Carrier Frequency Systems with Coherent Demodulation

From LNTwww

Signal space representation of linear modulation


In the first three chapters of this  "fourth main chapter"  "Generalized Description of Digital Modulation Methods" the structure of the optimal receiver and the signal representation by means of basis functions were treated by the example of baseband transmission.

With the same systematics and the same uniformity, band–pass systems will now also be considered which have already been described in earlier books or chapters, namely

In the following, we restrict ourselves to linear modulation methods  and coherent demodulation. This means that the receiver must know exactly the frequency and phase of the carrier signal added to the transmitter. In the following chapter,  "Carrier Frequency Systems with Non-Coherent Demodulation"  are discussed.

In the case of coherent demodulation, the entire transmission system can be described in the  "equivalent low-pass domain",  and the relationship to baseband transmission is even more obvious than when band-pass signals are considered.

Equivalent low-pass model of carrier-modulated transmission methods

This results in the sketched model. Complex quantities are marked by a yellow filled double arrow. It should be noted with regard to this graph:

  • From the incoming bit stream  $\langle q_k \rangle \in \{\rm 0, \ L \}$,    $b$  data bits each are converted serially/parallel. These output bits result in the message  $m \in \{m_0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, m_{M-1} \}$, where  $M = 2^b$  indicates the level number. For the following, the message  $m = m_i$  is assumed.
  • In the  signal space allocation,  a complex amplitude coefficient  $a_i = a_{{\rm I}i} + {\rm j} \cdot a_{{\rm Q}i}$  is assigned to each message  $m_i$,  whose real part will form the in-phase component and whose imaginary part will form the quadrature component of the later transmitted signal.
  • At the output of the blue marked block  generation of the TP signal  the (in general) complex-valued  "equivalent low-pass signal"  is present, where  $g_s(t)$  shall be limited for the time being to the range  $ 0 \le t \le T$  just like  $s_{\rm TP}(t)$.  The index  $i$  again provides an indication of the message  $m_i$ sent:
\[s_{\rm TP}(t) \big {|}_{m \hspace{0.05cm}= \hspace{0.05cm} m_i} = a_i \cdot g_s(t) = a_{{\rm I}i} \cdot g_s(t) + {\rm j} \cdot a_{{\rm Q}i} \cdot g_s(t)\]
  • By energy normalization one gets from the basic transmission pulse  $g_s(t)$  to the basis function
\[\varphi_1(t) = { g_s(t)}/{\sqrt{E_{gs}}} \hspace{0.4cm} {\rm with} \hspace{0.4cm} E_{gs} = \int_{0}^{T} g_s(t)^2 \,{\rm d} t \hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm TP}(t) \big {|}_{m\hspace{0.05cm} =\hspace{0.05cm} m_i} = s_{{\rm I}i} \cdot \varphi_1(t) + s_{{\rm Q}i} \cdot {\rm j} \cdot \varphi_1(t) \hspace{0.05cm}.\]
  • While the coefficients  $a_{{\rm I}i}$  and  $a_{{\rm Q}i}$  are dimensionless, the new coefficients  $s_{{\rm I}i}$  and  $s_{{\rm Q}i}$  have the unit "root of energy"   ⇒   see page  "Nomenclature in the fourth chapter":
\[s_{{\rm I}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm I}i}\hspace{0.05cm}, \hspace{0.2cm} s_{{\rm Q}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm Q}i}\hspace{0.05cm}. \]
  • Die Gleichungen zeigen, dass das hier betrachtete System im äquivalenten TP–Bereich durch je eine reelle Basisfunktion  $\varphi_1(t)$  und eine rein imaginäre Basisfunktion  $\psi_1(t) = {\rm j} \cdot \varphi_1(t)$  oder durch eine einzige komplexe Basisfunktion  $\xi_1(t)$  vollständig beschrieben wird.
  • Der grau hinterlegte Teil des Blockschaltbildes zeigt das Modell zur Erzeugung des Bandpass–Signals  $s_{\rm BP}(t)$, zuerst die Erzeugung des  analytischen Signals  $s_{\rm +}(t) = s_{\rm TP}(t) \cdot {\rm e}^{{\rm j}2\pi \cdot f_{\rm T} \cdot T}$  und anschließend die Realteilbildung.
  • Die beiden Basisfunktionen des Bandpass–Signals  $s_{\rm BP}(t)$  ergeben sich hier als energienormierte und auf den Bereich  $0 \le t \le T$  zeitbegrenzte Cosinus– bzw. Minus–Sinus–Schwingungen.


