Difference between revisions of "Signal Representation/Signal classification"

From LNTwww
m
 
(75 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Grundbegriffe der Nachrichtentechnik
+
|Untermenü=Basic Terms of Communications Engineering
|Vorherige Seite=Prinzip der Nachrichtenübertragung
+
|Vorherige Seite=Principles of Communication
|Nächste Seite=Zum Rechnen mit komplexen Zahlen
+
|Nächste Seite=Calculating With Complex Numbers
 
}}
 
}}
  
==Deterministische und stochastische Signale==
+
==Deterministic and stochastic signals==
 +
<br>
 +
In every transmission system,&nbsp; both&nbsp; deterministic signals&nbsp; and&nbsp; stochastic signal&nbsp; occur.
  
In jedem Nachrichtensystem treten sowohl deterministische als auch stochastische Signale auf.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A&nbsp; &raquo;'''deterministic signal'''&laquo;&nbsp; exists,&nbsp; if its time function&nbsp; $x(t)$&nbsp; can be described completely in analytical form.
 +
}}
 +
 
 +
 
 +
Since the time function&nbsp; $x(t)$&nbsp; for all times &nbsp;$t$&nbsp; is known and can be specified unambiguously,&nbsp; there always exists a spectral function&nbsp; $X(f)$&nbsp; which can be calculated using the&nbsp; [[Signal_Representation/Fourier_Series#Fourierreihe|&raquo;$\text{Fourier series}$&laquo;]]&nbsp; or the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse|&raquo;$\text{Fourier transform}$&laquo;]]&nbsp;.
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
One refers to a&nbsp; &raquo;'''stochastic signal'''&laquo;&nbsp; or to a&nbsp; &raquo;'''random signal'''&laquo;,&nbsp; if the signal course&nbsp; $x(t)$&nbsp; is not &ndash; or at least not completely &ndash; describable in mathematical form.&nbsp; Such a signal cannot be predicted exactly for the future.}}
 +
 
 +
 
 +
[[File:P_ID350_Sig_T_1_2_S1_neu.png|right|frame|Example of a deterministic signal (top) and <br>a stochastic signal (bottom)]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp;
 +
The graph shows the time courses of a deterministic and a stochastic signal:
 +
*At the top a periodic rectangular signal&nbsp; $x_1(t)$&nbsp; with period duration&nbsp; $T_0$ &nbsp; &rArr; &nbsp; deterministic signal,
 +
 
 +
*below a Gaussian noise signal&nbsp; $x_2(t)$&nbsp; with the mean value&nbsp; $2\ \rm V $ &nbsp; &rArr; &nbsp; stochastic signal.
 +
 
 +
 
 +
For such a non&ndash;deterministic signal&nbsp; $x_2(t)$&nbsp; no spectral function&nbsp; $X_2(f)$&nbsp; can be specified, since Fourier series and Fourier transform requires the exact knowledge of the time function for all times&nbsp; $t$. }}
 +
 
 +
 
 +
Information-carrying signals are always of stochastic nature.&nbsp; Their description and the definition of suitable parameters is given in the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
 +
 
 +
However,&nbsp;  deterministic signals are also of great importance for Communications Engineering.&nbsp; Examples of these are:
 +
*Test signals for the design of communication systems,
 +
 
 +
*carrier signals for frequency multiplex systems,&nbsp; and
  
{{Definition}}
+
*a&nbsp;  &raquo;Dirac delta comb&laquo;&nbsp; for sampling an analog signal or for time regeneration of a digital signal.
'''Deterministische Signale''' sind Signale, deren Zeitfunktionen $x(t)$ in analytischer Form vollständig angegeben werden können.
 
{{end}}
 
  
  
Da hier die Zeitfunktion $x(t)$ für alle Zeiten $t$ bekannt und eindeutig angebbar ist, existiert für diese Signale stets eine über die [[Signaldarstellung/Fourierreihe#Fourierreihe|Fourierreihe]] oder die [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]] berechenbare Spektralfunktion $X(f)$.
+
==Causal and non-causal signals==
 +
<br>
 +
In&nbsp; Communications Engineering&nbsp; one often reckons with temporally unlimited signals;&nbsp; the definition range of the signal then extends from&nbsp; $t = -\infty$ &nbsp; to&nbsp; $t=+\infty$.  
  
{{Definition}}
+
In reality,&nbsp; however,&nbsp; there are no such signals,&nbsp; because every signal had to be switched on at some point.&nbsp; If one chooses &ndash; arbitrarily  but nevertheless meaningfully &ndash; the switch-on time&nbsp; $t = 0$,&nbsp; then one comes to the following classification:
Man spricht von einem '''stochastischen Signal''' bzw. von einem Zufallssignal, wenn der Signalverlauf $x(t)$ nicht – oder zumindest nicht vollständig - in mathematischer Form beschreibbar ist. Ein solches Signal kann für die Zukunft nicht exakt vorhergesagt werden.
 
{{end}}
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
*A signal&nbsp; $x(t)$&nbsp; is called&nbsp; &raquo;'''causal'''&laquo;,&nbsp; if it does not exist for all times&nbsp; $t < 0$&nbsp; or is identical zero.
  
{{Beispiel}}
+
*If this condition is not fulfilled,&nbsp; then one speaks of a&nbsp; &raquo;'''non-causal'''&laquo;&nbsp; signal&nbsp; $($or system$)$.}}
[[File:P_ID350_Sig_T_1_2_S1_neu.png|right|Beispiel eines deterministischen und eines stochastischen Signals]]
 
  
Die Grafik zeigt Zeitverläufe eines deterministischen und eines stochastischen Signals:
 
*Oben ein periodisches Rechtecksignal $x_1(t)$ mit der Periodendauer $T_0$ &nbsp;&rArr;&nbsp; deterministisches Signal,
 
*unten ein Gaußsches Rauschsignal $x_2(t)$ mit dem Mittelwert 2V  &nbsp;&rArr;&nbsp; stochastisches Signal.
 
