Difference between revisions of "Aufgaben:Exercise 4.08Z: Basics about Interleaving"

From LNTwww
Line 28: Line 28:
 
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/The_Basics_of_Turbo_Codes| "The Basics of Turbo Codes"]].
 
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/The_Basics_of_Turbo_Codes| "The Basics of Turbo Codes"]].
  
*Aber auch in anderen $\rm LNTwww$–Büchern wird Interleaving behandelt, unter anderem im Buch "Beispiele von Nachrichtensystemen" mit Bezug zum
+
*But other $\rm LNTww$–books also discuss interleaving, including the book "Examples of Message Systems" with reference to the
:* Standard&nbsp; <i>Digital Subscriber Line</i> (DSL) &nbsp; &#8658; &nbsp; [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL#Interleaving_und_De.E2.80.93Interleaving| "Interleaving und De&ndash;Interleaving"]],
+
:* Standard&nbsp; <i>Digital Subscriber Line</i> (DSL) &nbsp; &#8658; &nbsp; [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL#Interleaving_und_De.E2.80.93Interleaving| "Interleaving and Deinterleaving"]],
:* 2G&ndash;Mobilfunksystem&nbsp; GSM &nbsp; &#8658; &nbsp; [[Examples_of_Communication_Systems/Entire_GSM_Transmission_System#Komponenten_der_Sprach.E2.80.93_und_Daten.C3.BCbertragung| "Komponenten der Sprach&ndash; und Datenübertragung"]],
+
:* 2G mobile communication system&nbsp; GSM &nbsp; &#8658; &nbsp; [[Examples_of_Communication_Systems/Entire_GSM_Transmission_System#Komponenten_der_Sprach.E2.80.93_und_Daten.C3.BCbertragung| "Components of voice&ndash; and data transmission"]],
:* 3G&ndash;Mobilfunksystem&nbsp; UMTS &nbsp; &#8658; &nbsp; [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS#Kanalcodierung_bei_UMTS| "Kanalcodierung"]],
+
:* 3G mobile communication system&nbsp; UMTS &nbsp; &#8658; &nbsp; [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS#Kanalcodierung_bei_UMTS| "Channel Coding"]],
:* 4G&ndash;Mobilfunksystem&nbsp; LTE &nbsp; &#8658; &nbsp; [[Mobile_Communications/The_Application_of_OFDMA_and_SC-FDMA_in_LTE#Functionality_of_SC-FDMA| "Funktionsweise von SC&ndash;FDMA"]]&nbsp; (im Buch "Mobile Kommunikation").
+
:* 4G mobile communication system LTE &nbsp; &#8658; &nbsp; [[Mobile_Communications/The_Application_of_OFDMA_and_SC-FDMA_in_LTE#Functionality_of_SC-FDMA| "Funktionsweise von SC&ndash;FDMA"]]&nbsp; (in the book "Mobile Communications").
  
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Interleaver&ndash;Art ist in der Grafik auf der Angabenseite dargestellt?
+
{What interleaver&ndash;type is shown in the graphic on the details page?
 
|type="()"}
 
|type="()"}
+ Block&ndash;Interleaving,
+
+ Block interleaving,
- Random&ndash;Interleaving.
+
- Random interleaving.
  
{Wieviele Zeilen&nbsp; ($Z$)&nbsp; und Spalten&nbsp; ($S$)&nbsp; hat die obere "Interleaver&ndash;Matrix 1"?
+
{How many rows&nbsp; ($Z$)&nbsp; and columns&nbsp; ($S$)&nbsp; does the upper "Interleaver matrix 1" have?
 
|type="{}"}
 
|type="{}"}
 
$Z \ = \ ${ 4 }  
 
$Z \ = \ ${ 4 }  
 
$S \ = \ ${ 3 }  
 
$S \ = \ ${ 3 }  
  
{Es gelte&nbsp; $\underline{u} = (1001'0001'1101'1101'0010'0111)$. Wie beginnt die verwürfelte Folge&nbsp; $\underline{u}_{\pi}$? <br>&nbsp; &nbsp; ''Hinweis:'' &nbsp; Die Hochkommata dienen nur als Lesehilfe.
+
{It holds&nbsp; $\underline{u} = (1001'0001'1101'1101'0010'0111)$. How does the scrambled sequence begin&nbsp; $\underline{u}_{\pi}$? <br>&nbsp; &nbsp; Note: &nbsp; The quotation marks serve only as a reading aid.
 
|type="()"}
 
|type="()"}
 
- $\underline{u}_{\pi} = (110'100'100'011'111'110'010'001' \text{...}\ )$,
 
- $\underline{u}_{\pi} = (110'100'100'011'111'110'010'001' \text{...}\ )$,
 
+ $\underline{u}_{\pi} = (101'001'000'111'100'101'011'101'\text{...}\ )$.
 
