Difference between revisions of "Digital Signal Transmission/Redundancy-Free Coding"

From LNTwww
 
(60 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Codierte und mehrstufige Übertragung
+
|Untermenü=Coded and Multilevel Transmission
 
|Vorherige Seite=Grundlagen der codierten Übertragung
 
|Vorherige Seite=Grundlagen der codierten Übertragung
 
|Nächste Seite=Blockweise Codierung mit 4B3T-Codes
 
|Nächste Seite=Blockweise Codierung mit 4B3T-Codes
Line 7: Line 7:
  
  
== Blockweise  Codierung vs. symbolweise Codierung ==
+
== Symbolwise coding vs. blockwise coding ==
 
<br>
 
<br>
Bei der Übertragungscodierung unterscheidet man zwischen zwei Arten, der symbolweisen und der blockweisen Codierung.
+
In transmission coding,&nbsp; a distinction is made between two fundamentally different methods:
  
Bei '''symbolweiser Codierung''', die im Kapitel  [[Digitalsignal%C3%BCbertragung/Symbolweise_Codierung_mit_Pseudotern%C3%A4rcodes|Symbolweise Codierung mit Pseudoternärcodes]] im Detail beschrieben ist, wird mit jedem ankommenden Quellensymbol $q_\nu$ ein Codesymbol $c_\nu$ erzeugt, das außer vom aktuellen Symbol auch von vorangegangenen Symbolen $q_{\nu -1}$, $q_{\nu -2}$, ... abhängen kann.<br>
+
'''Symbolwise coding'''
*Typisch für alle Übertragungscodes zur symbolweisen Codierung ist, dass die Symboldauer $T_c$ des meist mehrstufigen und redundanten Codersignals $c(t)$ mit der  Bitdauer $T_q$ der als binär und redundanzfrei angenommenen Nachrichtenquelle übereinstimmt.<br>
+
*Here,&nbsp; an encoder symbol &nbsp;$c_\nu$&nbsp; is generated with each incoming source symbol &nbsp;$q_\nu$,&nbsp; which can depend not only on the current symbol but also on previous symbols &nbsp;$q_{\nu -1}$, &nbsp;$q_{\nu -2}$, ... <br>
  
 +
*It is typical for all transmission codes for symbolwise coding that the symbol duration &nbsp;$T_c$&nbsp; of the usually multilevel and redundant encoded  signal &nbsp;$c(t)$&nbsp; corresponds to the bit duration &nbsp;$T_q$&nbsp; of the source signal,&nbsp; which is assumed to be binary and redundancy-free.<br>
  
Dagegen wird bei der '''blockweisen Codierung''' jeweils einem Block von $m_q$ binären Quellensymbolen $(M_q = 2)$ der Bitdauer $T_q$ eine ein&ndash;eindeutige Sequenz von $m_c$ Codesymbolen aus einem Alphabet mit dem Codesymbolumfang $M_c  \ge 2$ zugeordnet.  
+
 
*Für die ''Symboldauer eines Codesymbols'' gilt dann:
+
Details can be found in the chapter &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"Symbolwise Coding with Pseudo-Ternary Codes"]].
 +
 
 +
 
 +
'''Blockwise coding'''
 +
*Here,&nbsp; a block of &nbsp;$m_q$&nbsp; binary source symbols &nbsp;$(M_q = 2)$&nbsp; of bit duration &nbsp;$T_q$&nbsp; is assigned a one-to-one sequence of &nbsp;$m_c$&nbsp;  encoder symbols from an alphabet with  encoder symbol set size &nbsp;$M_c  \ge 2$.&nbsp;
 +
 +
*For the&nbsp; '''symbol duration of an encoder symbol'''&nbsp; then holds:
 
