} + f_{\rm N})$&nbsp; and &nbsp;$±(f_{\rm T} - f_{\rm N})$.&nbsp;
 +
#In both bracket expressions, the first Dirac delta function indicates the one for positive frequencies.
 +
#The weights of all Dirac delta functions are equal and each is &nbsp;$A_{\rm N}/4$.&nbsp; 
 +
#The sum of these weights &nbsp; - that is, the integral over&nbsp;  $S(f)$ - &nbsp; is equal to the signal value&nbsp; $s(t = 0) = A_{\rm N}$.
 +
#The Dirac delta lines remain for &nbsp;$ϕ_{\rm T} ≠ 0$&nbsp; and/or &nbsp;$ϕ_{\rm N} ≠ 0$&nbsp; at the same frequencies.&nbsp; However, complex rotation factors must then be added to the weights &nbsp;$A_{\rm N}/4$&nbsp;.
  
Bei diesen Überlegungen ist zu berücksichtigen, dass stets $B_{\rm NF} << f_{\rm T}$ angenommen werden kann.
 
  
==AM-Signale und -Spektren bei harmonischen Signalen (1)==
+
{{GraueBox|TEXT=
Nun soll der für Testzwecke wichtige Sonderfall betrachtet werden, dass nicht nur das Trägersignal $z(t)$, sondern auch das zu modulierende Nachrichtensignal $q(t)$ eine harmonische Schwingung ist:
+
$\text{Example 3:}$&nbsp; The following diagram shows the spectral functions &nbsp;$S(f)$&nbsp; for different values of &nbsp;$ϕ_{\rm T}$&nbsp; and &nbsp;$ϕ_{\rm N}$,&nbsp; respectively.&nbsp; The other parameters are assumed to be &nbsp;$f_{\rm T} = 50\text{ kHz}$, &nbsp;$f_{\rm N} = 10\text{ kHz}$&nbsp; and &nbsp;$A_{\rm N} = 4\text{ V}$.&nbsp; Thus,&nbsp; the magnitudes of all Dirac delta lines are&nbsp;$A_{\rm N}/4 = 1\text{ V}$.  
$$\begin{align*}q(t) & = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}, \\ z(t) & = \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(\omega_{\rm T} \cdot t + \phi_{\rm T})\hspace{0.05cm}.\end{align*}$$
 
  
 +
[[File:EN_Mod_T_2_1_S4.png|right|frame|Typical spectra for DSB-AM]]
 +
<br>
 +
*The upper left diagram shows the case just discussed:&nbsp; Both the carrier and the source signal are cosine.&nbsp; Thus,&nbsp; the amplitude-modulated signal &nbsp;$s(t)$&nbsp; is composed of two cosine oscillations with &nbsp;$ω_{60} = 2 π · 60\text{ kHz}$&nbsp; and &nbsp;$ω_{40} = 2 π · 40\text{ kHz}$.
  
Beachten Sie bitte die Anmerkungen zur Nomenklatur. Aufgrund der Pluszeichen in obigen Gleichungen sind Sinusschwingungen mit $ϕ_{\rm N} =$ – 90° bzw. $ϕ_{\rm T} =$ – 90° parametrisiert.  
+
 +
*For the other three constellations,&nbsp; at least one of the signals &nbsp;$q(t)$&nbsp; or &nbsp;$z(t)$&nbsp; is sinusoidal,&nbsp; so that &nbsp;$s(0) = 0$&nbsp; always holds.&nbsp; Thus,&nbsp; for these spectra,&nbsp; the sum of the four pulse weights each add up to zero.
  
 +
 +
*The bottom right diagram depicts &nbsp;$s(t) = A_{\rm N} · \sin(ω_{\rm N} t) · \sin(ω_{\rm T}t)$.&nbsp; Multiplying two odd functions yields the even function &nbsp;$s(t)$&nbsp; and thus a real spectrum &nbsp;$S(f)$.&nbsp; In contrast,&nbsp; the other two constellations each result in imaginary spectral functions. }}
  
Damit lautet die Gleichung für das modulierte Signal:  
+
==Double-Sideband Amplitude Modulation with carrier==
$$s(t) = q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm
+
<br>
  N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$
+
The following diagram shows how to get from&nbsp; "DSB-AM without carrier"&nbsp; to the better known variant "DSB-AM with carrier".&nbsp;  This has the advantage that the demodulator can be realized much more easily and cheaply by a simple manipulation at the transmitter.
 +
 
 +
[[File: P_ID981__Mod_T_2_1_S5a_neu.png|right|frame|Models of DSB–AM with carrier]]
 +
 
 +
The diagram is to be interpreted as follows:
 +
*The top plot shows the physical model of the&nbsp; "DSB-AM with carrier",&nbsp; with changes from the&nbsp; "DSB-AM without carrier"&nbsp; highlighted in red.
 +
*The carrier signal &nbsp;$z(t) = A_{\rm T} · \cos(ω_{\rm T} · t)$&nbsp;  is added to the signal &nbsp;$s(t)$,&nbsp;  which causes two additional Dirac delta functions in the spectrum &nbsp;$±f_{\rm T}$,&nbsp; each with impulse weight &nbsp;$A_{\rm T}/2$.
 +
*Adding the DC signal &nbsp;$A_{\rm T}$&nbsp; to the source signal and then multiplying by the dimensionless carrier &nbsp;$z(t)$&nbsp; as shown in the lower sketch results in the same signal &nbsp;$s(t)$&nbsp; and spectrum &nbsp;$S(f)$&nbsp; as above.
 +
*Thus, the second representation is equivalent to the upper model.&nbsp; In both cases the carrier phase is only set to &nbsp;$ϕ_{\rm T} = 0$&nbsp; for the sake of simplified presentation. 
 +
<br clear=all>
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 4:}$&nbsp; The&nbsp; "double-sideband amplitude modulation with carrier"&nbsp; still finds its main application in radio transmissions for
 +
*long wave &nbsp; &nbsp; $($frequency range&nbsp; $\text{30 kHz}$ ... $\text{300 kHz})$,
 +
*medium wave&nbsp; $($frequency range&nbsp; $\text{300 kHz}$ ... $\text{3 MHz})$,
 +
*short wave&nbsp; &nbsp; $($frequency range&nbsp; $\text{3 MHz}$ ... $\text{30 MHz})$.
 +
 
