Difference between revisions of "Modulation Methods/Direct-Sequence Spread Spectrum Modulation"

From LNTwww
 
(47 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Vielfachzugriffsverfahren
+
|Untermenü= Multiple Access Methods
|Vorherige Seite=Aufgaben und Klassifizierung
+
|Vorherige Seite=Tasks and Classification
|Nächste Seite=Spreizfolgen für CDMA
+
|Nächste Seite=Spreading Sequences for CDMA
 
}}
 
}}
==Blockschaltbild und äquivalentes Tiefpass–Modell==
+
==Block diagram and equivalent low-pass model==
Eine Möglichkeit zur Realisierung eines CDMA–Systems bietet die so genannte PN–Modulation, die hier anhand des nachfolgend skizzierten Blockschaltbildes erklärt werden soll. Darunter gezeichnet ist das dazugehörige Modell im äquivalenten Tiefpassbereich. In beiden Bildern ist der verzerrungsfreie Kanal (AWGN und eventuell Interferenzen durch andere Nutzer) gelb hinterlegt und der optimale Empfänger (Matched–Filter plus Schwellenwertentscheider) grün.  
+
<br>
 +
One possibility for realizing a CDMA system is the so-called&nbsp; &raquo;Direct-Sequence Spread Spectrum&laquo;&nbsp; $\text{(DS&ndash;SS)}$&nbsp;,&nbsp; which is explained here using the block diagram.&nbsp; The corresponding model in the equivalent low-pass range is shown below.&nbsp;
  
 +
[[File:EN_Mod_T_5_2_S1_neu2.png|right|frame| Block diagram and equivalent low-pass model of direct-sequence spread spectrum]]
 +
In both models,&nbsp;
 +
*the distortion-free channel&nbsp; $($AWGN and possibly interference from other users,&nbsp; but no &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Definition_of_the_term_.22Intersymbol_Interference.22|$\text{intersymbol interference}$]]$)$&nbsp; is highlighted in yellow,
 +
*the &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Matched_Filter.22_realization|$\text{optimal receiver}$]]&nbsp; $($matched filter plus threshold decider$)$ is highlighted in green.
 +
<br><br><br>
 +
Note:
  
[[File:P_ID1864__Mod_T_5_2_S1_neu100.png | Blockschaltbild und äquivalentes Tiefpass–Modell der PN–Modulation]]
+
In in the equivalent low-pass model the multiplications with the transmitter-side carrier signal &nbsp;$z(t)$&nbsp; and the receiver-side carrier signal &nbsp;&nbsp;$z_{\rm E}(t) =2\cdot z(t)$&nbsp; are omitted.
 +
<br clear=all>
 +
{{BlaueBox|TEXT=
 +
$\text{This system can be characterized as follows:}$
 +
*If the multiplication with the spreading signal &nbsp;$c(t)$&nbsp; at transmitter and receiver is omitted,&nbsp; the result is a conventional &nbsp;[[Modulation_Methods/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|$\text{BPSK system}$]]&nbsp; with the carrier &nbsp;$z(t)$&nbsp; and AWGN noise, characterized by the additive Gaussian noise signal &nbsp;$n(t)$.&nbsp; The second interference component&nbsp; (interference from other participants)&nbsp; is omitted: &nbsp; $i(t) = 0$.  
 +
*For the following it is assumed&nbsp; $($this is essential for direct-sequence spread spectrum!$)$ that the source signal &nbsp;$q(t)$&nbsp; has a rectangular NRZ curve.&nbsp; Then the matched filter can be replaced by an integrator over a symbol duration &nbsp;$T$&nbsp; &nbsp; ⇒ &nbsp; &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Integrate_.26_Dump.22_realization|$\text{Integrate & Dump}$]].&nbsp; This is followed by the threshold decision.}}
  