+ $\underline{u}_{\pi} = (101'001'000'111'100'101'011'101'\text{...}\ )$.
  
{Die verwürfelte Folge sei&nbsp; $\underline{u}_{\pi} = (100'100'011'101'110'100'100'111)$. Wie lautet die Folge nach dem De&ndash;Interleaving?
+
{The scrambled sequence be&nbsp; $\underline{u}_{\pi} = (100'100'011'101'110'100'100'111)$. What is the sequence after deinterleaving?
 
|type="()"}
 
|type="()"}
 
+ $\underline{u} = (1101'0010'0011'1111'1001'0001'\text{...}\ )$,
 
+ $\underline{u} = (1101'0010'0011'1111'1001'0001'\text{...}\ )$,
Line 60: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID3041__KC_Z_4_8b_v2.png|right|frame|4×3–Interleaver–Matrix]]  
+
[[File:P_ID3041__KC_Z_4_8b_v2.png|right|frame|4×3 Interleaver Matrix]]  
'''(1)'''&nbsp; Aus der regelmäßigen Struktur der Funktion $I_{\rm Out}(I_{\rm In})$ erkennt man, dass es sich um einen Blockinterleaver handelt &nbsp;&#8658;&nbsp; <u>Antwort 1</u>.
+
'''(1)'''&nbsp; From the regular structure of the function $I_{\rm Out}(I_{\rm In})$ one can see that it is a block interleaver &nbsp;&#8658;&nbsp; <u>Response 1</u>.
  
  
'''(2)'''&nbsp; Der Index "1" wird als erstes Zeichen ausgegeben. Weiter gilt:
+
'''(2)'''&nbsp; The index "1" is output as the first character. Further applies:
* Der Index 5 wird als zweites Zeichen ausgegeben &nbsp;&#8658;&nbsp; $\underline{Z = 4}$.
+
* The index 5 is output as the second character &nbsp;&#8658;&nbsp; $\underline{Z = 4}$.
* Der Index 2 wird als viertes Zeichen ausgegeben &nbsp;&#8658;&nbsp; $\underline{S = 3}$.
+
* The index 2 is output as the fourth character &nbsp;&#8658;&nbsp; $\underline{S = 3}$.
  
  
Die obere Grafik zeigt für die 4×3–Interleaver&ndash;Matrix:
+
The upper graph shows for the 4×3 interleaver matrix:
* das spaltenweise Beschreiben (rot),  
+
* the column by column write (red),  
* das zeilenweise Auslesen (grün).
+
* the row by row readout (green).
  
  
  
[[File:P_ID3042__KC_Z_4_8c_v3.png|right|frame|Zum Interleaving]]
+
[[File:P_ID3042__KC_Z_4_8c_v3.png|right|frame|Interleaving]]
'''(3)'''&nbsp; Richtig ist der <u>der Lösungsvorschlag 2</u>:
+
'''(3)'''&nbsp; Correct is <u>the proposed solution 2</u>:
*Die Matrix wird spaltenweise beschrieben und zeilenweise ausgelesen.  
+
*The matrix is written column by column and read row by row.  
*Nach 12 Bit wird die Matrix gelöscht und die Prozedur beginnt von Neuem.
+
*After 12 bits, the matrix is cleared and the procedure starts over.
*Die Grafik zeigt, dass nun der Lösungsvorschlag 2 richtig ist.  
+
*The graphic shows that now the solution suggestion 2 is correct.  
 