{{end}}
 
  
 +
In this book&nbsp; &raquo;Signal representation&laquo;&nbsp; mostly causal signals and systems are considered.&nbsp; This has the following reasons:
 +
*Non-causal signals&nbsp; $($and systems$)$&nbsp; are mathematically easier to handle than causal ones.&nbsp; For example,&nbsp; the spectral function can be determined here by means of Fourier transform and one does not need extensive knowledge of function theory as in the Laplace transform.
  
Für ein solches nichtdeterministisches Signal $x_2(t)$ ist daher auch keine Spektralfunktion $X_2(f)$ angebbar, da Fourierreihe und Fouriertransformation die genaue Kenntnis der Zeitfunktion für alle Zeiten $t$ voraussetzt.
+
*Non-causal signals and systems describe the situation completely and correctly,&nbsp; if one ignores the problem of the switch-on process and is therefore only interested in the&nbsp; &raquo;steady state&laquo;.
  
Informationstragende Signale sind stets von stochastischer Art. Ihre Beschreibung sowie die Definition geeigneter Kenngrößen erfolgt im Buch [[Stochastische Signaltheorie]].  
+
*The description of causal signals and systems using the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|&raquo;Laplace Transform&laquo;]]&nbsp; is shown in the book &nbsp; [[Lineare_zeitinvariante_Systeme|&raquo;Linear Time-Invariant Systems&laquo;]].
  
Aber auch die deterministischen Signale haben eine große Bedeutung für die Nachrichtentechnik. Beispiele hierfür sind:
 
*Testsignale für den Entwurf von Nachrichtensystemen,
 
*Trägersignale für Frequenzmultiplexsysteme, und
 
*ein Puls zur Abtastung eines Analogsignals oder zur Zeitregenerierung eines Digitalsignals.
 
  
  
==Kausale und akausale Signale==
+
{{GraueBox|TEXT=
 +
[[File:EN_Sig_T_1_2_S2_v2.png|right|frame|Causal system&nbsp; $($top$)$&nbsp; and non-causal system&nbsp; $($bottom$)$]] 
 +
$\text{Example 2:}$&nbsp;
 +
You can see a causal system in the upper graphic:
 +
*If a unit step function&nbsp; $x(t)$&nbsp; is applied to its input, then the output signal&nbsp; $y(t)$&nbsp; can only increase from zero to its maximum value after time&nbsp; $t = 0$.
  
In der Nachrichtentechnik rechnet man oftmals mit zeitlich unbegrenzten Signalen; der Definitionsbereich des Signals erstreckt sich dann von $t = -\infty$ bis $+\infty$. In der Realität gibt es allerdings solche Signale nicht, denn jedes Signal musste irgendwann einmal eingeschaltet werden. Wählt man – zwar willkürlich, aber dennoch sinnvoll – den Einschaltzeitpunkt $t = 0$, so kommt man zu folgender Klassifizierung:
+
*Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.
  
{{Definition}}
+
*In the lower graph the causality is no longer given.&nbsp;
Man bezeichnet ein Signal $x(t)$ als '''kausal''', wenn es für alle Zeiten $t < 0$ nicht existiert bzw. identisch 0 ist. Ist diese Bedingung nicht erfüllt, so liegt ein ''akausales'' Signal (oder System) vor.
 
{{end}}
 
  
  
In vorliegenden Buch &bdquo;Signaldarstellung&rdquo; werden meist akausale Signale und Systeme betrachtet. Dies hat folgende Gründe:
+
As you can easily see in this example,&nbsp; an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.}}
*Akausale Signale (und akausale Systeme) sind mathematisch leichter zu handhaben als kausale. Beispielsweise kann man hier die Spektralfunktion mittels Fouriertansformation bestimmen und benötigt nicht wie bei der Laplacetransformation weitreichende Kenntnisse der Funktionentheorie.
 
*Akausale Signale und Systeme beschreiben den Sachverhalt vollständig und richtig, wenn man die Problematik des Einschaltvorgangs außer Acht lässt.
 
  
  
Die Beschreibung kausaler Signale und Systeme mit Hilfe der [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplacetransformation]] folgt im Buch [[Lineare_zeitinvariante_Systeme|Lineare zeitinvariante Systeme]].
+
==Energy&ndash;limited and power&ndash;limited signals==
 +
<br>
 +
At this place first two important signal description quantities must be introduced, namely&nbsp; &raquo;'''energy'''&laquo;&nbsp; and&nbsp; &raquo;'''power'''&laquo;.
 +
*In terms of physics,&nbsp; energy corresponds to work and has,&nbsp; for example,&nbsp; the unit&nbsp; "Ws".
 +
 +
*The power is defined as&nbsp; "work per time"&nbsp; and therefore has the unit&nbsp; "W".
  
{{Beispiel}}
 
[[File:P_ID234_Sig_T_1_2_S2_neu.png|right|Kausales und akausales System]]
 
Sie sehen nebenstehend ein kausales Übertragungssystem:
 
*Wird an dessen Eingang eine Sprungfunktion $x(t)$ angelegt, so kann auch das Ausgangssignal $y(t)$ erst ab dem Zeitpunkt $t = 0$ von Null auf seinen Maximalwert ansteigen.
 
*Ansonsten wäre der Kausalzusammenhang, dass die Wirkung nicht vor der Ursache einsetzen kann, nicht erfüllt.
 
