Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Characteristics of GSM

From LNTwww

System architecture and basic units of GSM


GSM  (Global System for Mobile Communication)  is a strongly hierarchically structured system of different network components. You can see from the graphic:

GSM system architecture
  • The mobile station (MS) communicates via the radio interface with the nearest Base Transceiver Station  (BTS, transmit and receive base station).
  • Several such BTS are grouped together area by area and are jointly subordinate to a  Base Station Controller  (BSC, control station).
  • The  Base Station Subsystem  (BSS) consists of a multitude of BTS and several BSC. In the graphic such a BSS is framed in blue.
  • Each BSC is connected to a  Mobile Switching Center  (MSC, switching computer), whose function is comparable to a switching node in the fixed network.
  • Das  Gateway Mobile Switching Center  (GMSC) is responsible for the connection between the fixed and mobile networks. For example, if a mobile subscriber is called from the fixed network, the GMSC determines the responsible MSC and transfers the call.
  • Das  Operation and Maintenance Center  (OMC) monitors a part of the mobile network. It also takes on organizational tasks such as traffic flow control, charging, security management, etc.


More detailed information on GSM–system architecture and the individual network components can be found in the chapter  General Description of GSM  of the book "Examples of Message Systems".

Multiple access with GSM


Realization of FDMA and TDMA with „GSM 900”

GSM uses two multiple access methods in parallel:

  • Frequency Division Multiple Access  (FDMA),
  • Time Division Multiple Access (TDMA).



The graphic and the following description is valid for the original system "GSM 900" (D–net). For "GSM/DCS 1800" (E–Netz) comparable statements apply.

  • In the D–network, a bandwidth of  25 MHz  is provided for uplink and downlink respectively (duplex spacing:  45 MHz). This is called Frequency Division Duplex  (FDD). For the E–network, the bandwidth is  75 MHz  and the duplex spacing is  95 MHz.
    .
  • Uplink and downlink bands are divided into frequency bands of width  200 kHz. Taking into account the protection areas at the respective edges, there are   NF=124  (in the D–net) or   NF=374  (in the E–net) frequency channels.
  • Each cell is assigned a subset of the frequencies   ⇒   Cell Allocation. Neighboring cells usually work at different frequencies, for example with the reuse–factor  3, as in section  Cellular Architecture indicated by the colors white, yellow, blue.
    .
  • The  124  GSM–Frequency channels are further divided by time division multiplexing (TDMA). Each FDMA–channel is divided into so-called TDMA–frames, which in turn each comprise  NT=8  time slots (Time–Slots).
  • The slots are periodically assigned to the individual GSM–users and each contain a so-called  Burst. Each user has a time slot available in each TDMA–frame. A bundling (maximum six per user) is only possible with GPRS/EDGE.
    .
  • The TDMA–frames of the uplink are sent delayed by three slots compared to the downlink:   Time Division Duplex (TDD). The hardware of the mobile station can thus be used for sending and receiving a message in equal measure.


Data and frame structure for GSM


The mapping of logical channels to physical channels is done using the GSM–frame structure. Here we restrict ourselves to traffic channels and to the mapping in time. In this case, each multiframe of duration   120 ms  is divided in  26  TDMA–frames (two of them for control channels) of duration  4,615 ms . Thus, the duration of a time slot is approximately  T_{\rm Z} = 576.9\ \rm µ s.
.

Data and frame structure for GSM

You can see from this graphic:

  • In each time slot a so-called burst is transmitted, whose duration corresponds to  156.25  bits. The bit duration is then  T_{\rm B} = 576.9\ \rm µ s/156.25 ≈ 3.692 \ \rm µs  and for the total bulk data rate:
R_{\rm ges} = {1}/{T_{\rm B}}}= 270,833\,{\rm kbit/s}\hspace{0.05cm}.
  • The  bulk data rate   of each user is then  R_{\rm bulk} = 33,854 \ \rm kbit/s. But since in every normal burst only  2 · 57 = 114  data bits (highlighted blue in the graphic) are transmitted, it results in the lower  net data rate'  R_{\rm net} = 22.8 \ \rm kbit/s.
  • This net data rate also takes the channel coding into account. In the case of a speech signal, for every  20\ \rm kbit/s–speech frame  456  bits are transmitted, which results in exactly the rate  22.8 \ \rm kbit/s . Without channel coding, the data rate would be only  13 \ \rm kbit/s.
    .
  • In addition to the traffic data, a normal burst also contains
–   twice three tailbits (red, during this time the channel is remeasured),
–   two signaling bits (green),
–   the Guard Period  (GP) with  8.25  bit duration (grey, ca.  30.5 \ \rm µ s), and
–   26  bit for training sequence (for channel estimation and synchronization),

which increases the data rate from  22.8  to  33.854 \ \rm kbit/s .