 +
 
 +
However,&nbsp; these frequencies are increasingly being made available for digital applications, e.g.&nbsp; "Digital Video Broadcast"&nbsp; $\rm (DVB)$.
 +
 
 +
An application of &nbsp; "double-sideband amplitude modulation without carrier"&nbsp; exists for example in FM stereo broadcasting:
 +
*Here,&nbsp; the differential signal between the two stereo channels is amplitude modulated (without carrier) at&nbsp; $\text{39 kHz}$.
 +
*Then the sum signal of the two channels&nbsp; $($each in the range&nbsp; $\text{30 Hz}$ ... $\text{15 kHz})$&nbsp; is combined with the differential signal and an auxiliary carrier at&nbsp; $\text{19 kHz}$.&nbsp; Then, this combined signal is frequency modulated.}}
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 5:}$&nbsp; The following signal waveforms are intended to further clarify the principle of the modulation method&nbsp; "DSB-AM with carrier".
 +
 
 +
[[File:EN_Mod_T_2_1_S5b_v2.png|right|frame|Signal waveforms for&nbsp; "DSB–AM with carrier"&nbsp; and&nbsp; "DSB-AM with carrier suppression"]]
 +
   
 +
*In the upper diagram you see a section of the source signal &nbsp;$q(t)$&nbsp; with frequencies in the range &nbsp;$\vert f \vert \le 4\text{ kHz}$.
 +
 +
*$s(t)$&nbsp; is obtained by adding the DC component &nbsp;$A_{\rm T}$&nbsp; to &nbsp;$q(t)$&nbsp; and multiplying this summed signal by the carrier  &nbsp;$z(t)$&nbsp; of frequency &nbsp;$f_{\rm T} = 100\text{ kHz}$ &nbsp; &rArr; &nbsp; see middle diagram.
 +
 
 +
*In the lower diagram you see  for comparison the transmitted signal of the "DSB-AM without carrier" &nbsp; &rArr; &nbsp; "DSB-AM with carrier suppression".
 +
 
 +
 
 +
A comparison of these signal waveforms shows:
 +
*By adding the DC component &nbsp;$A_{\rm T}$&nbsp; the signal &nbsp;$q(t)$&nbsp; can now be seen in the envelope of &nbsp;$s(t)$.
 +
*Thus,&nbsp; [[Modulation_Methods/Envelope_Demodulation|$\text{envelope demodulation}$]]&nbsp; can be applied,&nbsp; which is easier and cheaper to implement than coherent &nbsp;[[Modulation_Methods/Synchronous_Demodulation|$\text{synchronous demodulation}$]].
 +
*However,&nbsp; a prerequisite for the application of the envelope demodulator is a modulation depth &nbsp;$m <1$.&nbsp;
 +
*This parameter is defined as follows:
 +
:$$m = \frac{q_{\rm max} }{A_{\rm T} } \hspace{0.3cm}{\rm with}\hspace{0.3cm} q_{\rm max} = \max_{t} \hspace{0.05cm} \vert q(t) \vert\hspace{0.05cm}.$$}}
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusions:}$&nbsp;
 +
*The advantage of a simpler demodulator is traded off with a much higher transmit power,&nbsp; since the power of the carrier cannot be used for demodulation.&nbsp;
 +
*Furthermore,&nbsp; care must be taken to ensure that the source signal does not contain a DC component,&nbsp; since this would be masked by the carrier.&nbsp; 
 +
*For speech and music signals,&nbsp; however,&nbsp; this is not a major restriction. }}
 +
 
 +
==Describing DSB-AM with carrier using the analytical signal==
 +
<br>
 +
[[File:Mod_T_2_1_S6_version2.png|right|frame|Spectrum of the analytical signal in two different viewpoints]]
 +
In the further course of this chapter,&nbsp; for the sake of simplifying the graphs,&nbsp; the spectrum &nbsp;$S_+(f)$&nbsp; of the &nbsp;[[Modulation_Methods/General_Model_of_Modulation#Describing_the_physical_signal_using_the_analytic_signal|$\text{analytical signal}$]]&nbsp;  is usually given instead of the actual, physical spectrum &nbsp;$S(f)$.
 +
 
 +
As an example,&nbsp; let us consider&nbsp; "DSB-AM with carrier"&nbsp; and the following signals:
  
Diese kann mit Hilfe des Additionstheorems der Trigonometrie umgeformt werden:  
+
:$$\begin{align*}s(t) & = \left(q(t) + A_{\rm T}\right) \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T})\hspace{0.05cm}, \\ \\ q(t) & = A_{\rm N} \cdot \cos(\omega_{\rm N}\cdot t + \phi_{\rm N})\hspace{0.05cm}.\end{align*}$$
$$\begin{align*}s(t) & = \frac{A_{\rm N}}{2} \cdot \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right)\\ & + \frac{A_{\rm N}}{2} \cdot \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right)\hspace{0.05cm}.\end{align*}$$
 