  
 +
According to the elementary laws of Electrical Engineering,&nbsp; both values are dependent on the resistance&nbsp; $R$.&nbsp; In order to eliminate this dependency  in Communications Engineering,&nbsp; the resistance&nbsp; $R=1 \,\Omega$&nbsp; is often used as a basis.&nbsp; Then the following definitions apply:
  
Im unteren Bild ist diese Kausalität nicht mehr gegeben. Wie leicht zu ersehen ist, kommt man hier durch eine zusätzliche Laufzeit von einer Millisekunde von der akausalen zur kausalen Darstellung.
+
{{BlaueBox|TEXT= 
{{end}}
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''energy'''&laquo;&nbsp; of the signal&nbsp; $x(t)$&nbsp; is to calculate as follows:
  
 +
:$$E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$}}
  
==Energiebegrenzte und leistungsbegrenzte Signale==
 
  
An dieser Stelle müssen zunächst zwei wichtige Signalbeschreibungsgrößen eingeführt werden, nämlich die '''Energie''' und die '''Leistung'''. Im Sinne der Physik entspricht die Energie der Arbeit und hat zum Beispiel die Einheit „Ws“. Die Leistung ist als „Arbeit pro Zeit” definiert und besitzt somit die Einheit „W“.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;To calculate the&nbsp; $($mean$)$&nbsp; &raquo;'''power'''&laquo;&nbsp; still has to be divided  by the time&nbsp; $T_{\rm M}$&nbsp; before the boundary crossing:
  
Beide Größen sind nach den elementaren Gesetzen der Elektrotechnik vom Widerstand R abhängig. Um diese Abhängigkeit zu eliminieren, wird in der Nachrichtentechnik oftmals der Widerstand $R=1 \,\Omega$ zugrunde gelegt. Dann gelten folgende Definitionen:
+
:$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$
  
{{Definition}}
+
*$T_{\rm M}$&nbsp; is the assumed measurement duration during which the signal is observed,&nbsp; symmetrically with respect to the time origin&nbsp; $(t = 0)$.&nbsp;
Die '''Energie''' des Signals $x(t)$ ist wie folgt zu berechnen:
 
  
<math>E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.</math>
+
*In general,&nbsp; this time interval must be chosen very large;&nbsp; ideally&nbsp; $T_{\rm M}$&nbsp; should be towards infinity.}}
  
Zur Berechnung der (mittleren) '''Leistung''' muss vor dem Grenzübergang noch durch die Zeit $T_{\rm M}$ dividiert werden:
 
  
<math>P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.</math>
+
If&nbsp; $x(t)$&nbsp; denotes an electrical voltage curve&nbsp; $($unit:&nbsp; $\text{V)}$,&nbsp; then according to the above equations:
{{end}}
+
#The signal energy has the unit&nbsp; "$\text{V}^2\text{s}$".
 +
#The signal power has the unit&nbsp; "$\text{V}^2$".
  
  
Hierbei bezeichnet $T_{\rm M}$ die symmetrisch bezüglich des Zeitursprungs ($t = 0$) angenommene Messdauer, während der das Signal beobachtet wird. Dieses Zeitintervall muss im Allgemeinen sehr groß gewählt werden; im Idealfall sollte $T_{\rm M}$ gegen unendlich gehen.
+
This statement also means: &nbsp; In the above definitions the reference resistance&nbsp; $R=1\,\Omega$&nbsp; is already implicit.
  
Bezeichnet $x(t)$ einen Spannungsverlauf mit der Einheit „V“, so hat nach obigen Gleichungen
+
{{GraueBox|TEXT= 
*die Signalenergie die Einheit $\text{V}^2\text{s}$,
+
$\text{Example 3:}$&nbsp;
*die Signalleistung die Einheit $\text{V}^2$.
+
Now the energy and power of two exemplary signals are calculated.
 +
[[File:P_ID590__Sig_T_1_2_S3.png|right|frame|Energy-limited and power-limited signals]]
  
Diese Aussage bedeutet auch: Bei den obigen Definitionen liegt der Bezugswiderstand $R=1\,\Omega$ bereits implizit zugrunde.
+
&rArr; &nbsp; The upper graph shows a rectangular pulse&nbsp; $x_1(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$:
  
{{Beispiel}}
+
#The signal energy of this pulse is&nbsp; $E_1 = A^2 \cdot T$.
[[File:P_ID590__Sig_T_1_2_S3.png|right|Energiebegrenztes und leistungsbegrenztes Signal]]
+
#For the signal power,&nbsp; division by&nbsp; $T_{\rm M}$&nbsp; and limit formation&nbsp; $(T_{\rm M} \to \infty)$&nbsp; results in the value&nbsp; $P_1 = 0$.
Nun werden Energie und Leistung zweier beispielhafter Signale berechnet. Die obere Grafik zeigt einen Rechteckimpuls $x_1(t)$ mit der Amplitude $A$ und der Dauer $T$.
 
  
*Die Signalenergie dieses Impulses ist $E_1 = A_2 \cdot T$.
 
*Für die Signalleistung ergibt sich aufgrund der Division durch $T_{\rm M}$ und Grenzwertbildung ($T_{\rm M} \to \infty$) der Wert $P_1 = 0$.
 
  
Beim Cosinussignal $x_2(t)$ mit der Amplitude $A$ entsprechend der unteren Skizze gilt:
 
  
*Die Signalleistung ist unabhängig von der Frequenz gleich $P_2 = A^2/2$.
 
*Die Signalenergie $E_2$ (Integral über die Leistung für alle Zeiten) ist unendlich.
 