 +
==Principle and properties of band spreading methods==
 +
<br>
 +
In the following we consider&nbsp; &raquo;'''Pseudo-Noise Band Spreading'''&laquo;&nbsp; in the equivalent low-pass region.&nbsp;  So the model outlined below applies.
 +
[[File:EN_Mod_T_5_2_S2_neu2.png|right|frame| Low-pass model of direct-sequence spread spectrum]]
  
Dieses System lässt sich wie folgt charakterisieren:
+
*Characteristic for this type of modulation is the multiplication of the bipolar and rectangular digital signal &nbsp;$q(t)$&nbsp; with a pseudo-random&nbsp; $±1$ spreading sequence &nbsp;$c(t)$:
*Verzichtet man auf die Multiplikation mit dem Spreizsignal $c(t)$ bei Sender und Empfänger, so ergibt sich ein herkömmliches BPSK–System mit dem Trägersignal $z(t)$ und dem AWGN–Kanal, gekennzeichnet durch das additive Gaußsche Störsignal $n(t)$. Der zweite Störanteil (Interferenzen anderer Teilnehmer) entfällt in diesem Fall: $i(t) =$ 0.  
+
:$$s(t) = q(t) \cdot c(t) \hspace{0.05cm}.$$
*Für das Folgende wird vorausgesetzt (dies ist essentiell für die PN–Modulation), dass das digitale Quellensignal $q(t)$ einen NRZ–rechteckförmigen Verlauf hat. In diesem Fall lässt sich das Matched–Filter durch einen Integrator über eine Symboldauer $T$ ersetzen ⇒ Integrate & Dump. Anschließend folgt der Schwellenwertentscheider.  
+
*The duration &nbsp;$T_c$&nbsp; of a spreading chip is smaller than the duration &nbsp;$T$&nbsp; of a source symbol by the integer spreading factor &nbsp;$J$,&nbsp; so that the transmitted signal spectrum
 +
:$$S(f) = Q(f) \star C(f)$$
 +
:is wider than the spectrum &nbsp;$Q(f)$ by approximately this factor &nbsp;$J$.  
 +
 +
{{BlaueBox|TEXT=
 +
$\text{In this context, please note in particular:}$  
 +
*In previous chapters,&nbsp; a major goal of modulation has always been to be as bandwidth-efficient as possible.
 +
*Here, in contrast,&nbsp; we try to spread the signal over as wide a bandwidth as possible.
 +
*The bandwidth expansion by &nbsp;$J$&nbsp; is necessary to allow several subscribers to use the same frequency band simultaneously.
 +
*Ideally, &nbsp;$2^J$&nbsp; suitable spreading sequences can be found.&nbsp; This makes a CDMA system for &nbsp;$2^J$&nbsp; simultaneous users feasible. }}
  
==Prinzip und Eigenschaften von Bandspreizverfahren==
 
Im Folgenden betrachten wir die PN–Modulation im äquivalenten Tiefpassbereich. Charakteristisch für diese Modulationsart ist die Multiplikation des bipolaren und rechteckförmigen Digitalsignals $q(t)$ mit einer pseudozufälligen ±1–Spreizfolge $c(t)$:
 
$$s(t) = q(t) \cdot c(t) \hspace{0.05cm}.$$
 
Die Dauer $T_c$ eines Spreizchips ist um den ganzzahligen Spreizfaktor $J$ kleiner ist als die Dauer $T$ eines Quellensymbols, so dass das Sendesignalspektrum
 
$$S(f) = Q(f) \star C(f)$$
 
etwa um diesen Faktor $J$ breiter ist als die Spektralfunktion $Q(f)$ des Quellensignals. Deshalb bezeichnet man dieses Verfahren auch als PN–Bandspreizung, wobei „PN” für Pseudo–Noise steht. Im Englischen ist die Bezeichnung ''Direct Sequence Spread Spectrum,'' abgekürzt DS–SS, üblich.
 