  
Bei cosinusförmigen Signalen $(ϕ_{\rm T} = ϕ_{\rm N} = 0)$ vereinfacht sich diese Gleichung zu
+
Then the corresponding analytical signal is:
$$s(t) = \frac{A_{\rm N}}{2} \cdot \cos\left((\omega_{\rm T}+\omega_{\rm N})\cdot t\right) + \frac{A_{\rm N}}{2} \cdot \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t \right)\hspace{0.05cm}.$$  
+
:$$s_+(t)  = A_{\rm T} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.01cm}(\omega_{\rm T}\cdot \hspace{0.02cm}t \hspace{0.05cm}+ \hspace{0.05cm}\phi_{\rm T})}+  \frac{A_{\rm N}}{2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.01cm}((\omega_{\rm T} \hspace{0.05cm}+ \hspace{0.05cm} \omega_{\rm N} )\hspace{0.02cm}\cdot \hspace{0.02cm}t \hspace{0.05cm}+ \hspace{0.05cm} \phi_{\rm T}+ \phi_{\rm N})} + \frac{A_{\rm N}}{2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.01cm}((\omega_{\rm T} \hspace{0.05cm}- \hspace{0.05cm} \omega_{\rm N} )\hspace{0.02cm}\cdot \hspace{0.02cm}t \hspace{0.05cm}+ \hspace{0.05cm} \phi_{\rm T}- \phi_{\rm N})} \hspace{0.05cm}.$$
  
Durch Fouriertransformation kommt man zur Spektralfunktion:
+
The corresponding spectral function &nbsp;$S_+(f)$&nbsp; consists of three Dirac delta lines,&nbsp; each with complex weights corresponding to the graph:
$$\begin{align*}S(f) & = \frac{A_{\rm N}}{4} \cdot \left[\delta ( f - f_{\rm T} - f_{\rm
 
N})+\delta ( f + f_{\rm T} + f_{\rm N})\right] +  \\ & + \frac{A_{\rm N}}{4} \cdot \left[ \delta ( f - f_{\rm T}+ f_{\rm N})+\delta ( f+ f_{\rm T} - f_{\rm N} ) \right]\hspace{0.05cm}.\end{align*}$$
 
  
 +
*The left sketch shows&nbsp; $|S_+(f)|$.&nbsp; $A_{\rm T}$&nbsp; indicates the weight of the carrier and &nbsp;$A_{\rm N}/2$&nbsp; indicates the weights of&nbsp; $\rm USB$&nbsp; (upper sideband) and&nbsp; $\rm LSB$&nbsp; (lower sideband).
 +
*The values normalized to &nbsp;$A_{\rm T}$&nbsp; are given in parentheses.&nbsp;  Since &nbsp;$q_{\rm max} = A_{\rm N}$&nbsp; holds here,&nbsp; the modulation depth &nbsp;$m = A_{\rm N}/A_{\rm T}$&nbsp; gives &nbsp;$m/2$ as the normalized weights of both the upper and lower sideband.
 +
*The right sketch depicts the direction of the frequency axis and shows the phase angles of carrier &nbsp;$(ϕ_{\rm T})$,&nbsp; of&nbsp; $\rm LSB$&nbsp; $(ϕ_{\rm T} - ϕ_{\rm N})$&nbsp; and&nbsp; of&nbsp; $\rm USB$ &nbsp;$(ϕ_{\rm T} + ϕ_{\rm N})$.
  
Dieses Ergebnis, zu dem man auch über die Faltung gekommen wäre, besagt:
 
*Das Spektrum besteht aus vier Diraclinien bei den Frequenzen $±(f_{\rm T} + f_{\rm N})$ und $±(f_{\rm T} – f_{\rm N})$, wobei in beiden Klammerausdrücken die erste Diracfunktion diejenige bei positiver Frequenz angibt.
 
*Die Gewichte aller Diracfunktionen sind gleich und jeweils $A_{\rm N}/4$. Die Summe dieser Gewichte – also das Integral über $S(f)$ – ist entsprechend der Theorie gleich dem Signalwert $s(t = 0) = A_{\rm N}$.
 
*Die Diraclinien bleiben auch für $ϕ_{\rm T}$ ≠ 0 und/oder $ϕ_{\rm N}$ ≠ 0 bei den gleichen Frequenzen erhalten. Zu den Gewichten $A_{\rm N}/4$ müssen dann jedoch komplexe Drehfaktoren hinzugefügt werden.
 
  
==AM-Signale und -Spektren bei harmonischen Signalen (2)==
+
==Amplitude modulation with a quadratic characteristic curve==
{{Beispiel}}
+
<br>
Die nachfolgende Grafik zeigt die Spektralfunktionen $S(f)$ für unterschiedliche Werte von $ϕ_{\rm T}$ bzw. $ϕ_{\rm N}$. Die weiteren Parameter sind zu $f_{\rm T} =$ 50 kHz, $f_{\rm N} =$ 10 kHz und $A_{\rm N} =$ 4 V vorausgesetzt. Die Beträge aller Diraclinien sind somit $A_{\rm N}/4 =$ 1 V.
+
Nonlinearities are usually undesirable and troublesome in Communications Engineering.&nbsp; As explained in the chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|"Nonlinear Distortions"]] &nbsp; of the book&nbsp; "Linear and Time Invariant Systems”,&nbsp; they lead to the facts that:
  
 +
*the superposition principle is no longer applicable,
 +
*the transmission behavior depends on the magnitude of the input signal,&nbsp; and
 +
*the distortions are of nonlinear nature and thus irreversible.
  