  
 +
&rArr; &nbsp; For the cosine signal&nbsp; $x_2(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; applies according to the sketch below:
  
Mit $A = 4 {\rm V}$ ergibt sich für die Leistung $P_2 = 8 {\rm V}^2$. Mit dem Widerstand von $R = 50 \,\,\Omega$ entspricht dies der physikalischen Leistung ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.
+
#The signal power is&nbsp; $P_2 = A^2/2$,&nbsp; regardless of the frequency.
{{end}}
+
#The signal energy&nbsp; $E_2$&nbsp; $($integral over power for all times$)$&nbsp; is infinite.
 +
#With&nbsp; $A = 4 \ {\rm V}$&nbsp; results for the power&nbsp; $P_2 = 8 \ {\rm V}^2$. &nbsp;
 +
#With the resistance of&nbsp; $R = 50 \,\,\Omega$&nbsp; this corresponds to the physical power&nbsp; ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.}}
  
  
Entsprechend diesem Beispiel gibt es die folgenden Klassifizierungsmerkmale:
+
According to this example there are the following classification characteristics:
  
{{Definition}}
+
{{BlaueBox|TEXT= 
Ein Signal $x(t)$ mit endlicher Energie $E_x$ und unendlich kleiner Leistung ($P_x = 0$) bezeichnet man als '''energiebegrenzt'''.
+
$\text{Definition:}$&nbsp;
{{end}}
+
A signal&nbsp; $x(t)$&nbsp; with finite energy&nbsp; $E_x$&nbsp; and infinitely small power&nbsp; $(P_x = 0)$&nbsp; is called&nbsp; &raquo;'''energy&ndash;limited'''&laquo;. }}
 +
*With pulse-shaped signals like the signal&nbsp; $x_1(t)$&nbsp; in the above example,&nbsp; the energy is always limited.&nbsp; Mostly, the signal values here are different from zero only for a finite time period. &nbsp; In other words:&nbsp; Such signals are often time-limited,&nbsp; too.
  
 +
*But even signals that are unlimited in time can have a finite energy.&nbsp; In later chapters&nbsp;you will find more information about energy&ndash;limited and therefore aperiodic signals, for example the &nbsp;&nbsp;[[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|&raquo;Gaussian pulse&laquo;]]&nbsp; and the&nbsp; [[Aufgaben:Exercise_3.1:_Spectrum_of_the_Exponential_Pulse|&raquo;exponential pulse&laquo;]].
  
*Impulsförmige Signale wie das Signal $x_1(t)$ im obigen Beispiel sind stets energiebegrenzt. Meist sind hier die Signalwerte nur für eine endliche Zeitdauer von Null verschieden. In anderen Worten: Solche Signale sind oft auch zeitbegrenzt.
 
*Aber auch zeitlich unbegrenzte Signale können durchaus eine endliche Energie besitzen. In späteren Kapiteln finden Sie weitere Informationen zu energiebegrenzten und damit aperiodischen Signalen, zu denen beispielsweise der [[Signaldarstellung/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Gau.C3.9Fimpuls|Gaußimpuls]]  und der [[Signaldarstellung/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Gau.C3.9Fimpuls|Gaußimpuls]] und der [[Aufgaben:3.1_Spektrum_des_Exponentialimpulses|Exponentialimpuls]] gehören.
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A signal&nbsp; $x(t)$&nbsp; with finite power&nbsp; $P_x$&nbsp; and accordingly infinite energy&nbsp; $(E_x \to \infty)$&nbsp; is called&nbsp; &raquo;'''power&ndash;limited'''&laquo;.}}
  
 +
*All power&ndash;limited signals are also infinitely extended in time.&nbsp; Examples are the&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|&raquo;DC signal&raquo;]]&nbsp; and&nbsp; [[Signal_Representation/Harmonic_Oscillation|&raquo;harmonic oscillations&laquo;]]&nbsp; such as the cosine signal&nbsp; $x_2(t)$&nbsp; in&nbsp; $\text{Example 3}$,&nbsp; which are described in detail in chapter&nbsp; [[Signal_Representation/General_Description|&raquo;Periodic Signals&laquo;]].
  
{{Definition}}
+
*Even most of the stochastic signals are power&ndash;limited &nbsp; &rArr; &nbsp;  see the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
Ein Signal $x(t)$ mit endlicher Leistung $P_x$ und dementsprechend unendlich großer Energie ($E_x \to \infty$) bezeichnet man als '''leistungsbegrenzt'''.
 
{{end}}
 
  
  
Alle leistungsbegrenzten Signale sind auch zeitlich unendlich weit ausgedehnt. Beispiele hierfür sind das [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|Gleichsignal]] und [[Signaldarstellung/Harmonische_Schwingung|Harmonische Schwingungen]] wie das Cosinussignal $x_2(t)$ im obigen Beispiel, die im Kapitel [[Signaldarstellung/Allgemeine_Beschreibung|Periodische Signale]] ausführlich beschrieben werden. Auch die meisten stochastischen Signale sind leistungsbegrenzt – siehe Buch [[Stochastische Signaltheorie]].
+
==Continuous-valued and discrete-valued signals==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp;
 +
*A signal is&nbsp; &raquo;'''continuous in value'''&laquo; or&nbsp; &raquo;'''continuous-valued'''&laquo;,&nbsp; if the decisive signal parameter &ndash; for example the instantaneous value &ndash; can take all values of a continuum&nbsp; $($e.g. of an interval$)$.
 +
 +
*In contrast,&nbsp; if only countable many different values are possible for the signal parameter,&nbsp; then the signal is&nbsp; &raquo;'''discrete in value'''&laquo; or&nbsp; &raquo;'''discrete-valued'''&laquo;.&nbsp; The number&nbsp; $M$&nbsp; of possible values is called the&nbsp; &raquo;level number&laquo;&nbsp; or the&nbsp; &raquo;symbol set size&laquo;.}}
  
  
==Wertkontinuierliche und wertdiskrete Signale==
+
*Analog transmission systems always work with continuous-valued signals.
 +
 +
*For digital systems, on the other hand, most but not all signals are discrete-valued.
  
{{Definition}}
 
Ein Signal bezeichnet man als '''wertkontinuierlich''', wenn der entscheidende Signalparameter – z. B. der Augenblickswert – alle Werte eines Kontinuums (beispielsweise eines Intervalls) annehmen kann. Sind für den Signalparameter dagegen nur abzählbar viele verschiedene Werte möglich, so ist das Signal wertdiskret. Die Anzahl der möglichen Werte bezeichnet man als die Stufenzahl $M$.
 