Kohärente Demodulation und optimaler Empfänger


Im Folgenden gehen wir stets vom äquivalenten Tiefpass–Signal aus, wenn nicht ausdrücklich etwas anderes angegeben ist. Insbesondere sind die Signale  $s(t) = s_{\rm TP}(t)$  und  $r(t) = r_{\rm TP}(t)$  in der Grafik Tiefpass–Signale und somit im Allgemeinen komplex. Auf den Zusatz "TP" wird im Weiteren verzichtet.

AWGN–Kanalmodell für komplexe Signale

Zu dieser Abbildung ist zu anzumerken:

  • Die Phasenlaufzeit des Kanals (also eine mit der Frequenz linear ansteigende Phasenfunktion) wird im Tiefpassbereich durch den zeitunabhängigen Drehfaktor  ${\rm e}^{{\rm j}\hspace{0.05cm} \phi}$  ausgedrückt.
  • Das Signal  $n\hspace{0.05cm}'(t)$  beschreibt einen komplexen weißen Gaußschen Zufallsprozess im TP–Bereich, wie im Abschnitt  N–dimensionales Gaußsches Rauschen  angegeben. Das Hochkomma wurde angefügt, um später beim Gesamtsystem mit  $n(t)$  arbeiten zu können.
  • Der Empfänger kennt die Kanalphase  $\phi$  und korrigiert diese durch den konjugiert–komplexen Drehfaktor  ${\rm e}^{-{\rm j}\hspace{0.05cm}\phi}$. Damit lautet das Empfangssignal im äquivalenten Tiefpassbereich:
\[r(t) = s(t) + n\hspace{0.05cm}'(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\phi}= s(t) + n(t) \hspace{0.05cm}.\]
  • Durch die Phasendrehung ändert sich an den Eigenschaften des zirkular symmetrischen Rauschens nichts   ⇒   $n(t) = n\hspace{0.05cm}'(t) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\phi}$ hat genau gleiche statistische Eigenschaften wie $n\hspace{0.05cm}'(t)$.

Die linke Grafik im obigen Bild verdeutlicht die soeben beschriebenen Sachverhalte.

  • Die rechte Grafik zeigt das Gesamtsystem, wie es für den Rest des vierten Hauptkapitels verwendet wird.
  • Nach dem AWGN–Kanal folgt ein optimaler Empfänger gemäß dem Abschnitt  N–dimensionales Gaußsches Rauschen.


$\text{Definition:}$  Ein  Symbolfehler  tritt immer dann auf, wenn  $\hat{m}$  nicht mit der gesendeten Nachricht  $m$  übereinstimmt:

\[m = m_i \hspace{0.2cm} \cap \hspace{0.2cm} \hat{m} \ne m_i \hspace{0.05cm}.\]

On–Off–Keying (2–ASK)


Das einfachste digitale Modulationsverfahren ist  On–Off–Keying  (OOK), das bereits im Buch  Modulationsverfahren  anhand seiner Bandpass–Signale ausführlich beschrieben wurde. Dort wurde dieses Verfahren teilweise auch als Amplitude Shift Keying  (2–ASK) bezeichnet.