  
 +
Band spreading techniques also offer the following advantages:
 +
*An additional low-rate&nbsp; "DS–SS signal"&nbsp; can be transmitted over a frequency band that is otherwise used by FDMA channels with a higher data rate without significantly disrupting the main applications.&nbsp; The band spread signal virtually disappears under the noise level of these signals.
 +
*Targeted narrowband interferers&nbsp; ("sinusoidal interferers")&nbsp; can be combated well with this technique.&nbsp; This military point of view was also decisive for the invention and further development of band spreading techniques.
 +
*Furthermore,&nbsp; the band spreading technique in general,&nbsp; but especially &nbsp;[https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum $\text{frequency hopping}$]&nbsp; $($fast discrete change of the carrier frequency over a wide range$)$&nbsp; and &nbsp;[https://en.wikipedia.org/wiki/Chirp_spread_spectrum $\text{chirp modulation}$]&nbsp; $($continuous change of the carrier frequency during a bit interval$)$&nbsp; also offer the possibility of better transmission over frequency-selective channels.
  
[[File:P_ID1873__Mod_T_5_2_S2_neu.png | Tiefpass–Modell der PN–Modulation]]
 
  
 +
==Signal curves with a single participant==
 +
<br>
 +
A disadvantage of direct-sequence spread spectrum modulation is that under unfavorable conditions interference can occur between the subscriber under consideration and other subscribers.
 +
*This case is taken into account in the model by the interference quantity &nbsp;$i(t)$.&nbsp;
 +
*We initially consider only one transmitter, so that &nbsp;$i(t) = 0$&nbsp; is to be set.
  
In vorherigen Kapiteln war stets ein wesentliches Ziel der Modulation, möglichst bandbreiteneffizient zu sein. Hier versucht man im Gegensatz dazu, das Signal auf eine möglichst große Bandbreite zu spreizen.
 
  
 +
{{GraueBox|TEXT=
 +
[[File:P_ID1874__Mod_T_5_2_S3a_neu.png |right|frame| Signals of direct-sequence spread spectrum modulation in the noise-free case]]
 +
$\text{Example 1:}$&nbsp; The graph shows
 +
*above the source signal &nbsp;$q(t)$&nbsp; &ndash; marked by blue background &ndash; and the band spread signal &nbsp;$s(t)$&nbsp; as solid black line,
 +
*at the bottom left the signal &nbsp;$b(t)$&nbsp; after band compression,
 +
*bottom right the detection signal &nbsp;$d(t)$&nbsp; after the integrator, directly before the decision.
  
{{Box}}
 
'''Merke:''' Die Bandbreitenerweiterung um $J$ ist notwendig, um mehreren Teilnehmern die gleichzeitige Nutzung des gleichen Frequenzbandes zu ermöglichen. Im Idealfall können $2^J$ geeignete Spreizfolgen gefunden und somit ein CDMA–System für $2^J$ gleichzeitige Nutzer realisiert werden.
 