{{end}}
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp;
 +
The upper diagram shows in blue a section of a continuous-valued signal&nbsp; $x(t)$, which can take values between&nbsp; $\pm 8\ \rm V$&nbsp;.
 +
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|right|frame|Continuous-valued and discrete-valued signal]]
 +
*In red you can see the signal&nbsp; $x_{\rm Q}(t)$&nbsp; discretized on &nbsp; $M = 8$&nbsp; quantization levels  with the possible signal values&nbsp; $\pm 1\ \rm V$,&nbsp; $\pm 3\ \rm V$,&nbsp; $\pm 5\ \rm V$&nbsp; and&nbsp; $\pm 7\ \rm V$.
 +
 +
*For this signal&nbsp; $x_{\rm Q}(t)$&nbsp; the&nbsp; <u>instantaneous value</u>&nbsp; was considered the decisive signal parameter.
  
Bei den analogen Übertragungssystemen wird stets mit wertkontinuierlichen Signalen gearbeitet. Bei Digitalsystemen sind dagegen die meisten Signale – aber nicht alle – wertdiskret.
 
  
{{Beispiel}}
+
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|left|frame|FSK signal &nbsp; &rArr; &nbsp; continuous&ndash;valued,&nbsp;  binary&ndash;in&ndash;frequency]]
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|right|Wertkontinuierliches und wertdiskretes Signal]]
 
Das obere Bild zeigt in blau einen Ausschnitt eines wertkontinuierlichen Signals $x(t)$, das Werte zwischen $\pm$8V annehmen kann.
 
*In roter Farbe erkennt man das auf $M = 8$ Quantisierungsstufen diskretisierte Signal $x_{\rm Q}(t)$ mit den möglichen Signalwerten $\pm$1V, $\pm$3V, $\pm$5V und $\pm$7V.
 
*Bei diesem Signal  $x_{\rm Q}(t)$ wurde der Augenblickswert als der entscheidende Signalparameter betrachtet.
 
  
  
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|left|FSK-Signal - wertkontuierlich und trotzdem binär]]
 
  
  
  
  
 +
In an FSK system&nbsp; $($"Frequency Shift Keying"$)$&nbsp; on the other hand,&nbsp; the&nbsp; <u>instantaneous frequency</u>&nbsp; is the essential signal parameter.
  
  
Bei einem FSK-System (''Frequency Shift Keying'') ist dagegen die Augenblicksfrequenz der wesentliche Signalparameter. Deshalb bezeichnet man auch das unten dargestellte Signal $s_{\rm FSK}(t)$ als wertdiskret mit der Stufenzahl $M = 2$ und den möglichen Frequenzen 1 kHz und 5 kHz, obwohl der Augenblickswert wertkontinuierlich ist.
 
  
{{end}}
+
Therefore the signal&nbsp; $s_{\rm FSK}(t)$&nbsp; shown below is also called&nbsp; <u>discrete-valued</u>&nbsp; with level number&nbsp; $M = 2$&nbsp; and  possible frequencies&nbsp; $1 \ \ \rm kHz$&nbsp; and&nbsp; $5 \ \ \rm kHz$, although the instantaneous value is continuous.}}
  
  
==Zeitkontinuierliche und zeitdiskrete Signale==
+
==Continuous-time and discrete-time signals==
 +
<br>
 +
For the signals considered so far,&nbsp; the signal parameter was defined at any given time.&nbsp; Such a signal is called&nbsp; "continuous in time".
  
Bei den bisher betrachteten Signalen war der Signalparameter zu jedem beliebigen Zeitpunkt definiert. Man spricht dann von einem ''zeitkontinuierlichen Signal''.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
  
{{Definition}}
+
With a&nbsp; &raquo;'''discrete-time signal'''&laquo;&nbsp; on the contrary,&nbsp; the signal parameter is defined only at the discrete points&nbsp; $t_\nu$.&nbsp; These time points are usually chosen equidistant: &nbsp;
Bei einem '''zeitdiskreten Signal''' ist im Gegensatz dazu der Signalparameter nur zu den diskreten Zeitpunkten $t_\nu$ definiert, wobei man diese Zeitpunkte meist äquidistant wählt: $t_\nu = \nu \cdot T_{\rm A}$. Da ein solches Signal beispielsweise durch Abtastung eines zeitkontinuierlichen Signals entsteht, bezeichnen wir $T_{\rm A}$ als den ''Abtastzeitabstand'' und dessen Kehrwert $f_{\rm A} = 1/T_{\rm A}$ als die ''Abtastfrequenz''.
+
:$$t_\nu = \nu \cdot T_{\rm A}.$$
{{end}}
+
*We refer&nbsp; $T_{\rm A}$&nbsp; as&nbsp; &raquo;sampling time interval&laquo;&nbsp; and its reciprocal&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; as&nbsp; &raquo;sampling frequency&laquo;.&nbsp;
  
 +
*Such a signal may be created by sampling a &raquo;'''continuous-time signal'''&laquo;. }}
  
{{Beispiel}}
 
[[File:P_ID355_Sig_T_1_2_S5_neu.png|right|Zeitkontinuierliches und zeitdiskretes Signal]]
 
Das zeitdiskrete Signal $x_{\rm A}(t)$ erhält man nach Abtastung des oben dargestellten zeit- und wertkontinuierlichen Nachrichtensignals $x(t)$ im Abstand$T_{\rm A}$.
 