Signalraumkonstellationen für On–Off–Keying

Dieses Verfahren kann wie folgt charakterisiert werden:

  • OOK ist ein eindimensionales Modulationsverfahren  $(N = 1)$  mit  $s_{{\rm I}i} = \{0, E^{1/2}\}$  und  $s_{{\rm Q}i} \equiv 0$  bzw.  $s_{{\rm I}i} \equiv 0$  und  $s_{{\rm Q}i} = \{0, -E^{1/2}\}$. Abkürzend gilt  $E = E_{g_s}$. Die erste Kombination beschreibt ein cosinusförmiges Trägersignal, die zweite Kombination einen sinusförmigen Träger.
  • Jedes Bit wird einem Binärsymbol zugeordnet  $(b = 1, \ M = 2)$; man benötigt also keinen Seriell/Parallel–Wandler. Bei gleichwahrscheinlichen Symbolen, was für das Folgende stets vorausgesetzt wird, ist sowohl die mittlere Energie pro Symbol  $(E_{\rm S})$  als auch die mittlere Energie pro Bit  $(E_{\rm B})$  gleich  $E/2$.
  • Der optimale OOK–Empfänger projiziert quasi das komplexwertige Empfangssignal  $r(t)$  auf die Basisfunktion  $\varphi_1(t)$, wenn man von der linken Skizze (Cosinusträger) ausgeht.
\[p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \frac{d/2}{\sigma_n}\right ) = {\rm Q} \left ( \sqrt{\frac{E}{2 N_0}}\right ) = {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.\]
  • Da jedes Bit genau auf ein Symbol abgebildet wird, ist die mittlere Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  genau so groß:
\[p_{\rm B} = {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) = {\rm Q} \left ( \sqrt{{E_{\rm B}}/{N_0}}\right ) \hspace{0.05cm}.\]

Binary phase shift keying (BPSK)


Das sehr oft angewandte Verfahren Binary Phase Shift Keying  (BPSK), das bereits im Kapitel  Lineare digitale Modulationsverfahren  des Buches "Modulationsverfahren" anhand der Bandpass–Signale ausführlich beschrieben wurde (typisch:   Phasensprünge), unterscheidet sich von On–Off–Keying  durch eine konstante Hüllkurve.

Für die Signalraumpunkte gilt stets  $\boldsymbol{s}_1 = -\boldsymbol{s}_0$. Sie lauten beispielsweise:

  • $s_{{\rm I}i} = \{\pm E^{1/2}\}$ und $s_{{\rm Q}i} \equiv 0$ bei cosinusförmigem Träger,
  • $s_{{\rm I}i} \equiv 0$ und $s_{{\rm Q}i} = \{\pm E^{1/2}\}$ bei sinusförmigem Träger.

Signalraumkonstellationen der BPSK

Anhand der in der Grafik angegebenen Gleichungen (im grün hinterlegten Feld) erkennt man die Verbesserungen gegenüber On–Off–Keying:

  • Bei gegebener Normierungsenergie  $E$  ist der Abstand zwischen  $\boldsymbol{s}_0$  und  $\boldsymbol{s}_1$  doppelt so groß. Damit erhält man für die Fehlerwahrscheinlichkeit (sowohl bezogen auf Symbole wie auch auf Bits):
\[p_{\rm S} = p_{\rm B} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \frac{d/2}{\sigma_n}\right ) = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) = {\rm Q} \left ( \sqrt{{2 E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.\]
  • In dieser Gleichung ist ebenfalls berücksichtigt, dass nun  $E_{\rm S} = E_{\rm B} = E$  gilt, das heißt, dass nun die mittleren Energien pro Symbol bzw. pro Bit doppelt so groß sind als bei OOK.
  • Die BPSK–Fehlerwahrscheinlichkeit ist durch den Faktor  $2$  unter der Wurzel im Argument der Q–Funktion merklich geringer als bei On–Off–Keying, wenn  $E_{\rm S}$  und  $N_0$  nicht verändert werden.
  • Anders ausgedrückt:   BPSK benötigt bei gleichem  $N_0$  nur die halbe Symbolenergie  $E_{\rm S}$, um die gleiche Fehlerwahrscheinlichkeit wie On–Off–Keying zu erzielen. Der logarithmische Gewinn beträgt  $3 \ \rm dB$.

M–level amplitude shift keying (M–ASK)


In Analogie zur  M–stufigen Basisbandübertragung  betrachten wir nun ein  $M$–stufiges Amplitude Shift Keying  ($M$–ASK), dessen Tiefpass–Signalraumkonstellation für die Parameter  $b = 3$   ⇒   $M = 8$   ⇒   $8$–ASK  wie folgt aussieht.