[[File:P_ID980__Mod_T_2_1_S4.png | Beispielspektren der ZSB–AM]]
 
  
 +
A nonlinearity of the general form
 +
:$$y(t) = c_0 + c_1 \cdot x(t) + c_2 \cdot x^2(t)+ c_3 \cdot x^3(t) + \text{...}$$
 +
can also be used to implement&nbsp; $\text{DSB}\hspace{0.05cm}&ndash;\hspace{-0.05cm}\text{AM}$.&nbsp;  Provided that
  
Das linke obere Bild zeigt den auf der letzten Seite besprochenen Fall mit cosinusförmigem Träger und cosinusförmigem Nachrichtensignal. Somit setzt sich das amplitudenmodulierte Signal $s(t)$ aus zwei Cosinusschwingungen mit $ω_{60} =$ 2 π · 60 kHz und $ω_{40} =$ 2 π · 40 kHz zusammen.  
+
*only the coefficients &nbsp;$c_1$&nbsp; and &nbsp;$c_2$&nbsp; are present,&nbsp; and
 +
*the input signal &nbsp;$x(t) = q(t) + z(t)$&nbsp; is applied,
 +
<br>
 +
we obtain the nonlinearity's output signal:
 +
:$$y(t) = c_1 \cdot q(t) + c_1 \cdot z(t) + c_2 \cdot q^2(t)+ 2 \cdot c_2 \cdot q(t)\cdot z(t)+ c_2 \cdot z^2(t)\hspace{0.05cm}.$$
 +
The first, third, and last components are – in terms of spectra – at &nbsp;$|\hspace{0.05cm} f \hspace{0.05cm}| ≤ 2 · B_{\rm NF}$&nbsp; and &nbsp;$|\hspace{0.05cm} f\hspace{0.05cm} | = 2 · f_{\rm T}$, respectively.  
  
 +
Removing these signal components by a band-pass and considering &nbsp;$z(t) = A_{\rm T} · \cos(ω_{\rm T} · t)$,&nbsp;  we obtain the equation typical for&nbsp; "DSB-AM with carrier" <br>(only the second and fourth terms remain):
 +
:$$s(t) = c_1 \cdot A_{\rm T} \cdot \cos(\omega_{\rm T} \cdot t ) + 2 \cdot c_2 \cdot A_{\rm T} \cdot q(t)\cdot \cos(\omega_{\rm T} \cdot t )\hspace{0.05cm}.$$
 +
The modulation depth in this realization form is variable by the coefficients &nbsp;$c_1$&nbsp; and &nbsp;$c_2$&nbsp;:
 +
:$$m = \frac{2 \cdot c_2 \cdot q_{\rm max}}{c_1} \hspace{0.05cm}.$$
 +
*A diode and a field-effect transistor both approximate such a quadratic characteristic curve and can thus be used to realize DSB-AM. 
 +
*However,&nbsp; cubic components &nbsp;$(c_3 ≠ 0)$&nbsp; and higher order nonlinearities lead to&nbsp; (large)&nbsp; nonlinear distortions.
  
Bei den drei anderen Konstellationen ist zumindest eines der Signale $q(t)$ bzw. $z(t)$ sinusförmig, so dass stets $s(0) = q(0) · z(0) =$ 0 ist. Somit ergeben sich bei diesen Spektralfunktionen die Summe der vier Impulsgewichte jeweils zu 0.
 
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_2.1:_DSB-AM_with_Cosine%3F_Or_with_Sine%3F|Exercise 2.1: DSB-AM with Cosine? Or with Sine?]]
  
Das rechte untere Bild beschreibt $s(t) = A_{\rm N} · \sin(ω_{\rm N} t) · \sin(ω_{\rm T}t)$. Die Multiplikation zweier ungerader Funktionen ergibt die gerade Funktion $s(t)$ und damit ein reelles Spektrum $S(f)$. Dagegen führen die beiden anderen Konstellationen jeweils zu imaginären Spektralfunktionen.
+
[[Aufgaben:Exercise_2.1Z:_DSB-AM_without/with_Carrier|Exercise 2.1Z: DSB-AM without/with Carrier]]
{{end}}
 
  
 +
[[Aufgaben:Exercise_2.2:_Modulation_Depth|Exercise 2.2: Modulation Depth]]
  
 +
[[Aufgaben:Exercise_2.2Z:_Power_Consideration|Exercise 2.2Z: Power Consideration]]
  
 +
[[Aufgaben:Exercise_2.3:_DSB-AM_Realization|Exercise 2.3: DSB–AM Realization]]
  
 +
[[Aufgaben:Exercise_2.3Z:_DSB-AM_due_to_Nonlinearity|Exercise 2.3Z: DSB-AM due to Nonlinearity]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 13:42, 18 January 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


After some general explanations of modulation and demodulation,  now a detailed description of  »amplitude modulation«  and the associated  »demodulators«

This chapter deals in detail with:

  • the description and realization of  »double-sideband amplitude modulation«  $\text{(DSB–AM)}$  in frequency and time domain,
  • the characteristics of a  »synchronous demodulator«  and the possible applications of an  »envelope demodulator«,
  • the similarities/differences of  »single-sideband modulation»  $\text{(SSB–AM)}$  compared to DSB-AM and  »modified AM methods».


Description in the frequency domain


We consider the following problem:  a source signal $q(t)$,  whose spectrum  $Q(f)$  is bandlimited to the range  $\pm B_{\rm NF}$  (subscript  "NF"  from German "Niederfrequenz"   ⇒   low frequency), 

  • is to be shifted to a higher frequency range where the channel frequency response  $H_{\rm K}(f)$  has favorable characteristics, 
  • using a harmonic oscillation of frequency  $f_{\rm T}$, which we will refer to as the carrier signal  $z(t)$.