{{end}}
 
  
 +
Further notes:
 +
#&nbsp; Discrete-time and normalized signal representation with rectangles spaced by the chip duration &nbsp;$T_c$&nbsp; is chosen.
 +
#&nbsp; The spreading factor is &nbsp;$J = 8$.
 +
#&nbsp; As spreading sequence the &nbsp;[[Modulation_Methods/Spreading_Sequences_for_CDMA#Walsh_functions|$\text{Walsh function no. 7}$]]&nbsp; is used.
 +
#&nbsp; All images show the noise-free case &nbsp; ⇒ &nbsp; $n(t) = 0$.
 +
<br clear=all>
 +
To the individual signal curves is to be noted:
 +
*The &nbsp;$±1$ data signal &nbsp;$q(t)$&nbsp; is marked by the blue background.&nbsp; After multiplication with the spreading signal &nbsp;$c(t)$,&nbsp; the result is the transmitted signal&nbsp; $s(t)$&nbsp;  which is higher in frequency by the factor &nbsp;$J = 8$.
 +
*The spreading signal &nbsp;$c(t)$&nbsp; is periodic with &nbsp;$T = J · T_c$&nbsp; and thus has a line spectrum.&nbsp; In the data bits&nbsp; $1,\ 4,\ 8$: &nbsp; $s(t)=c(t)$,&nbsp; other times, &nbsp;$s(t) = - c(t)$.
 +
*After band compression at the receiver, i.e.,&nbsp; after chipsynchronous multiplication by &nbsp;$c(t) ∈ \{±1\}$ &nbsp; ⇒ &nbsp;  $c^2(t) = 1,$&nbsp; the signal &nbsp;$b(t)$&nbsp; is obtained.
 +
*In the distortion-free and noise-free case:
 +
:$$b(t) = r(t) \cdot c(t) = s(t) \cdot c(t) = \big [ q(t) \cdot c(t) \big ] \cdot c(t) = q(t) \hspace{0.05cm}.$$
 +
*Integrating &nbsp;$b(t)$&nbsp; over one bit at a time yields a linearly increasing or linearly decreasing signal &nbsp;$d(t)$.&nbsp; The step curve in the right image is solely due to the discrete-time representation.
 +
*At the equidistant detection times the &nbsp;$ν$–th amplitude coefficients &nbsp;$a_ν$&nbsp; of the source signal &nbsp;$q(t)$ are valid in the distortion-free and noise-free case:
 +
:$$ d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T}\hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t = a_\nu \in \{ +1, -1 \}\hspace{0.05cm}.$$}}
  
Desweiteren bieten Bandspreizverfahren noch folgende Vorteile:
 
*Man kann ein zusätzliches niederratiges DS–SS–Signal über ein ansonsten von FDMA–Kanälen höherer Datenrate genutztes Frequenzband übertragen, ohne die Hauptanwendungen signifikant zu stören. Das bandgespreizte Signal verschwindet quasi unter dem Rauschpegel dieser Signale.
 
*Gezielte schmalbandige Störer („Sinusstörer”) lassen sich mit dieser Technik gut bekämpfen. Dieser militärische Gesichtspunkt war auch ausschlaggebend dafür, dass Bandspreizverfahren überhaupt erfunden und weiterentwickelt wurden.
 
*Weiter bietet die Bandspreiztechnik allgemein, insbesondere aber ''Frequency Hopping'' (schnelle diskrete Veränderung der Trägerfrequenz über einen großen Bereich) und die ''Chirp–Modulation'' (kontinuierliches Verändern der Trägerfrequenz während eines Bitintervalls) auch die Möglichkeit, besser über frequenzselektive Kanäle übertragen zu können.
 
  
 +
{{GraueBox|TEXT=
 +
[[File:P_ID1867__Mod_T_5_2_S3b_neu.png|right|frame| Signals of direct-sequence spread spectrum modulation for &nbsp;$10 · \lg  \ (E_{\rm B}/N_0) = 6 \ {\rm dB}$]]
 +
$\text{Example 2:}$&nbsp; The two lower graphs change significantly from the first example when AWGN noise is considered.
  
Ein Nachteil der PN–Modulation ist, dass es bei ungünstigen Bedingungen zu Interferenzen zwischen Teilnehmer kommen kann. Diese sind im Modell durch die Störgröße $i(t)$ berücksichtigt. Im Folgenden betrachten wir zunächst nur einen Sender, so dass vorerst $i(t) =$ 0 zu setzen ist.  
+
The AWGN parameter is&nbsp; $10 · \lg  \ (E_{\rm B}/N_0) = 6 \ \rm dB$.&nbsp; &nbsp; Then
 +
*the band compressed signal &nbsp;$b(t)$&nbsp; is no longer sectionally constant, and
 +
*the detection signal &nbsp;$d(t)$&nbsp; is no longer linearly increasing or decreasing.
  