Signalraumkonstellation der 8-ASK

Der Name  $M$–ASK ist nicht ganz zutreffend. Vielmehr handelt es sich um ein kombiniertes ASK/PSK–Verfahren, da sich zum Beispiel die beiden innersten Signalraumpunkte  $(\pm 1)$  nicht in der Amplitude (Hüllkurve) unterscheiden, sondern nur durch die Phase  ($0^\circ$ bzw. $180^\circ$).

Weiter ist anzumerken:

  • Die mittlere Energie pro Symbol  kann man für dieses eindimensionale Verfahren unter Ausnutzung der Symmetrie wie folgt berechnen:
\[E_{\rm S} = \frac{2}{M} \cdot \sum_{k = 1}^{M/2} (2k -1)^2 \cdot E = \frac{M^2 -1}{3} \cdot E \hspace{0.05cm}.\]
  • Da jedes der  $M$  Symbole  $b = \log_2 (M)$  Bit darstellt, erhält man für die mittlere Energie pro Bit:
\[E_{\rm B} = \frac{E_{\rm S}}{b} = \frac{E_{\rm S}}{{\rm log_2}\, (M)} =\frac{M^2 -1}{3 \cdot {\rm log_2}\, (M)} \cdot E \hspace{0.3cm}\Rightarrow\hspace{0.3cm}M= 8\hspace{-0.1cm}: E_{\rm S}/E = 21 \hspace{0.05cm}, \hspace{0.1cm}E_{\rm B}/E = 7\hspace{0.05cm}.\]
  • Die Wahrscheinlichkeit, dass eines der beiden äußeren Symbole aufgrund von AWGN–Rauschen verfälscht wird, ist somit gleich
\[{\rm Pr}({\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} \text{äußeres Symbol)} = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )\hspace{0.05cm}.\]
  • Die Verfälschungswahrscheinlichkeit der  $M-2$  inneren Symbole ist doppelt so groß, da hier sowohl rechts als auch links andere Entscheidungsregionen angrenzen. Durch Mittelung erhält man für die (mittlere) Symbolfehlerwahrscheinlichkeit:
\[p_{\rm S} = {\rm Pr}({\cal{E}}) = \frac{1}{M} \cdot \left [ 2 \cdot 1 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) + (M-2) \cdot 2 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \right ] \]
\[\Rightarrow \hspace{0.3cm} p_{\rm S} = \frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) =\frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{\frac{6 \cdot E_{\rm S}}{(M^2-1) \cdot N_0}}\right ) \hspace{0.05cm}.\]
  • Bei Verwendung des  Graycodes  (benachbarte Symbole unterscheiden sich jeweils um ein Bit) ist die Bitfehlerwahrscheinlichkeit  $p_{\rm B}$ näherungsweise um den Faktor  $b = \log_2 \ (M)$  kleiner als die Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$:
\[p_{\rm B} \approx \frac{p_{\rm S}}{b} = \frac{2 \cdot (M-1)}{M \cdot {\rm log_2}\, (M)} \cdot {\rm Q} \left ( \sqrt{{6 \cdot {\rm log_2}\, (M)}/({M^2-1 }) \cdot { E_{\rm B}}/{ N_0}}\right ) \hspace{0.05cm}.\]

Quadrature amplitude modulation (M-QAM)


Signalraumkonstellation der 16-QAM

Die  Quadraturamplitudenmodulation  ($M$–QAM) ergibt sich durch je eine  $M$–ASK für Inphase– und Quadraturkomponente   ⇒   $M^2$  Signalraumpunkte.

Durch jedes Symbol werden nun  $b = \log_2 (M)$  Binärzeichen (Bit) dargestellt. Die Grafik zeigt den Sonderfall  $M = 16$   ⇒   $b = 4$. Rot eingezeichnet ist die Bitzuordnung bei  Graycodierung  (benachbarte Symbole unterscheiden sich jeweils um ein Bit).