  
  
 +
{{GraueBox|TEXT=
 +
[[File:P_ID355_Sig_T_1_2_S5_neu.png|right|frame|Continuous-time and discrete-time signal]] 
 +
$\text{Example 5:}$&nbsp;
  
*Der unten skizzierte Zeitverlauf $x_{\rm R}(t)$ unterscheidet sich von der echten zeitdiskreten Darstellung $x_{\rm A}(t)$ dadurch, dass die unendlich schmalen Abtastwerte (mathematisch mit Diracimpulsen beschreibbar) durch Rechteckimpulse der Dauer $T_{\rm A}$ ersetzt sind.  
+
*The discrete-time signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained after sampling the continuous-time and continuous-value signal&nbsp; $x(t)$&nbsp; with a uniform sampling period &nbsp; $(T_{\rm A})$.<br><br>
*Ein solches Signal kann nach obiger Definition ebenfalls als zeitdiskret bezeichnet werden.
+
*The time plot&nbsp; $x_{\rm R}(t)$&nbsp; outlined below differs from the real discrete-time representation&nbsp; $x_{\rm A}(t)$&nbsp; in that the infinitely narrow samples&nbsp; $($mathematically describable with Dirac deltas$)$&nbsp; are replaced by rectangular pulses of duration&nbsp; $T_{\rm A}$.<br><br>
{{end}}
+
*Such a signal can also be called&nbsp; "discrete-time"&nbsp; according to the above definition.<br><br>
  
 +
*Furthermore applies:
 +
#A discrete-time signal&nbsp;$x(t)$&nbsp; is completely determined by its series &nbsp;$\left \langle x_\nu \right \rangle$&nbsp; of sampled values.&nbsp;
 +
#These sampled values can either be continuous or discrete.
 +
#The mathematical description of discrete-time signals is given in the chapter&nbsp;<br> [[Signal_Representation/Time_Discrete_Signal_Representation|&raquo;Discrete-Time Signal Representation&laquo;]].}}
 +
<br clear=all>
 +
==Analog and digital signals==
 +
<br>
 +
[[File:EN_Sig_T_1_2_S6.png|right|frame|Analog and digital signals]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example 6:}$&nbsp;
 +
The signal properties
 +
* "continuous-valued",
 +
* "discret-valued",
 +
* "continuous-time",
 +
* "discrete-time"
  
Ein zeitdiskretes Signal $x(t)$ ist durch die zeitliche Folge $\left \langle x_\nu \right \rangle$ seiner Abtastwerte vollständig bestimmt. Diese Abtastwerte können dabei sowohl wertkontinuierlich als auch wertdiskret sein.
 
  
Die mathematische Beschreibung zeitdiskreter Signale erfolgt im Kapitel [[Signaldarstellung/Zeitdiskrete_Signaldarstellung|Zeitdiskrete Signaldarstellung]].
+
are illustrated in the diagram on the right using an example.
 +
<br clear=all>}}
  
 +
<br>In addition,&nbsp; the following specifications apply:
  
==Analog- und Digitalsignale==
+
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp;
 +
If a signal is both continuous in value &nbsp; <u>and</u> &nbsp; continuous in time,&nbsp; it is called an&nbsp; &raquo;'''analog signal'''&laquo;.&nbsp;
  
{{Beispiel}}
+
*Such signals represent a continuous process.
  
In der folgenden Grafik sind noch einmal die Signaleigenschaften „wertkontinuierlich” und „wertdiskret” sowie „zeitkontinuierlich” und „zeitdiskret” an einem Beispiel verdeutlicht.
+
*Examples are speech signals,&nbsp; music signals and image signals.}}
  
  
[[File:P_ID186_Sig_T_1_2_S6_neu2.png|Analog- und Digitalsignale]]
+
{{BlaueBox|TEXT= 
{{end}}
+
$\text{Definition:}$&nbsp;
 +
A&nbsp; &raquo;'''digital signal'''&laquo;&nbsp; is discrete in value &nbsp; <u>and</u> &nbsp; discrete in time,&nbsp; and the message contained therein consists of symbols from a symbol set.
 +
 +
*For example,&nbsp; it can be a voice signal,&nbsp; music signal or image signal after sampling,&nbsp; quantization,&nbsp; and encoding in any form.
 +
 +
*But also a&nbsp; &raquo;data signal&laquo;&nbsp; when a file is downloaded from a server on the Internet.}}
  
  
Daneben gelten noch folgende Definitionen:
+
Depending on the number of levels,&nbsp; digital signals are also known by other names,&nbsp; for example
*Ist ein Signal sowohl wert- als auch zeitkontinuierlich, so spricht man auch von einem '''Analogsignal'''. Solche Signale bilden einen kontinuierlichen Vorgang kontinuierlich ab. Beispiele hierfür sind Sprach-, Musik-, Bild- und Messsignale.
+
* with $M = 2$:  &nbsp; binary digital signal or&nbsp; &raquo;'''binary signal'''&laquo;,
*Ein Digitalsignal ist dagegen stets wert- und zeitdiskret und die darin enthaltene Nachricht besteht aus den Symbolen eines Symbolvorrats. Es kann beispielsweise ein abgetastetes und quantisiertes (sowie in irgendeiner Form codiertes) Sprach-, Musik- oder Bildsignal sein, aber auch ein Datensignal, wenn im Internet eine Datei von einem Server heruntergeladen wird.
 
  
Je nach Stufenzahl sind Digitalsignale auch noch unter anderen Namen bekannt, beispielsweise
+
* with $M = 3$: &nbsp; ternary digital signal or &nbsp; &raquo;'''ternary signal'''&laquo;,
* mit $M = 2$: binäres Digitalsignal oder Binärsignal,
 
* mit $M = 3$: ternäres Digitalsignal oder Ternärsignal,
 
* mit $M = 4$: quaternäres Digitalsignal oder Quaternärsignal.
 
  
 +
* with $M = 4$: &nbsp; quaternary digital signal or&nbsp; &raquo;'''quaternary signal'''&laquo;.
  
Das folgende Lernvideo fasst die hier behandelten Klassifizierungsmerkmale zusammen:
 
  
[http://{{SERVERNAME}}/mediawiki/swf_files/Buch1/Signale0.swf Analoge und digitale Signale (Dauer Teil 1: 3:46; Teil 2: 3:28)]
+
The following&nbsp;  $($German-language$)$&nbsp; learning video summarizes the classification features discussed in this chapter in a compact way:<br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Analoge_und_digitale_Signale_(Lernvideo)|&raquo;Analoge und digitale Signale&laquo;]] &nbsp; &rArr; &nbsp; "Analog and Digital Signals".
  