  
 +
After thresholding the samples &nbsp;$d(νT)$,&nbsp; one nevertheless obtains mostly the sought amplitude coefficients.&nbsp; The vague statement "mostly" is quantifiable by the bit error probability &nbsp;$p_{\rm B}$.&nbsp;&nbsp; As
 +
:$$b(t) =  \big [ s(t) + n(t) \big ] \cdot c(t) = q(t) + n(t) \cdot c(t)$$
 +
and due to the fact that the statistical properties of white noise &nbsp;$n(t)$&nbsp; are not changed by the multiplication with the &nbsp;$±1$ signal &nbsp;$c(t)$,&nbsp; the same result is obtained again as for the&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|$\text{conventional BPSK}$]]&nbsp; without band spreading/band compression, independent of the spreading degree &nbsp;$J$&nbsp;:
 +
:$$p_{\rm B} =  {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B} }/{N_{\rm 0} } } \hspace{0.05cm} \right )  \hspace{0.05cm}.$$ }}
  
 +
==Additional sinusoidal interferer around the carrier frequency==
 +
<br>
 +
We continue to assume only one participant.&nbsp;  In contrast to the calculation in the last section,&nbsp; however,&nbsp; there are now
 +
*in addition to the AWGN noise &nbsp;$n(t)$&nbsp; also
 +
*a narrowband interferer &nbsp;$i(t)$&nbsp; around the frequency &nbsp;$f_{\rm I}$&nbsp; with power&nbsp; $P_{\rm I}$&nbsp; and bandwidth &nbsp;$B_{\rm I}$. 
  
 +
 +
In the limiting case &nbsp;$B_{\rm I} → 0$&nbsp; the power-spectral density of this&nbsp; "sinusoidal interferer"&nbsp; is:
 +
:$${\it \Phi}_{\rm I}(f) =  {P_{\rm I}}/{2} \cdot  \big[ \delta ( f - f_{\rm I})  + \delta ( f +  f_{\rm I}) \big ] \hspace{0.05cm}.$$
 +
 +
In a conventional transmission system without band spreading/band compression,&nbsp; such a narrowband interferer would increase the error probability to an unacceptable extent.&nbsp; In a system with band spreading &nbsp; &rArr; &nbsp; "direct-sequence spread spectrum modulation",&nbsp; the interfering influence is significantly lower,&nbsp; since
 +
*band compression acts as band spreading at the receiver with respect to the sinusoidal interferer,
 +
* thus its power is distributed over a very wide frequency band &nbsp;$B_c = 1/T_c \gg B$,&nbsp;
 +
*the additional interfering power density in the useful frequency band &nbsp;$(±B)$&nbsp; is rather low and can be taken into account by a slight increase of AWGN noise power density&nbsp; $N_0$.
 +
 +
 +
With &nbsp;$T = J · T_c$&nbsp; and &nbsp;$B = 1/T$&nbsp; one obtains:
 +
:$$p_{\rm B} \approx  {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} +P_{\rm I} \cdot T_c} } \hspace{0.05cm} \right )  = {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} }  \cdot \left( \frac{1}{1+ P_{\rm I} \cdot T_c/N_0}\right )  } \hspace{0.05cm} \right )\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{SNR degradation:} \ \frac{1}{\big[1 + P_{\rm I}/(J · N_0 · B)\big]}\hspace{0.05cm}.$$
 +
 +
The larger the spreading factor &nbsp;$J$,&nbsp; the smaller the increase in noise power due to the sinusoidal interferer.
 +
 +
Note: &nbsp; This fact has led to the spreading factor &nbsp;$J$&nbsp; being often referred to&nbsp; "spreading gain"&nbsp; in the literature,&nbsp; compare for example&nbsp; [ZP85]<ref>Ziemer, R.; Peterson, R. L.:&nbsp; Digital Communication and Spread Spectrum Systems.&nbsp; New York: McMillon, 1985.</ref>.
 +
*These books are mostly about military applications of the band spreading methods.
 +
*Sometimes the&nbsp; "most favorable interferer"&nbsp; is mentioned,&nbsp; namely when the degradation is the largest.
 +
*However,&nbsp; we do not want to deal with such applications here.
 +
 +
 +
But the above error probability equation can also be applied approximately when an unspread transmission of higher data rate and a spread spectrum system of lower rate operate in the same frequency band: &nbsp; The interfering influence of the former system with bandwidth &nbsp;$B_{\rm I}$&nbsp; on the&nbsp; spread spectrum system&nbsp; can be treated approximately as a&nbsp; "narrowband interferer"&nbsp; as long as &nbsp;$B_{\rm I}$&nbsp; is sufficiently small.
 +
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusions:}$&nbsp;
 +
*'''With AWGN noise'''&nbsp; (and also many other channels),&nbsp; '''the bit error probability cannot be reduced by band spreading'''.
 +
*In the best case,&nbsp; band spreading results in the same bit error probability as BPSK&nbsp; (without spreading).
 +
*For our purposes,&nbsp; '''band spreading is a necessary measure to be able to supply several subscribers simultaneously in the same frequency band'''.
 +
*In the following,&nbsp; we will only consider the CDMA aspect and therefore continue to speak of the spreading factor &nbsp;$J$&nbsp; and not of a&nbsp; "spreading gain". }}
 +
 +
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_5.2:_Bandspreading_and_Narrowband_Interferer|Exercise 5.2: Band Spreading and Narrowband Interferer]]
 +
 +
[[Aufgaben:Exercise_5.2Z:_About_PN_Modulation|Exercise 5.2Z: About PN Modulation]]
 +
 +
 +
 +
 +
==References==
 +
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:13, 19 January 2023