Die mittlere Energie pro Symbol  $(E_{\rm S})$ bzw. die mittlere Energie pro pro Bit  $(E_{\rm B})$ kann man aus dem Ergebnis für die  $M$–ASK einfach ableiten (beachten Sie in der Gleichung den Unterschied zwischen einer Energie  $E$  und dem Erwartungswert  $\rm E[\text{...}]$):

\[E_{\rm S} = {\rm E} \left [ |s_{i}|^2 \right ] = {\rm E} \left [ |s_{{\rm I}i}|^2 \right ] + {\rm E} \left [ |s_{{\rm Q}i}|^2 \right ] = 2 \cdot {\rm E} \left [ |s_{{\rm I}i}|^2 \right ]\]
\[\Rightarrow \hspace{0.3cm} E_{\rm S} = 2 \cdot \frac{M_{\rm I}^2-1}{3} \cdot E = \frac{2}{3} \cdot (M-1) \cdot E\hspace{0.01cm},\hspace{0.3cm}E_{\rm B} =\frac{2 \cdot (M-1)}{3 \cdot {\rm log_2}\, (M)} \cdot E \hspace{0.01cm}.\]


Daneben zeigt die M–stufige Quadraturamplitudenmodulation folgende Eigenschaften:

  • Als obere Schranke für die Symbolfehlerwahrscheinlichkeit kann die  Union Bound  herangezogen werden, wobei zu beachten ist, dass ein inneres Symbol in vier Richtungen verfälscht werden kann:
\[p_{\rm S} = {\rm Pr}({\cal{E}}) \le \left\{ \begin{array}{c} 4 \cdot p \\ 2 \cdot p \end{array} \right.\quad \begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}} \hspace{0.15cm} M \ge 16 \hspace{0.05cm}, \\ {\rm f{\rm \ddot{u}r}} \hspace{0.15cm} M = 4 \hspace{0.05cm},\\ \end{array} \hspace{0.4cm} {\rm mit} \hspace{0.4cm} p = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \hspace{0.05cm}.\]
  • Berücksichtigt man, dass nur die  $(b-2)^2$  inneren Punkte in vier Richtungen verfälscht werden, die vier Eckpunkte dagegen nur in zwei und die restlichen in drei Richtungen (blaue Pfeile in der Grafik), so erhält man mit  $M = b^2$  die bessere Näherung
\[p_{\rm S} \approx {1}/{M} \cdot \big [(b - 2)^2 \cdot 4p + 4 \cdot 2p + 4 \cdot (b - 2) \cdot 3p \big ] = {p}/{M} \cdot \big [ 4 \cdot M - 16 \cdot \sqrt{M} + 16 + 8 + 12 \cdot \sqrt{M} - 24\big ] \]
\[\Rightarrow \hspace{0.3cm} p_{\rm S} \approx {4 \cdot p}/{M} \cdot \big [ M - \sqrt{M} \big ] = 4p \cdot \big [ 1 - {1}/{\sqrt{M}} \big ] \]
\[\Rightarrow\hspace{0.3cm} M = 16\hspace{-0.1cm}: \hspace{0.1cm} p_{\rm S} \approx 3 \cdot p = 3 \cdot {\rm Q} \big ( \sqrt{{2 E}/{N_0}}\big ) = 3 \cdot {\rm Q} \big ( \sqrt{{1/5 \cdot E_{\rm S}}/{ N_0}}\big ) \hspace{0.05cm}.\]

$\text{Fazit:}$  Bei der  $M$–QAM gilt allgemein  $E_{\rm B} = E_{\rm S}/\log_2 \hspace{0.05cm} (M)$  und bei Graycodierung zusätzlich  $p_{\rm B} = p_{\rm S}/\log_2 \hspace{0.05cm} (M)$.

Damit erhält man für die mittlere Bitfehlerwahrscheinlichkeit:

\[p_{\rm B} \approx \frac{4 \cdot (1 - 1/\sqrt{M})}{ {\rm log_2}\hspace{0.05cm} (M)} \cdot {\rm Q} \left ( \sqrt{ \frac{3 \cdot {\rm log_2}\, (M)}{M-1 } \cdot { E_{\rm B} }/{ N_0} }\right ) \hspace{0.05cm}.\]
  • Die Näherung gilt für  $M \le 16$  exakt, wenn – wie für die obere Grafik vorausgesetzt – keine "diagonalen Verfälschungen" auftreten.
  • Der Sonderfall "4–QAM" (ohne innere Symbole) wird in der  Aufgabe 4.13  behandelt.