Note:

  • In GSM, besides the normal burst there are other bursts playing  types of bursts  (Frequency Correction Burst, Synchronization Burst, Dummy Burst, Access Burst ) a role.
  • All these bursts have a uniform length of  156.25  bit durations. This is discussed in more detail in the  Excercise 3.2 .

Modulation method for GSM


With GSM, only a bandwidth of  B = 200 \ \rm kHz  is available per frequency channel, in which a total data rate (for eight users) of  R_{\rm ges} = 270,833 \ \rm kbit/s  must be transmitted. A modulation method with a bandwidth efficiency of at least

\beta \ge {R_{\rm ges}}/{B} \approx 1.35 \,\,{\rm bit/s/Hz}.

GSM uses the very bandwidth-efficient modulation method  checkLink:_Buch_5 ⇒ Gaussian Minimum Shift Keying  (GMSK). It should again be expressly mentioned that this modulation procedure, just like the FDMA/TDMA–Multiple Access, is exclusively based on the air interface between the  Mobile Station  (MS) and the  Base Transceiver Station   (BTS), which is highlighted in yellow in the  System_architecture graphic  at the beginning of the chapter.

GMSK has already been described in chapter  checkLink:_Buch_5 ⇒ Properties of nonlinear procedures  of the book "Modulation Methods". The most important properties are briefly summarized here.

  • GMSK is a special form of binary  checkLink:_Buch_5 ⇒ Frequency Shift Keying  (FSK). A prerequisite for the orthogonality between the two waveforms is that the modulation index  h  is a multiple of  0.5 . For integer values of  h  the demodulation can also be performed non-coherently.
  • For GSM you use the smallest possible modulation index  h = 0.5. A higher value would require a much larger bandwidth. Such an FSK with  h = 0.5  is also called checkLink:_Buch_5 ⇒ Minimum Shift Keying  (MSK). However, a coherent demodulation is then required.

Regarding the topic treated here (coherent or non-coherent demodulation of FSK) we refer to two Exercises in the book "Digital Signal Transmission":

\text{Example 1:}  The following graphic is to clarify the previous statements:

block diagram and signals with GMSK
  • Starting from a dirac-shaped source signal  q_\delta(t)  at point (1) you pass through a filter with the rectangular impulse response  g_{\rm R}(t)  to the rectangular signal  q_{\rm R}(t)  at point (2).
  • If the Gaussian low pass with the impulse response  h_{\rm G}(t)  were to be omitted   ⇒   q_{\rm G}(t) = q_{\rm R}(t), a sectionwise linear phase function  \phi(t) would result at point (4). All phase values would be multiples of  π/2 at multiples of the symbol duration  T .
  • After the phase modulator, a binary FSK–signal  s(t)  would appear at point (5) with only two frequencies. This signal is at the same time a MSK–signal due to the minimum modulation index  h = 0.5  in case of orthogonality.
  • Through the Gaussian low pass  H_{\rm G}(f)  with the cutoff frequency  f_{\rm G}= 0.45/T  (valid for GSM) the frequency pulse  g(t)  is no longer rectangular but corresponds to the rectangular response of  H_{\rm G}(f). According to the Fourier transformation,  g(t) = g_{\rm R}(t) \star h_{\rm G}(t) applies.
  • Thus, the phase function  \phi(t)  is no longer linear in sections but the corners are rounded, as can be seen from the phase function at point (4). The violet–dotted curve applies to the data sequence assumed at point (1).
  • The signal  s(t)  at point (5) of the block diagram is the GMSK–signal.


Anmerkung:  Das GMSK–Signal beinhaltet deutlich mehr als nur zwei diskrete Frequenzen. Sein Leistungsdichtespektrum fällt sehr schnell ab, siehe  Diagramm  im Buch „Beispiele von Nachrichtensystemen”. Aus der obigen Zeitdarstellung am Punkt (5) des Blockschaltbildes ist dieser Sachverhalt allerdings nur schwer zu erkennen.