The diagram illustrates the task, with the following simplifying assumptions:

Representation of amplitude modulation in the frequency domain
  • The spectrum  $Q(f)$  drawn here is schematic.  It states that only spectral components in the range  $|f| ≤ B_{\rm NF}$  are included in  $q(t)$.  $Q(f)$  could also be a line spectrum.
  • Let the channel be ideal in a bandwidth range  $B_{\rm K}$  around frequency  $f_{\rm M}$,  that is, let  $H_{\rm K}(f) = 1$  for  $|f - f_{\rm M}| ≤ B_{\rm K}/2.$  Impairments by noise are ignored for now.
  • Let the carrier signal be cosine   $($phase  $ϕ_{\rm T} = 0)$  and have amplitude  $A_{\rm T} = 1$  (without a unit).  Let the carrier frequency  $f_{\rm T}$  be equal to the center frequency of the transmission band.
  • Thus,  the spectrum of the carrier signal  $z(t) = \cos(ω_{\rm T} · t)$  is
    (plotted in green in the graph):
$$Z(f) = {1}/{2} \cdot \delta (f + f_{\rm T})+{1}/{2} \cdot \delta (f - f_{\rm T})\hspace{0.05cm}.$$

Those familiar with the  $\text{laws of spectral transformation}$  and in particular with the  $\text{Convolution Theorem}$  can immediately give a solution for the spectrum  $S(f)$  of the modulator output signal:

$$S(f)= Z(f) \star Q(f) = 1/2 \cdot \delta (f + f_{\rm T})\star Q(f)+1/2 \cdot \delta (f - f_{\rm T})\star Q(f) = 1/2 \cdot Q (f + f_{\rm T})+ 1/2 \cdot Q(f - f_{\rm T}) \hspace{0.05cm}.$$

$\text{Please note:}$  This equation takes into account

  • that the convolution of a shifted Dirac delta function  $δ(x - x_0)$  with an arbitrary function $f(x)$  yields the   »shifted function«  $f(x - x_0)$.


The diagram displays the result.  One can identify the following characteristics:

Spectrum of double-sideband amplitude modulation without carrier;
other name:  "double-sideband amplitude modulation with carrier suppression"
  • Due to the system-theoretic approach with positive and negative frequencies, $S(f)$  is composed of two parts around  $\pm f_{\rm T}$,  each of which have the same shape as  $Q(f)$.
  • The factor  $1/2$  results from the carrier amplitude  $A_{\rm T} = 1$.  Thus,  $s(t = 0) = q(t = 0)$  and the integrals over their spectral functions  $S(f)$  and  $Q(f)$  must also be equal.
  • The channel bandwidth  $B_{\rm K}$  must be at least twice the signal bandwidth  $B_{\rm NF}$,  which gives the name 
    »Double-Sideband Amplitude Modulation«  $\text{(DSB–AM)}$.
  • It should be noted that $B_{\rm NF}$ and $B_{\rm K}$  are absolute and  $\text{non-equivalent bandwidths}$.  The latter are defined over rectangles of equal area and are denoted in our tutorial by  $Δf_q$  and  $Δf_{\rm K}$,  resp.
  • The spectral function  $S(f)$  does not include any Dirac-lines at the carrier frequency  $(\pm f_{\rm T})$.  Therefore, this method is also referred to as  "DSB-AM without carrier".
  • The frequency components
  • above the carrier frequency  $f_{\rm T}$  are called the  "upper sideband"  $\rm (USB)$,
  • and those below  $f_{\rm T}$  are the  "lower sideband"  $\rm (LSB)$.

Description in the time domain


Adapting the notation and nomenclature to this problem,  the convolution theorem reads:

$$S(f) = Z(f) \star Q(f)\hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} s(t) = q(t) \cdot z(t) = q(t) \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T})\hspace{0.05cm}.$$
Models of DSB–AM without carrier

This result is still true if the restrictions made in the last section are removed:

  1. real-valued spectrum  $Q(f)$, 
  2. carrier phase  $ϕ_{\rm T} = 0$. 

In general,  this results in a complex-valued spectrum  $S(f)$.

According to this equation, two models can be given for double-sideband amplitude modulation.  These are to be interpreted as follows:

  • The upper model directly describes the relationship given above,  where the carrier  $z(t) = \cos(ω_{\rm T}t + ϕ_{\rm T})$  is applied without a unit.
  • The lower model is more in line with the physical condition  "each signal also has a unit".  If  $q(t)$  and  $z(t)$  are voltages,  the model still needs to provide a scaling with the modulator constant  $K_{\rm AM}$  with unit   $\rm 1/V$,  so that the output signal  $s(t)$  also represents a voltage waveform.
  • If we set  $K_{\rm AM} = 1/A_{\rm T}$,  both models are the same.  In the following,  we will always assume the lower, simpler model.


Signal waveforms in DSB–AM without carrier

$\text{Example 1:}$  The graph shows in red the transmitted signals  $s(t)$  for DSB–AM with two different carrier frequencies. 

The source signal  $q(t)$  with bandwidth  $B_{\rm NF} = 4\text{ kHz}$,  which is the same in both cases,  is drawn in solid blue and the signal  $-q(t)$  is dashed.

The carrier signal  $z(t)$  has a cosine shape in both cases.  In the upper sketch,  the carrier frequency  (German:  "Trägersignal"   ⇒   subscript "T")  is  $f_{\rm T} = 20\text{ kHz}$  and in the lower sketch  $f_{\rm T} = 100\text{ kHz}$.

Ring modulator


One possibility to realize  "double-sideband amplitude modulation with carrier suppression"  is offered by a so-called  »ring modulator«,  also known as  "double push-pull diode modulator".  Below you can see the circuit on the left and a simple functional diagram on the right.