  
==Aufgaben zum Kapitel==
 
  
[[Aufgaben:1.2 Signalklassifizierung|A1.2 Signalklassifizierung]]
+
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_1.2:_Signal_Classification|Exercise 1.2: Signal Classification]]
  
[[Aufgaben:1.2Z_Pulscodemodulation|Z1.2 Pulscodemodulation]]
+
[[Aufgaben:Exercise_1.2Z:_Puls-Code-Modulation|Exercise 1.2Z: Puls Code Modulation]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 13:46, 22 June 2023

Deterministic and stochastic signals


In every transmission system,  both  deterministic signals  and  stochastic signal  occur.

$\text{Definition:}$  A  »deterministic signal«  exists,  if its time function  $x(t)$  can be described completely in analytical form.


Since the time function  $x(t)$  for all times  $t$  is known and can be specified unambiguously,  there always exists a spectral function  $X(f)$  which can be calculated using the  »$\text{Fourier series}$«  or the  »$\text{Fourier transform}$« .

$\text{Definition:}$  One refers to a  »stochastic signal«  or to a  »random signal«,  if the signal course  $x(t)$  is not – or at least not completely – describable in mathematical form.  Such a signal cannot be predicted exactly for the future.


Example of a deterministic signal (top) and
a stochastic signal (bottom)

$\text{Example 1:}$  The graph shows the time courses of a deterministic and a stochastic signal:

  • At the top a periodic rectangular signal  $x_1(t)$  with period duration  $T_0$   ⇒   deterministic signal,
  • below a Gaussian noise signal  $x_2(t)$  with the mean value  $2\ \rm V $   ⇒   stochastic signal.


For such a non–deterministic signal  $x_2(t)$  no spectral function  $X_2(f)$  can be specified, since Fourier series and Fourier transform requires the exact knowledge of the time function for all times  $t$.


Information-carrying signals are always of stochastic nature.  Their description and the definition of suitable parameters is given in the book  »Theory of Stochastic Signals«.

However,  deterministic signals are also of great importance for Communications Engineering.  Examples of these are:

  • Test signals for the design of communication systems,
  • carrier signals for frequency multiplex systems,  and
  • a  »Dirac delta comb«  for sampling an analog signal or for time regeneration of a digital signal.


Causal and non-causal signals


In  Communications Engineering  one often reckons with temporally unlimited signals;  the definition range of the signal then extends from  $t = -\infty$   to  $t=+\infty$.

In reality,  however,  there are no such signals,  because every signal had to be switched on at some point.  If one chooses – arbitrarily but nevertheless meaningfully – the switch-on time  $t = 0$,  then one comes to the following classification:

$\text{Definition:}$ 

  • A signal  $x(t)$  is called  »causal«,  if it does not exist for all times  $t < 0$  or is identical zero.
  • If this condition is not fulfilled,  then one speaks of a  »non-causal«  signal  $($or system$)$.


In this book  »Signal representation«  mostly causal signals and systems are considered.  This has the following reasons:

  • Non-causal signals  $($and systems$)$  are mathematically easier to handle than causal ones.  For example,  the spectral function can be determined here by means of Fourier transform and one does not need extensive knowledge of function theory as in the Laplace transform.
  • Non-causal signals and systems describe the situation completely and correctly,  if one ignores the problem of the switch-on process and is therefore only interested in the  »steady state«.


Causal system  $($top$)$  and non-causal system  $($bottom$)$

$\text{Example 2:}$  You can see a causal system in the upper graphic:

  • If a unit step function  $x(t)$  is applied to its input, then the output signal  $y(t)$  can only increase from zero to its maximum value after time  $t = 0$.
  • Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.
  • In the lower graph the causality is no longer given. 


As you can easily see in this example,  an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.


Energy–limited and power–limited signals


At this place first two important signal description quantities must be introduced, namely  »energy«  and  »power«.

  • In terms of physics,  energy corresponds to work and has,  for example,  the unit  "Ws".
  • The power is defined as  "work per time"  and therefore has the unit  "W".


According to the elementary laws of Electrical Engineering,  both values are dependent on the resistance  $R$.  In order to eliminate this dependency in Communications Engineering,  the resistance  $R=1 \,\Omega$  is often used as a basis.  Then the following definitions apply:

$\text{Definition:}$  The  »energy«  of the signal  $x(t)$  is to calculate as follows:

$$E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$


$\text{Definition:}$ To calculate the  $($mean$)$  »power«  still has to be divided by the time  $T_{\rm M}$  before the boundary crossing:

$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$
  • $T_{\rm M}$  is the assumed measurement duration during which the signal is observed,  symmetrically with respect to the time origin  $(t = 0)$. 
  • In general,  this time interval must be chosen very large;  ideally  $T_{\rm M}$  should be towards infinity.


If  $x(t)$  denotes an electrical voltage curve  $($unit:  $\text{V)}$,  then according to the above equations:

  1. The signal energy has the unit  "$\text{V}^2\text{s}$".
  2. The signal power has the unit  "$\text{V}^2$".


This statement also means:   In the above definitions the reference resistance  $R=1\,\Omega$  is already implicit.

$\text{Example 3:}$  Now the energy and power of two exemplary signals are calculated.

Energy-limited and power-limited signals

⇒   The upper graph shows a rectangular pulse  $x_1(t)$  with amplitude  $A$  and duration  $T$:

  1. The signal energy of this pulse is  $E_1 = A^2 \cdot T$.
  2. For the signal power,  division by  $T_{\rm M}$  and limit formation  $(T_{\rm M} \to \infty)$  results in the value  $P_1 = 0$.