Multi-level phase–shift keying (M–PSK)


Bei mehrstufiger Phasenmodulation, wobei die Stufenzahl  $M$  in der Praxis meist eine Zweierpotenz ist, liegen alle Signalraumpunkte auf einem Kreis mit Radius  $E^{1/2}$  gleichmäßig verteilt. Damit gilt für die mittlere Symbolenergie  $E_{\rm S} = E$  und für die mittlere Energie pro Bit  $E_{\rm B} = E_{\rm S}/b = E/\hspace{-0.05cm}\log_2 \hspace{0.05cm} (M)$.

Signalraumkonstellation der 8–PSK und 16–PSK

Für die Inphase– und die Quadraturkomponente der Signalraumpunkte  $\boldsymbol{s}_i$  gilt allgemein  $(i = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, \hspace{0.05cm}M-1)$:

\[s_{{\rm I}i} = \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},\hspace{0.2cm} s_{{\rm Q}i} = \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} || \boldsymbol{ s}_i || = \sqrt{ s_{{\rm I}i}^2 + s_{{\rm Q}i}^2} = 1 \hspace{0.05cm}.\]

Der Phasenoffset ist in obiger Grafik jeweils zu  $\phi_{\rm off} = 0$  gesetzt. Die 4–PSK mit  $\phi_{\rm off} = \pi/4 \ (45^\circ)$  ist identisch mit der  4–QAM. Der Abstand zwischen zwei benachbarten Punkten ist in allen Fällen gleich:

\[d_{\rm min} = d_{\rm 0, \hspace{0.05cm}1} = d_{\rm 1, \hspace{0.05cm}2} = \hspace{0.05cm}\text{...} \hspace{0.05cm} = d_{M-1, \hspace{0.05cm}0} = 2 \cdot \sqrt{E} \cdot \sin (\pi/M)\]
\[\Rightarrow\hspace{0.3cm} M = 4\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} = \sqrt{2} \approx 1.414 \hspace{0.05cm}, \hspace{0.8cm} M = 8\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} \approx 0.765 \hspace{0.05cm},\hspace{0.8cm} M = 16\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} \approx 0.390 \hspace{0.05cm}.\]

Die obere Schranke  $p_{\rm UB}$  für die AWGN–Symbolfehlerwahrscheinlichkeit nach der  Union Bound  liefert:

\[p_{\rm S} = {\rm Pr}({\cal{E}}) \le 2 \cdot {\rm Q} \left ( \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right ) = p_{\rm UB} \hspace{0.05cm}.\]

Man erkennt:

  • Für  $M = 2$  (BPSK) erhält man daraus die Abschätzung  $p_{\rm S} \le p_{\rm UB} =2 \cdot {\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right )$. Ein Vergleich mit der auf der  BPSK–Seite  angegebenen Gleichung  $p_{\rm S} ={\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right )$  zeigt, dass in diesem Sonderfall die "Union Bound" als obere Schranke den doppelten Wert liefert.
  • Je größer  $M$  ist, umso genauer nähert  $p_{\rm UB}$  die exakte Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$  an. Das interaktive Applet  Mehrstufige PSK & Union Bound  gibt auch die genauere, durch Simulation gewonnene Fehlerwahrscheinlichkeit an.


$\text{Fazit:}$  Die Schranke für die M–PSK–Bitfehlerwahrscheinlichkeit lautet (Graycode  ⇒  rote Beschriftung vorausgesetzt):

\[p_{\rm B} \le \frac{2}{ {\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{ {\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right ) \hspace{0.05cm}.\]
  • Diese Schranke muss man allerdings nur für  $M > 4$  anwenden.
  • Für  $M = 2$  (BPSK) und  $M = 4$  (Identität zwischen 4–PSK und 4–QAM) kann man die Bitfehlerwahrscheinlichkeit exakt angeben:
$$p_{\rm B} = {\rm Q} \left ( \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right ) \hspace{0.05cm}.$$

Binary frequency shift keying (2–FSK)


Auch diese Modulationsart mit Parameter  $b = 1$   ⇒   $M = 2$  wurde bereits im Abschnitt  FSK – Frequency Shift Keying  des Buches "Modulationsverfahren" anhand der Bandpass–Signale ausführlich beschrieben.