Without claiming to be complete, the principle can be stated as follows:

Ring modulator to realize DSB–AM without carrier
  • Let the amplitude of the harmonic carrier oscillation  $z(t)$  be much larger than the maximum value  $q_{\rm max}$  of the source signal  $q(t)$.  Thus,  all diodes are operated as switches.
  • When the half-wave of the carrier is positive  $(z(t) > 0)$  the two magenta diodes conduct while the light green ones block. Thus, without considering losses,  it holds  $s(t) = q(t)$.
  • For a negative half-wave,  the light green diodes conduct and the diodes in the longitudinal branches block.  As can be seen on the right,  $s(t) = \ – q(t)$  holds for this lower switch position.
  • Due to the operation of this switch,  the harmonic oscillation  $z(t)$  can also be replaced by a periodic  (rectangular)  square wave signal with identical period duration:
$$z_{\rm R}(t) = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {z(t) >0,} \\ {z(t) <0.} \\ \end{array}$$
  • The modulated signal  $s(t)$  is then obtained as the product of the source signal  $q(t)$  and this rectangular signal  $z_{\rm R}(t)$,  whereas in ideal DSB-AM one multiplies $q(t)$  by a cosine signal.  The carrier  $z(t)$  is not itself included in the signal $s(t)$.  Since this is supplied via the center taps of the transformers, the induced voltages cancel out   ⇒   »DSB-AM without carrier«.


$\text{Example 2:}$  Now we will explain the operation mode of a ring modulator using exemplary signal characteristics.  Let the carrier frequency be  $f_{\rm T} = 10\text{ kHz}$.

Signals to illustrate a ring modulator





  • The top graph shows the signals  $q(t)$  and  $-q(t)$  as magenta and light green waveforms respectively.  The bipolar square wave  (rectangular)  signal $z_{\rm R}(t)$  is shown in blue dashes,  and takes the values  $±1$ .
  • The middle chart shows the modulated signal from the ring modulator:
$$s_{\rm RM}(t) = q(t) · z_{\rm R}(t).$$
  • For comparison, the conventional DSB-AM signal is shown in the bottom graph:
$$s(t) = q(t) · \cos(ω_{\rm T} · t).$$


One can see significant differences, but these can be compensated for in a simple way:

  • The Fourier series representation of the periodic rectangular signal $z_{\rm R}(t)$  is:
$$z_{\rm R}(t) = \frac{4}{\pi} \cdot \cos(\omega_{\rm T}\cdot t)-\frac{4}{3\pi} \cdot \cos(3\omega_{\rm T}\cdot t) +\frac{4}{5\pi} \cdot \cos(5\omega_{\rm T}\cdot t)- \text{ ...}$$
  • The associated spectral function consists of Dirac delta lines at  $±f_{\rm T}, ±3f_{\rm T}, ±5f_{\rm T}$, etc.  Convolution with  $Q(f)$  leads to the spectrum
    (the subscript stands for "ring modulator"):
$$S_{\rm RM}(f) = \frac{2}{\pi} \cdot Q (f \pm f_{\rm T})-\frac{2}{3\pi} \cdot Q (f \pm 3f_{\rm T})+\frac{2}{5\pi} \cdot Q (f \pm 5f_{\rm T}) -\text{ ...} \hspace{0.05cm}$$
  • From this, it can be seen that by appropriately band-limiting $($e.g. to  $±2f_{\rm T})$ and attenuating with  $π/4 ≈ 0.785$  the familiar DSB-AM spectrum can be obtained:
$$S(f) = {1}/{2} \cdot Q (f \pm f_{\rm T})\hspace{0.05cm}.$$

Here it must be taken into account that in the above reasoning,  $B_{\rm NF} \ll f_{\rm T}$  must hold.

AM signals and spectra with a harmonic input signal


Now we consider a special case which is important for testing purposes,  where not only the carrier  $z(t)$  is a harmonic oscillation,  but also the signal  $q(t)$  to be modulated:

$$\begin{align*}q(t) & = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}, \\ \\ z(t) & = \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(\omega_{\rm T} \cdot t + \phi_{\rm T})\hspace{0.05cm}.\end{align*}$$

Please note:   Since we are describing modulation processes,  the phase term is used with a plus sign in the above equations.

  • Thus,  $ϕ_{\rm N} = - 90^\circ$  represents a sinusoidal input signal  $q(t)$  and  $ϕ_{\rm T} = - 90^\circ$  denotes a sinusoidal carrier signal  $z(t)$.
  • Therefore,  the equation for the modulated signal is:
$$s(t) = q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$

This equation can be transformed using the trigonometric addition theorem:

$$s(t) = A_{\rm N}/{2} \cdot \cos \big [(\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N} \big ] + A_{\rm N}/{2} \cdot \cos \big [(\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N} \big ]\hspace{0.05cm}.$$
  • For cosinusoidal signals  $(ϕ_{\rm T} = ϕ_{\rm N} = 0)$,  this equation simplifies to
$$s(t) = {A_{\rm N}}/{2} \cdot \cos\big[(\omega_{\rm T}+\omega_{\rm N})\cdot t\big] + {A_{\rm N}}/{2} \cdot \cos\big[(\omega_{\rm T} -\omega_{\rm N})\cdot t \big]\hspace{0.05cm}.$$
  • Using a Fourier transform we arrive at the spectral function:
$$S(f) = {A_{\rm N}}/{4} \cdot \big[\delta ( f - f_{\rm T} - f_{\rm N})+\delta ( f + f_{\rm T} + f_{\rm N})\big)] + {A_{\rm N}}/{4} \cdot \big[ \delta ( f - f_{\rm T}+ f_{\rm N})+\delta ( f+ f_{\rm T} - f_{\rm N} ) \big]\hspace{0.05cm}.$$

This result,  which would also have been arrived at via convolution,  states:

  1. The spectrum consists of four Dirac delta lines at frequencies  $±(f_{\rm T} + f_{\rm N})$  and  $±(f_{\rm T} - f_{\rm N})$. 
  2. In both bracket expressions, the first Dirac delta function indicates the one for positive frequencies.
  3. The weights of all Dirac delta functions are equal and each is  $A_{\rm N}/4$. 
  4. The sum of these weights   - that is, the integral over  $S(f)$ -   is equal to the signal value  $s(t = 0) = A_{\rm N}$.
  5. The Dirac delta lines remain for  $ϕ_{\rm T} ≠ 0$  and/or  $ϕ_{\rm N} ≠ 0$  at the same frequencies.  However, complex rotation factors must then be added to the weights  $A_{\rm N}/4$ .