Block diagram and equivalent low-pass model


One possibility for realizing a CDMA system is the so-called  »Direct-Sequence Spread Spectrum«  $\text{(DS–SS)}$ ,  which is explained here using the block diagram.  The corresponding model in the equivalent low-pass range is shown below. 

Block diagram and equivalent low-pass model of direct-sequence spread spectrum

In both models, 




Note:

In in the equivalent low-pass model the multiplications with the transmitter-side carrier signal  $z(t)$  and the receiver-side carrier signal   $z_{\rm E}(t) =2\cdot z(t)$  are omitted.

$\text{This system can be characterized as follows:}$

  • If the multiplication with the spreading signal  $c(t)$  at transmitter and receiver is omitted,  the result is a conventional  $\text{BPSK system}$  with the carrier  $z(t)$  and AWGN noise, characterized by the additive Gaussian noise signal  $n(t)$.  The second interference component  (interference from other participants)  is omitted:   $i(t) = 0$.
  • For the following it is assumed  $($this is essential for direct-sequence spread spectrum!$)$ that the source signal  $q(t)$  has a rectangular NRZ curve.  Then the matched filter can be replaced by an integrator over a symbol duration  $T$    ⇒    $\text{Integrate & Dump}$.  This is followed by the threshold decision.

Principle and properties of band spreading methods


In the following we consider  »Pseudo-Noise Band Spreading«  in the equivalent low-pass region.  So the model outlined below applies.

Low-pass model of direct-sequence spread spectrum
  • Characteristic for this type of modulation is the multiplication of the bipolar and rectangular digital signal  $q(t)$  with a pseudo-random  $±1$ spreading sequence  $c(t)$:
$$s(t) = q(t) \cdot c(t) \hspace{0.05cm}.$$
  • The duration  $T_c$  of a spreading chip is smaller than the duration  $T$  of a source symbol by the integer spreading factor  $J$,  so that the transmitted signal spectrum
$$S(f) = Q(f) \star C(f)$$
is wider than the spectrum  $Q(f)$ by approximately this factor  $J$.

$\text{In this context, please note in particular:}$

  • In previous chapters,  a major goal of modulation has always been to be as bandwidth-efficient as possible.
  • Here, in contrast,  we try to spread the signal over as wide a bandwidth as possible.
  • The bandwidth expansion by  $J$  is necessary to allow several subscribers to use the same frequency band simultaneously.
  • Ideally,  $2^J$  suitable spreading sequences can be found.  This makes a CDMA system for  $2^J$  simultaneous users feasible.