Die beiden möglichen Signalformen werden im Bereich  $0 \le t \le T$  durch zwei unterschiedliche Frequenzen dargestellt:

\[s_{\rm BP0}(t) \hspace{-0.1cm} = \hspace{-0.1cm} A \cdot \cos( 2\pi \cdot( f_{\rm T} + \Delta f_{\rm A})\cdot t)\hspace{0.05cm},\]
\[ s_{\rm BP1}(t) \hspace{-0.1cm} = \hspace{-0.1cm} A \cdot \cos( 2\pi \cdot( f_{\rm T} - \Delta f_{\rm A})\cdot t)\hspace{0.05cm}.\]

$f_{\rm T}$  bezeichnet die Trägerfrequenz und  $\Delta f_{\rm A}$  den (einseitigen) Frequenzhub. Die mittlere Energie pro Symbol bzw. pro Bit ist jeweils gleich:

\[E_{\rm S} = E_{\rm B} = E = \frac{A^2 \cdot T}{2} \hspace{0.05cm}.\]

Hier soll nun die FSK im äquivalenten Tiefpass–Signalraum betrachtet werden. Dann gilt:

\[s_{\rm TP0}(t) \hspace{-0.1cm} = \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ s_{\rm TP1}(t) \hspace{-0.1cm} = \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]

und für das innere Produkt erhält man

\[< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm} = \hspace{-0.1cm} \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = A^2 \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t} \,{\rm d} t = \frac{A^2}{{\rm j} \cdot 4\pi \cdot \Delta f_{\rm A}} \cdot \big [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot T} - 1 \big ] \hspace{0.05cm}.\]

$\text{Definition:}$  Der  Modulationsindex  $h = 2 \cdot \Delta f_{\rm A}\hspace{0.03cm}\cdot T$  ist das Verhältnis zwischen dem gesamten (beideseitigen) Frequenzhub  $(2 \cdot \Delta f_{\rm A})$  und der Symbolrate  $(1/T)$.


Die beiden Signale sind dann orthogonal, wenn dieses innere Produkt gleich Null ist:

\[< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm} = \frac{A^2\cdot T}{{\rm j} \cdot 2\pi \cdot h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2h} - 1 \right ] = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} h = 2 \cdot \Delta f_{\rm A} \cdot T = 1,\hspace{0.1cm} 2, \hspace{0.1cm}3,\ \text{ ... }\hspace{0.05cm}.\]
Signalraumkonstellation der FSK, falls  $h$  ganzzahlig

Setzt man den Modulationsindex  $h$  als ganzzahlig voraus, so lassen sich die Tiefpass–Signale in der Form

\[s_{\rm TP0}(t) = \sqrt{E} \cdot \xi_1(t) \hspace{0.05cm},\]
\[s_{\rm TP1}(t) = \sqrt{E} \cdot \xi_2(t)\]

mit komplexen Basisfunktionen darstellen:

\[\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ \xi_2(t)= \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}.\]

Es ergibt sich die hier skizzierte Signalraumdarstellung der binären FSK.

$\text{Fazit:}$ 

  • Bei ganzzahligem Modulationsindex  $h$  sind die Tiefpass-Signale  $s_{\rm TP0}(t)$  und  $s_{\rm TP1}(t)$  der binären FSK zueinander orthogonal.
  • Damit ergibt sich für die Symbolfehlerwahrscheinlichkeit (Herleitung in der Grafik):
\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left ( \sqrt{ { {E_{\rm S} } }/{ N_0} }\right ) \hspace{0.05cm}.\]
  • Die Bitfehlerwahrscheinlichkeit hat den gleichen Wert:   $p_{\rm B} = p_{\rm S}$.