$\text{Example 3:}$  The following diagram shows the spectral functions  $S(f)$  for different values of  $ϕ_{\rm T}$  and  $ϕ_{\rm N}$,  respectively.  The other parameters are assumed to be  $f_{\rm T} = 50\text{ kHz}$,  $f_{\rm N} = 10\text{ kHz}$  and  $A_{\rm N} = 4\text{ V}$.  Thus,  the magnitudes of all Dirac delta lines are $A_{\rm N}/4 = 1\text{ V}$.

Typical spectra for DSB-AM


  • The upper left diagram shows the case just discussed:  Both the carrier and the source signal are cosine.  Thus,  the amplitude-modulated signal  $s(t)$  is composed of two cosine oscillations with  $ω_{60} = 2 π · 60\text{ kHz}$  and  $ω_{40} = 2 π · 40\text{ kHz}$.


  • For the other three constellations,  at least one of the signals  $q(t)$  or  $z(t)$  is sinusoidal,  so that  $s(0) = 0$  always holds.  Thus,  for these spectra,  the sum of the four pulse weights each add up to zero.


  • The bottom right diagram depicts  $s(t) = A_{\rm N} · \sin(ω_{\rm N} t) · \sin(ω_{\rm T}t)$.  Multiplying two odd functions yields the even function  $s(t)$  and thus a real spectrum  $S(f)$.  In contrast,  the other two constellations each result in imaginary spectral functions.

Double-Sideband Amplitude Modulation with carrier


The following diagram shows how to get from  "DSB-AM without carrier"  to the better known variant "DSB-AM with carrier".  This has the advantage that the demodulator can be realized much more easily and cheaply by a simple manipulation at the transmitter.

Models of DSB–AM with carrier

The diagram is to be interpreted as follows:

  • The top plot shows the physical model of the  "DSB-AM with carrier",  with changes from the  "DSB-AM without carrier"  highlighted in red.
  • The carrier signal  $z(t) = A_{\rm T} · \cos(ω_{\rm T} · t)$  is added to the signal  $s(t)$,  which causes two additional Dirac delta functions in the spectrum  $±f_{\rm T}$,  each with impulse weight  $A_{\rm T}/2$.
  • Adding the DC signal  $A_{\rm T}$  to the source signal and then multiplying by the dimensionless carrier  $z(t)$  as shown in the lower sketch results in the same signal  $s(t)$  and spectrum  $S(f)$  as above.
  • Thus, the second representation is equivalent to the upper model.  In both cases the carrier phase is only set to  $ϕ_{\rm T} = 0$  for the sake of simplified presentation.


$\text{Example 4:}$  The  "double-sideband amplitude modulation with carrier"  still finds its main application in radio transmissions for

  • long wave     $($frequency range  $\text{30 kHz}$ ... $\text{300 kHz})$,
  • medium wave  $($frequency range  $\text{300 kHz}$ ... $\text{3 MHz})$,
  • short wave    $($frequency range  $\text{3 MHz}$ ... $\text{30 MHz})$.


However,  these frequencies are increasingly being made available for digital applications, e.g.  "Digital Video Broadcast"  $\rm (DVB)$.

An application of   "double-sideband amplitude modulation without carrier"  exists for example in FM stereo broadcasting:

  • Here,  the differential signal between the two stereo channels is amplitude modulated (without carrier) at  $\text{39 kHz}$.
  • Then the sum signal of the two channels  $($each in the range  $\text{30 Hz}$ ... $\text{15 kHz})$  is combined with the differential signal and an auxiliary carrier at  $\text{19 kHz}$.  Then, this combined signal is frequency modulated.


$\text{Example 5:}$  The following signal waveforms are intended to further clarify the principle of the modulation method  "DSB-AM with carrier".

Signal waveforms for  "DSB–AM with carrier"  and  "DSB-AM with carrier suppression"
  • In the upper diagram you see a section of the source signal  $q(t)$  with frequencies in the range  $\vert f \vert \le 4\text{ kHz}$.
  • $s(t)$  is obtained by adding the DC component  $A_{\rm T}$  to  $q(t)$  and multiplying this summed signal by the carrier  $z(t)$  of frequency  $f_{\rm T} = 100\text{ kHz}$   ⇒   see middle diagram.
  • In the lower diagram you see for comparison the transmitted signal of the "DSB-AM without carrier"   ⇒   "DSB-AM with carrier suppression".


A comparison of these signal waveforms shows:

  • By adding the DC component  $A_{\rm T}$  the signal  $q(t)$  can now be seen in the envelope of  $s(t)$.
  • Thus,  $\text{envelope demodulation}$  can be applied,  which is easier and cheaper to implement than coherent  $\text{synchronous demodulation}$.
  • However,  a prerequisite for the application of the envelope demodulator is a modulation depth  $m <1$. 
  • This parameter is defined as follows:
$$m = \frac{q_{\rm max} }{A_{\rm T} } \hspace{0.3cm}{\rm with}\hspace{0.3cm} q_{\rm max} = \max_{t} \hspace{0.05cm} \vert q(t) \vert\hspace{0.05cm}.$$


$\text{Conclusions:}$ 

  • The advantage of a simpler demodulator is traded off with a much higher transmit power,  since the power of the carrier cannot be used for demodulation. 
  • Furthermore,  care must be taken to ensure that the source signal does not contain a DC component,  since this would be masked by the carrier. 
  • For speech and music signals,  however,  this is not a major restriction.