Band spreading techniques also offer the following advantages:

  • An additional low-rate  "DS–SS signal"  can be transmitted over a frequency band that is otherwise used by FDMA channels with a higher data rate without significantly disrupting the main applications.  The band spread signal virtually disappears under the noise level of these signals.
  • Targeted narrowband interferers  ("sinusoidal interferers")  can be combated well with this technique.  This military point of view was also decisive for the invention and further development of band spreading techniques.
  • Furthermore,  the band spreading technique in general,  but especially  $\text{frequency hopping}$  $($fast discrete change of the carrier frequency over a wide range$)$  and  $\text{chirp modulation}$  $($continuous change of the carrier frequency during a bit interval$)$  also offer the possibility of better transmission over frequency-selective channels.


Signal curves with a single participant


A disadvantage of direct-sequence spread spectrum modulation is that under unfavorable conditions interference can occur between the subscriber under consideration and other subscribers.

  • This case is taken into account in the model by the interference quantity  $i(t)$. 
  • We initially consider only one transmitter, so that  $i(t) = 0$  is to be set.


Signals of direct-sequence spread spectrum modulation in the noise-free case

$\text{Example 1:}$  The graph shows

  • above the source signal  $q(t)$  – marked by blue background – and the band spread signal  $s(t)$  as solid black line,
  • at the bottom left the signal  $b(t)$  after band compression,
  • bottom right the detection signal  $d(t)$  after the integrator, directly before the decision.


Further notes:

  1.   Discrete-time and normalized signal representation with rectangles spaced by the chip duration  $T_c$  is chosen.
  2.   The spreading factor is  $J = 8$.
  3.   As spreading sequence the  $\text{Walsh function no. 7}$  is used.
  4.   All images show the noise-free case   ⇒   $n(t) = 0$.


To the individual signal curves is to be noted:

  • The  $±1$ data signal  $q(t)$  is marked by the blue background.  After multiplication with the spreading signal  $c(t)$,  the result is the transmitted signal  $s(t)$  which is higher in frequency by the factor  $J = 8$.
  • The spreading signal  $c(t)$  is periodic with  $T = J · T_c$  and thus has a line spectrum.  In the data bits  $1,\ 4,\ 8$:   $s(t)=c(t)$,  other times,  $s(t) = - c(t)$.
  • After band compression at the receiver, i.e.,  after chipsynchronous multiplication by  $c(t) ∈ \{±1\}$   ⇒   $c^2(t) = 1,$  the signal  $b(t)$  is obtained.
  • In the distortion-free and noise-free case:
$$b(t) = r(t) \cdot c(t) = s(t) \cdot c(t) = \big [ q(t) \cdot c(t) \big ] \cdot c(t) = q(t) \hspace{0.05cm}.$$
  • Integrating  $b(t)$  over one bit at a time yields a linearly increasing or linearly decreasing signal  $d(t)$.  The step curve in the right image is solely due to the discrete-time representation.
  • At the equidistant detection times the  $ν$–th amplitude coefficients  $a_ν$  of the source signal  $q(t)$ are valid in the distortion-free and noise-free case:
$$ d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T}\hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t = a_\nu \in \{ +1, -1 \}\hspace{0.05cm}.$$


Signals of direct-sequence spread spectrum modulation for  $10 · \lg \ (E_{\rm B}/N_0) = 6 \ {\rm dB}$

$\text{Example 2:}$  The two lower graphs change significantly from the first example when AWGN noise is considered.

The AWGN parameter is  $10 · \lg \ (E_{\rm B}/N_0) = 6 \ \rm dB$.    Then

  • the band compressed signal  $b(t)$  is no longer sectionally constant, and
  • the detection signal  $d(t)$  is no longer linearly increasing or decreasing.