Hinweis: Im Gegensatz zur Darstellung in [KöZ08][1] ist hier der Frequenzhub  $\Delta f_{\rm A}$  einseitig definiert. Deshalb unterscheiden sich die Gleichungen teilweise um den Faktor  $2$. Arbeitet man jedoch mit dem Modulationsindex  $h$, so gibt es keine Unterschiede.

Minimum Shift Keying (MSK)


Unter  Minimum Shift Keying  (MSK) versteht man ein binäres FSK–System mit dem Modulationsindex  $h = 0.5$   ⇒   Frequenzhub $\Delta f_{\rm A} = 1/(2T)$. Die Grafik zeigt ein MSK–Signal für die Trägerfrequenz  $ f_{\rm T} = 4/T$:

  • Die beiden Frequenzen innerhalb des Sendsignals sind  $ f_{\rm 0} = f_{\rm T} + 1/(4T)$  zur Darstellung der Nachricht  $m_0$  (gelbe Hinterlegung) sowie  $ f_{\rm 1} = f_{\rm T} -1/(4T)$   ⇒   Nachricht  $m_1$  (grüne Hinterlegung).
  • In der Grafik ist auch eine kontinuierliche Phasenanpassung bei den Übergängen berücksichtigt, um die Signalbandbreite weiter zu verringern. Man spricht dann von  Continuous Phase Modulation  (CPM).


Quellensignal und Bandpass–MSK–Signal

Ohne diese Phasenanpassung lauten die beiden Bandpass–Signalformen:

\[s_{\rm BP0}(t) = \sqrt{2E/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ s_{\rm BP1}(t) = \sqrt{2E/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.\]

Bildet man das innere Produkt der Bandpass–Signale, so erhält man mit  $f_{\rm \Delta} = f_0 - f_1$  und  $f_{\rm \Sigma} = f_0 + f_1$:

\[< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm} \cdot \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} = {2E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_0 t) \cdot \cos( 2\pi f_1 t)\,{\rm d} t = {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Delta} t) \,{\rm d} t + {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Sigma} t) \,{\rm d} t\]
\[ \Rightarrow \hspace{0.3cm}< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm} \cdot \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} = {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm} \cos( \pi \cdot {t}/{T}) \,{\rm d} t + {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm}\cos( 2\pi \cdot 2 f_{\rm T} \cdot t) \,{\rm d} t \hspace{0.05cm}.\]

Das erste Integral ist Null $($Integral über "Cosinus" von  $0$  bis  $\pi)$. Für  $f_{\rm T} \gg 1/T$, was man in der Praxis voraussetzen kann, verschwindet auch das zweite Integral. Damit erhält man für das innere Produkt:  

$$< \hspace{0.02cm} s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm}= 0 \hspace{0.05cm}.$$

$\text{Fazit:}$ 

  • Damit ist gezeigt, dass für den Modulationsindex  $h = 0.5$  (also  MSK) und allen Vielfachen hiervon die beiden Bandpass–Signale orthogonal sind.
  • Mit den neuen reellen Basisfunktionen
\[\varphi_1(t) = \sqrt{2/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ \varphi_2(t) = \sqrt{2/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\]
erhält man die genau gleiche Signalraumkonstellation wie für geradzahliges  $h = 1, 2, 3, \ \text{ ...}$.
  • Es ergibt sich somit auch die gleiche Fehlerwahrscheinlichkeit:
\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left ( \sqrt{ { {E_{\rm S} } }/{ N_0} }\right ) = p_{\rm B} \hspace{0.05cm}.\]

Aufgaben zum Kapitel


Aufgabe 4.11: On-Off-Keying und Binary Phase Shift Keying

Aufgabe 4.11Z: Nochmals OOK und BPSK

Aufgabe 4.12: Berechnungen zur 16-QAM

Aufgabe 4.13: Vierstufige QAM

Aufgabe 4.14: 8-PSK und 16-PSK

Aufgabe 4.14Z: 4-QAM und 4-PSK

Aufgabe 4.15: Optimale Signalraumbelegung

Aufgabe 4.16: Binary Frequency Shift Keying

Quellenverzeichnis

  1. Kötter, R., Zeitler, G.: Nachrichtentechnik 2. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.