<br clear=all>
 
<br clear=all>
 
[[File:P_ID3043__KC_Z_4_8d_v1.png|right|frame|Zum De–Interleaving]]
 
[[File:P_ID3043__KC_Z_4_8d_v1.png|right|frame|Zum De–Interleaving]]
'''(4)'''&nbsp; Richtig ist der <u>der Lösungsvorschlag 1</u>:
+
'''(4)'''&nbsp; Correct is <u>the proposed solution 1</u>:
*Beim De&ndash;Interleaving wird die Matrix zeilenweise beschrieben und spaltenweise ausgelesen.  
+
*In deinterleaving, the matrix is written row by row and read column by column.  
*Die Grafik zeigt, dass hier der Lösungsvorschlag 1 richtig ist.
+
*The graphic shows that here the solution suggestion 1 is correct.
  
  

Revision as of 19:01, 29 November 2022

Interleaver description

Interleaving is required, for example, for a channel with burst error characteristics in order to distribute the errors within the burst over a sufficiently large area so that they can subsequently be largely corrected (or at least detected).

For turbo codes based on so-called  RSC encoder  (Recursive Systematic Convolutional Encoder)  – and only such make sense – interleaving is essential also with the AWGN channel, because then there are also always (some) input sequences, which deliver only zeros in the output sequence after quite a few ones, and that to infinity   ⇒   there are output sequences with very small Hamming weight.

If the bits of such input sequences are distributed over a wide range in the second coder, the problem can be (largely) eliminated by the interaction of both component decoders in the case of iterative symbol-wise decoding.

A general distinction is made between

  • Block interleaver and
  • Random interleaver.


In block interleaving  one fills a matrix with  $S$  columns and  $Z$  rows column by column and reads the matrix row by row. This deterministically scrambles a block of information with  $I_{\rm max} = S \cdot Z$  bits.

On the right, two interleavers are indicated and in graphical form by the assignment  $I_{\rm Out}(I_{\rm In})$. These quantities represent the "index of the output sequence" and the "index of the input sequence", respectively. It holds:

$$1 \le I_{\rm Out} \le I_{\rm max} \hspace{0.05cm}, \hspace{0.5cm} 1 \le I_{\rm In} \le I_{\rm max} \hspace{0.05cm}. $$

In the subtask  (1)  it is asked whether this is  block interleaving  or  random interleaving  . The latter are discussed in the  "theory section"  but only very briefly.



Hints:

  • But other $\rm LNTww$–books also discuss interleaving, including the book "Examples of Message Systems" with reference to the



Questions

1

What interleaver–type is shown in the graphic on the details page?

Block interleaving,
Random interleaving.

2

How many rows  ($Z$)  and columns  ($S$)  does the upper "Interleaver matrix 1" have?

$Z \ = \ $

$S \ = \ $

3

It holds  $\underline{u} = (1001'0001'1101'1101'0010'0111)$. How does the scrambled sequence begin  $\underline{u}_{\pi}$?
    Note:   The quotation marks serve only as a reading aid.

$\underline{u}_{\pi} = (110'100'100'011'111'110'010'001' \text{...}\ )$,
$\underline{u}_{\pi} = (101'001'000'111'100'101'011'101'\text{...}\ )$.

4

The scrambled sequence be  $\underline{u}_{\pi} = (100'100'011'101'110'100'100'111)$. What is the sequence after deinterleaving?

$\underline{u} = (1101'0010'0011'1111'1001'0001'\text{...}\ )$,
$\underline{u} = (1010'0100'0111'1001'0101'1101' \text{...}\ )$.


Solution

4×3 Interleaver Matrix

(1)  From the regular structure of the function $I_{\rm Out}(I_{\rm In})$ one can see that it is a block interleaver  ⇒  Response 1.


(2)  The index "1" is output as the first character. Further applies:

  • The index 5 is output as the second character  ⇒  $\underline{Z = 4}$.
  • The index 2 is output as the fourth character  ⇒  $\underline{S = 3}$.


The upper graph shows for the 4×3 interleaver matrix:

  • the column by column write (red),
  • the row by row readout (green).


Interleaving

(3)  Correct is the proposed solution 2:

  • The matrix is written column by column and read row by row.
  • After 12 bits, the matrix is cleared and the procedure starts over.
  • The graphic shows that now the solution suggestion 2 is correct.


Zum De–Interleaving

(4)  Correct is the proposed solution 1:

  • In deinterleaving, the matrix is written row by row and read column by column.
  • The graphic shows that here the solution suggestion 1 is correct.