After thresholding the samples  $d(νT)$,  one nevertheless obtains mostly the sought amplitude coefficients.  The vague statement "mostly" is quantifiable by the bit error probability  $p_{\rm B}$.   As

$$b(t) = \big [ s(t) + n(t) \big ] \cdot c(t) = q(t) + n(t) \cdot c(t)$$

and due to the fact that the statistical properties of white noise  $n(t)$  are not changed by the multiplication with the  $±1$ signal  $c(t)$,  the same result is obtained again as for the  $\text{conventional BPSK}$  without band spreading/band compression, independent of the spreading degree  $J$ :

$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B} }/{N_{\rm 0} } } \hspace{0.05cm} \right ) \hspace{0.05cm}.$$

Additional sinusoidal interferer around the carrier frequency


We continue to assume only one participant.  In contrast to the calculation in the last section,  however,  there are now

  • in addition to the AWGN noise  $n(t)$  also
  • a narrowband interferer  $i(t)$  around the frequency  $f_{\rm I}$  with power  $P_{\rm I}$  and bandwidth  $B_{\rm I}$.


In the limiting case  $B_{\rm I} → 0$  the power-spectral density of this  "sinusoidal interferer"  is:

$${\it \Phi}_{\rm I}(f) = {P_{\rm I}}/{2} \cdot \big[ \delta ( f - f_{\rm I}) + \delta ( f + f_{\rm I}) \big ] \hspace{0.05cm}.$$

In a conventional transmission system without band spreading/band compression,  such a narrowband interferer would increase the error probability to an unacceptable extent.  In a system with band spreading   ⇒   "direct-sequence spread spectrum modulation",  the interfering influence is significantly lower,  since

  • band compression acts as band spreading at the receiver with respect to the sinusoidal interferer,
  • thus its power is distributed over a very wide frequency band  $B_c = 1/T_c \gg B$, 
  • the additional interfering power density in the useful frequency band  $(±B)$  is rather low and can be taken into account by a slight increase of AWGN noise power density  $N_0$.


With  $T = J · T_c$  and  $B = 1/T$  one obtains:

$$p_{\rm B} \approx {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} +P_{\rm I} \cdot T_c} } \hspace{0.05cm} \right ) = {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} } \cdot \left( \frac{1}{1+ P_{\rm I} \cdot T_c/N_0}\right ) } \hspace{0.05cm} \right )\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{SNR degradation:} \ \frac{1}{\big[1 + P_{\rm I}/(J · N_0 · B)\big]}\hspace{0.05cm}.$$

The larger the spreading factor  $J$,  the smaller the increase in noise power due to the sinusoidal interferer.

Note:   This fact has led to the spreading factor  $J$  being often referred to  "spreading gain"  in the literature,  compare for example  [ZP85][1].

  • These books are mostly about military applications of the band spreading methods.
  • Sometimes the  "most favorable interferer"  is mentioned,  namely when the degradation is the largest.
  • However,  we do not want to deal with such applications here.


But the above error probability equation can also be applied approximately when an unspread transmission of higher data rate and a spread spectrum system of lower rate operate in the same frequency band:   The interfering influence of the former system with bandwidth  $B_{\rm I}$  on the  spread spectrum system  can be treated approximately as a  "narrowband interferer"  as long as  $B_{\rm I}$  is sufficiently small.

$\text{Conclusions:}$ 

  • With AWGN noise  (and also many other channels),  the bit error probability cannot be reduced by band spreading.
  • In the best case,  band spreading results in the same bit error probability as BPSK  (without spreading).
  • For our purposes,  band spreading is a necessary measure to be able to supply several subscribers simultaneously in the same frequency band.
  • In the following,  we will only consider the CDMA aspect and therefore continue to speak of the spreading factor  $J$  and not of a  "spreading gain".


Exercises for the chapter


Exercise 5.2: Band Spreading and Narrowband Interferer

Exercise 5.2Z: About PN Modulation



References

  1. Ziemer, R.; Peterson, R. L.:  Digital Communication and Spread Spectrum Systems.  New York: McMillon, 1985.