⇒   For the cosine signal  $x_2(t)$  with amplitude  $A$  applies according to the sketch below:

  1. The signal power is  $P_2 = A^2/2$,  regardless of the frequency.
  2. The signal energy  $E_2$  $($integral over power for all times$)$  is infinite.
  3. With  $A = 4 \ {\rm V}$  results for the power  $P_2 = 8 \ {\rm V}^2$.  
  4. With the resistance of  $R = 50 \,\,\Omega$  this corresponds to the physical power  ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.


According to this example there are the following classification characteristics:

$\text{Definition:}$  A signal  $x(t)$  with finite energy  $E_x$  and infinitely small power  $(P_x = 0)$  is called  »energy–limited«.

  • With pulse-shaped signals like the signal  $x_1(t)$  in the above example,  the energy is always limited.  Mostly, the signal values here are different from zero only for a finite time period.   In other words:  Such signals are often time-limited,  too.
  • But even signals that are unlimited in time can have a finite energy.  In later chapters you will find more information about energy–limited and therefore aperiodic signals, for example the   »Gaussian pulse«  and the  »exponential pulse«.


$\text{Definition:}$  A signal  $x(t)$  with finite power  $P_x$  and accordingly infinite energy  $(E_x \to \infty)$  is called  »power–limited«.


Continuous-valued and discrete-valued signals


$\text{Definitions:}$ 

  • A signal is  »continuous in value« or  »continuous-valued«,  if the decisive signal parameter – for example the instantaneous value – can take all values of a continuum  $($e.g. of an interval$)$.
  • In contrast,  if only countable many different values are possible for the signal parameter,  then the signal is  »discrete in value« or  »discrete-valued«.  The number  $M$  of possible values is called the  »level number«  or the  »symbol set size«.


  • Analog transmission systems always work with continuous-valued signals.
  • For digital systems, on the other hand, most but not all signals are discrete-valued.


$\text{Example 4:}$  The upper diagram shows in blue a section of a continuous-valued signal  $x(t)$, which can take values between  $\pm 8\ \rm V$ .

Continuous-valued and discrete-valued signal
  • In red you can see the signal  $x_{\rm Q}(t)$  discretized on   $M = 8$  quantization levels with the possible signal values  $\pm 1\ \rm V$,  $\pm 3\ \rm V$,  $\pm 5\ \rm V$  and  $\pm 7\ \rm V$.
  • For this signal  $x_{\rm Q}(t)$  the  instantaneous value  was considered the decisive signal parameter.


FSK signal   ⇒   continuous–valued,  binary–in–frequency




In an FSK system  $($"Frequency Shift Keying"$)$  on the other hand,  the  instantaneous frequency  is the essential signal parameter.


Therefore the signal  $s_{\rm FSK}(t)$  shown below is also called  discrete-valued  with level number  $M = 2$  and possible frequencies  $1 \ \ \rm kHz$  and  $5 \ \ \rm kHz$, although the instantaneous value is continuous.


Continuous-time and discrete-time signals


For the signals considered so far,  the signal parameter was defined at any given time.  Such a signal is called  "continuous in time".

$\text{Definition:}$ 

With a  »discrete-time signal«  on the contrary,  the signal parameter is defined only at the discrete points  $t_\nu$.  These time points are usually chosen equidistant:  

$$t_\nu = \nu \cdot T_{\rm A}.$$
  • We refer  $T_{\rm A}$  as  »sampling time interval«  and its reciprocal  $f_{\rm A} = 1/T_{\rm A}$  as  »sampling frequency«. 
  • Such a signal may be created by sampling a »continuous-time signal«.


Continuous-time and discrete-time signal

$\text{Example 5:}$ 

  • The discrete-time signal  $x_{\rm A}(t)$  is obtained after sampling the continuous-time and continuous-value signal  $x(t)$  with a uniform sampling period   $(T_{\rm A})$.

  • The time plot  $x_{\rm R}(t)$  outlined below differs from the real discrete-time representation  $x_{\rm A}(t)$  in that the infinitely narrow samples  $($mathematically describable with Dirac deltas$)$  are replaced by rectangular pulses of duration  $T_{\rm A}$.

  • Such a signal can also be called  "discrete-time"  according to the above definition.

  • Furthermore applies:
  1. A discrete-time signal $x(t)$  is completely determined by its series  $\left \langle x_\nu \right \rangle$  of sampled values. 
  2. These sampled values can either be continuous or discrete.
  3. The mathematical description of discrete-time signals is given in the chapter 
    »Discrete-Time Signal Representation«.


Analog and digital signals


Analog and digital signals

$\text{Example 6:}$  The signal properties

  • "continuous-valued",
  • "discret-valued",
  • "continuous-time",
  • "discrete-time"


are illustrated in the diagram on the right using an example.


In addition,  the following specifications apply:

$\text{Definition:}$  If a signal is both continuous in value   and   continuous in time,  it is called an  »analog signal«. 

  • Such signals represent a continuous process.
  • Examples are speech signals,  music signals and image signals.


$\text{Definition:}$  A  »digital signal«  is discrete in value   and   discrete in time,  and the message contained therein consists of symbols from a symbol set.

  • For example,  it can be a voice signal,  music signal or image signal after sampling,  quantization,  and encoding in any form.
  • But also a  »data signal«  when a file is downloaded from a server on the Internet.


Depending on the number of levels,  digital signals are also known by other names,  for example

  • with $M = 2$:   binary digital signal or  »binary signal«,
  • with $M = 3$:   ternary digital signal or   »ternary signal«,
  • with $M = 4$:   quaternary digital signal or  »quaternary signal«.


The following  $($German-language$)$  learning video summarizes the classification features discussed in this chapter in a compact way:
         »Analoge und digitale Signale«   ⇒   "Analog and Digital Signals".


Exercises for the chapter


Exercise 1.2: Signal Classification

Exercise 1.2Z: Puls Code Modulation