:$$T_c = \frac{m_q}{m_c} \cdot T_q \hspace{0.05cm},$$
 
:$$T_c = \frac{m_q}{m_c} \cdot T_q \hspace{0.05cm},$$
*Die ''relative Redundanz eines Blockcodes'' beträgt allgemein
+
*The&nbsp; '''relative redundancy of a block code'''&nbsp; is in general
 
:$$r_c = 1- \frac{R_q}{R_c} = 1- \frac{T_c}{T_q} \cdot \frac{{\rm log_2}\hspace{0.05cm} (M_q)}{{\rm log_2} \hspace{0.05cm}(M_c)} = 1- \frac{T_c}{T_q \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\hspace{0.05cm}.$$
 
:$$r_c = 1- \frac{R_q}{R_c} = 1- \frac{T_c}{T_q} \cdot \frac{{\rm log_2}\hspace{0.05cm} (M_q)}{{\rm log_2} \hspace{0.05cm}(M_c)} = 1- \frac{T_c}{T_q \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\hspace{0.05cm}.$$
  
Genauere Angaben zu den Blockcodes finden Sie im Kapitel [[Digitalsignal%C3%BCbertragung/Blockweise_Codierung_mit_4B3T-Codes|Blockweise Codierung mit 4B3T-Codes]].<br>
+
More detailed information on the block codes can be found in the chapter&nbsp; [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"Block Coding with 4B3T Codes"]].<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Bei den ''Pseudoternärcodes'' wird durch die Erhöhung der Stufenzahl von $M_q = 2$ auf  $M_c = 3$ bei gleicher Symboldauer $(T_c = T_q)$ eine relative Redundanz von $r_c = 1 - 1/\log_2 \hspace{0.05cm} (3) \approx 37\%$ hinzugefügt.  
+
$\text{Example 1:}$&nbsp; For the&nbsp; "pseudo-ternary codes"',&nbsp; increasing the number of levels from &nbsp;$M_q = 2$&nbsp; to &nbsp;$M_c = 3$&nbsp; for the same symbol duration &nbsp;$(T_c = T_q)$&nbsp; adds a relative redundancy of &nbsp;$r_c = 1 - 1/\log_2 \hspace{0.05cm} (3) \approx 37\%$.&nbsp;
  
Im Gegensatz dazu arbeiten die so genannten ''4B3T&ndash;Codes'' auf Blockebene mit den Codeparametern $m_q = 4$, $M_q = 2$, $m_c = 3$ und $M_c = 3$ und besitzen eine relative Redundanz von ca. $16\%$. Das Sendesignal $s(t)$ ist hier wegen ${T_c}/{T_q} = 4/3$ niederfrequenter als bei uncodierter Übertragung, was die teuere Bandbreite verringert und zudem für viele Nachrichtenkanäle auch aus übertragungstechnischer Sicht von Vorteil ist.}}<br>
+
In contrast,&nbsp; the so-called&nbsp; "4B3T codes"&nbsp; operate at block level with the code parameters &nbsp;$m_q = 4$, &nbsp;$M_q = 2$, &nbsp;$m_c = 3$&nbsp; and &nbsp;$M_c = 3$&nbsp; and have a relative redundancy of approx. &nbsp;$16\%$.&nbsp; Because of &nbsp;${T_c}/{T_q} = 4/3$,&nbsp; the transmitted signal &nbsp;$s(t)$&nbsp; is lower in frequency here than in uncoded transmission, which reduces the expensive bandwidth and is also advantageous for many channels from a transmission point of view.}}<br>
  
  
== Quaternärsignal mit <i>r<sub>c</sub></i> = 0 und Ternärsignal mit <i>r<sub>c</sub></i> &asymp;  0==
+
== Quaternary signal with&nbsp; $r_{\rm c} \equiv 0$&nbspand ternary signal with&nbsp; $r_{\rm c} \approx 0$==
 