Describing DSB-AM with carrier using the analytical signal


Spectrum of the analytical signal in two different viewpoints

In the further course of this chapter,  for the sake of simplifying the graphs,  the spectrum  $S_+(f)$  of the  $\text{analytical signal}$  is usually given instead of the actual, physical spectrum  $S(f)$.

As an example,  let us consider  "DSB-AM with carrier"  and the following signals:

$$\begin{align*}s(t) & = \left(q(t) + A_{\rm T}\right) \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T})\hspace{0.05cm}, \\ \\ q(t) & = A_{\rm N} \cdot \cos(\omega_{\rm N}\cdot t + \phi_{\rm N})\hspace{0.05cm}.\end{align*}$$

Then the corresponding analytical signal is:

$$s_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.01cm}(\omega_{\rm T}\cdot \hspace{0.02cm}t \hspace{0.05cm}+ \hspace{0.05cm}\phi_{\rm T})}+ \frac{A_{\rm N}}{2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.01cm}((\omega_{\rm T} \hspace{0.05cm}+ \hspace{0.05cm} \omega_{\rm N} )\hspace{0.02cm}\cdot \hspace{0.02cm}t \hspace{0.05cm}+ \hspace{0.05cm} \phi_{\rm T}+ \phi_{\rm N})} + \frac{A_{\rm N}}{2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.01cm}((\omega_{\rm T} \hspace{0.05cm}- \hspace{0.05cm} \omega_{\rm N} )\hspace{0.02cm}\cdot \hspace{0.02cm}t \hspace{0.05cm}+ \hspace{0.05cm} \phi_{\rm T}- \phi_{\rm N})} \hspace{0.05cm}.$$

The corresponding spectral function  $S_+(f)$  consists of three Dirac delta lines,  each with complex weights corresponding to the graph:

  • The left sketch shows  $|S_+(f)|$.  $A_{\rm T}$  indicates the weight of the carrier and  $A_{\rm N}/2$  indicates the weights of  $\rm USB$  (upper sideband) and  $\rm LSB$  (lower sideband).
  • The values normalized to  $A_{\rm T}$  are given in parentheses.  Since  $q_{\rm max} = A_{\rm N}$  holds here,  the modulation depth  $m = A_{\rm N}/A_{\rm T}$  gives  $m/2$ as the normalized weights of both the upper and lower sideband.
  • The right sketch depicts the direction of the frequency axis and shows the phase angles of carrier  $(ϕ_{\rm T})$,  of  $\rm LSB$  $(ϕ_{\rm T} - ϕ_{\rm N})$  and  of  $\rm USB$  $(ϕ_{\rm T} + ϕ_{\rm N})$.


Amplitude modulation with a quadratic characteristic curve


Nonlinearities are usually undesirable and troublesome in Communications Engineering.  As explained in the chapter  "Nonlinear Distortions"   of the book  "Linear and Time Invariant Systems”,  they lead to the facts that:

  • the superposition principle is no longer applicable,
  • the transmission behavior depends on the magnitude of the input signal,  and
  • the distortions are of nonlinear nature and thus irreversible.


A nonlinearity of the general form

$$y(t) = c_0 + c_1 \cdot x(t) + c_2 \cdot x^2(t)+ c_3 \cdot x^3(t) + \text{...}$$

can also be used to implement  $\text{DSB}\hspace{0.05cm}–\hspace{-0.05cm}\text{AM}$.  Provided that

  • only the coefficients  $c_1$  and  $c_2$  are present,  and
  • the input signal  $x(t) = q(t) + z(t)$  is applied,


we obtain the nonlinearity's output signal:

$$y(t) = c_1 \cdot q(t) + c_1 \cdot z(t) + c_2 \cdot q^2(t)+ 2 \cdot c_2 \cdot q(t)\cdot z(t)+ c_2 \cdot z^2(t)\hspace{0.05cm}.$$

The first, third, and last components are – in terms of spectra – at  $|\hspace{0.05cm} f \hspace{0.05cm}| ≤ 2 · B_{\rm NF}$  and  $|\hspace{0.05cm} f\hspace{0.05cm} | = 2 · f_{\rm T}$, respectively.

Removing these signal components by a band-pass and considering  $z(t) = A_{\rm T} · \cos(ω_{\rm T} · t)$,  we obtain the equation typical for  "DSB-AM with carrier"
(only the second and fourth terms remain):

$$s(t) = c_1 \cdot A_{\rm T} \cdot \cos(\omega_{\rm T} \cdot t ) + 2 \cdot c_2 \cdot A_{\rm T} \cdot q(t)\cdot \cos(\omega_{\rm T} \cdot t )\hspace{0.05cm}.$$

The modulation depth in this realization form is variable by the coefficients  $c_1$  and  $c_2$ :

$$m = \frac{2 \cdot c_2 \cdot q_{\rm max}}{c_1} \hspace{0.05cm}.$$
  • A diode and a field-effect transistor both approximate such a quadratic characteristic curve and can thus be used to realize DSB-AM.
  • However,  cubic components  $(c_3 ≠ 0)$  and higher order nonlinearities lead to  (large)  nonlinear distortions.


Exercises for the chapter


Exercise 2.1: DSB-AM with Cosine? Or with Sine?

Exercise 2.1Z: DSB-AM without/with Carrier

Exercise 2.2: Modulation Depth

Exercise 2.2Z: Power Consideration

Exercise 2.3: DSB–AM Realization

Exercise 2.3Z: DSB-AM due to Nonlinearity