GSM–Erweiterungen


GSM wurde als europäisches Mobilfunksystem für Telefongespräche konzipiert und entwickelt mit der Zusatzoption der Datenübertragung, aber nur mit geringer Datenrate  (9.6 \ \rm kbit/s). Die Standardisierung der  GSM–Phase 2  ab 1995 beinhaltete aber bereits erste Weiterentwicklungen und einige neue, bereits von ISDN bekannte und von den Nutzern geschätzte Zusatzdienste.

In den Jahren von 1997 bis 2000 wurden neue Datendienste mit höheren Bitraten entwickelt, die man der  GSM–Phase 2+   (bzw. GSM–Phase 2.5) zurechnet:

  • High–Speed Circuit–Switched Data  (HSCSD) bietet bei ausreichend gutem Kanal durch eine höhere Coderate (Punktierung des Faltungscodes) eine leitungsorientierte Übertragung mit  14.4 \ \rm kbit/s  (gegenüber 9.6 \ \rm kbit/s). Es ermöglicht zudem eine Kanalbündelung durch die Kombination mehrerer Zeitschlitze   ⇒   „Multislot Capability”. Bei einer Bündelung von vier Zeitschlitzen kommt man so auf eine maximale Übertragungsrate von  57.6 \ \rm kbit/s.
  • General Packet Radio Service  (GPRS) ermöglicht die Kommunikation mit anderen Netzen wie etwa dem Internet oder firmeninternen Intranets. Es ist paketorientiert (statt leitungsorientiert) und unterstützt viele Datenübertragungsprotokolle, zum Beispiel das Internet Protocol (IP), X.25 und Datex–P. Die Gebühren ergeben sich bei GPRS nicht aus der Verbindungsdauer, sondern aus der übertragenen Datenmenge. Ein GPRS–Nutzer profitiert von den kürzeren Zugriffszeiten und der höheren Datenrate bis  21.4 \ \rm kbit/s. Durch die Bündelung von sechs Zeitschlitzen erreicht man so maximal  128.4 \ \rm kbit/s.
  • Enhanced Data Rates for GSM Evolution  (EDGE) benutzt neben dem GSM–Standard „GMSK” als weiteres Modulationsverfahren  8–PSK, so dass mit jedem Symbol drei Datenbit übertragen werden und auf diese Weise die Datenrate (theoretisch) verdreifacht werden kann.

Bei der Kombination aus GPRS und EDGE – man spricht dann von  E–GPRS  – gibt es neun verschiedene  Modulation and Coding Schemes  (MCS), zwischen denen der Betreiber wählen kann:

  • mit GMSK– oder mit 8–PSK–Modulation,
  • resultierende Coderaten zwischen  0.37  und  1, sowie
  • Datenraten zwischen  8.8 \ \rm kbit/s  (für MCS–1) und  59.2 \ \rm kbit/s  (für MCS–9).

In der Praxis maximal anwendbar sind allerdings MCS–8  (54.4 \ \rm kbit/s)  und sieben Zeitschlitze. Damit erreicht man immerhin  380.8 \ \rm kbit/s und damit die Größenordnung von UMTS  (384 \ \rm kbit/s).

Erwähnt werden soll noch  EDGE Evolution  oder „Evolved EDGE”, also die Weiterentwicklung der Weiterentwicklung von GSM in Release 7 (Dezember 2007). Hierfür werden von den Entwicklern Datenraten bis zu  1 \ \rm Mbit/s  und halbierte Latenzzeiten  (10 \ \rm ms statt 20 \ \rm ms)  angegeben. Man erreicht diese Werte unter Anderem

  • durch  32–QAM– oder  16–QAM–Modulation anstelle von 8–PSK,
  • eine verbesserte Fehlerkorrektur durch den Einsatz von  Turbo–Codes, und
  • eine Erhöhung der Symbolrate von  270.833 \ \rm ksymbol/s  um  20\%  auf  325\ \rm ksymbol/s.

Aufgaben zum Kapitel


Aufgabe 3.5: GMSK–Modulation

Zusatzaufgabe 3.5Z: GSM–Netzkomponenten