<br>
 
<br>
Ein Sonderfall eines Blockcodes ist die redundanzfreie Codierung. Ausgehend vom redundanzfreien binären Quellensignal $q(t)$ mit Bitdauer $T_q$ wird ein $M_c$&ndash;stufiges Codersignal $C(t)$ generiert, wobei die Symboldauer $T_c = T_q \cdot \log_2 \hspace{0.05cm} (M_c)$. Somit ergibt sich für die relative Redundanz:
+
A special case of a block code is a&nbsp; '''redundancy-free multilevel code'''.&nbsp;
:$$r_c = 1- \frac{T_c}{T_q \cdot {\rm log_2}\hspace{0.05cm} (M_c)} = 1- \frac{m_q}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)}= 0 \hspace{0.05cm}.$$
+
 
 +
*Starting from the redundancy-free binary source signal &nbsp;$q(t)$&nbsp; with bit duration &nbsp;$T_q$,&nbsp;
 +
*a &nbsp;$M_c$&ndash;level encoded signal &nbsp;$c(t)$&nbsp; with symbol duration &nbsp;$T_c = T_q \cdot \log_2 \hspace{0.05cm} (M_c)$&nbsp; is generated.
 +
 
 +
 
 +
Thus,&nbsp; the relative redundancy is given by:
 +
:$$r_c = 1- \frac{T_c}{T_q \cdot {\rm log_2}\hspace{0.05cm} (M_c)} = 1- \frac{m_q}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\to 0 \hspace{0.05cm}.$$
  
Dabei gilt:
+
Thereby holds:
*Ist $M_c$ eine Potenz zur Basis $2$, so werden $m_q = \log_2 \hspace{0.05cm} (M_c)$ zu einem einzigen Codesymbol $(m_c = 1)$ zusammengefasst. In diesem Fall ist die relative Redundanz tatsächlich $r_c = 0$.<br>
+
#If &nbsp;$M_c$&nbsp; is a power to the base &nbsp;$2$,&nbsp; then &nbsp;$m_q = \log_2 \hspace{0.05cm} (M_c)$&nbsp; are combined into a single  encoder symbol &nbsp;$(m_c = 1)$.&nbsp; In this case, the relative redundancy is actually &nbsp;$r_c = 0$.<br>
*Ist $M_c$ keine Zweierpotenz, so ist eine hundertprozentig redundanzfreie Blockcodierung nicht möglich. Codiert man beispielweise $m_q = 3$ Binärsymbole durch $m_c = 2$ Ternärsymbole und setzt $T_c = 1.5 \cdot T_q$, so verbleibt eine relative Redundanz von $r_c = 1-1.5/ \log_2 \hspace{0.05cm} (3) \approx 5\%$.<br>
+
#If &nbsp;$M_c$&nbsp; is not a power of two,&nbsp; a hundred percent redundancy-free block coding is not possible.&nbsp; For example, if &nbsp;$m_q = 3$&nbsp; binary symbols are encoded by &nbsp;$m_c = 2$&nbsp; ternary symbols and &nbsp;$T_c = 1.5 \cdot T_q$&nbsp; is set,&nbsp; a relative redundancy of &nbsp;$r_c = 1-1.5/ \log_2 \hspace{0.05cm} (3) \approx 5\%$&nbsp; remains.<br>
*Codiert man einen Block von $128$ Binärsymbolen mit $81$ Ternärsymbolen, so ergibt sich eine relative Coderedundanz von weniger als $r_c = 0.3\%$.<br><br>
+
#Encoding a block of &nbsp;$128$&nbsp; binary symbols with &nbsp;$81$&nbsp; ternary symbols results in a relative code redundancy of less than &nbsp;$r_c = 0.3\%$.<br><br>
  
Zur Vereinfachung der Schreibweise und zur Nomenklaturanpassung an das [[Digitalsignalübertragung| erste Hauptkapitel]] verwenden wir im Folgenden
+
{{BlueBox|TEXT=
*die Bitdauer $T_{\rm B} = T_q$ des redundanzfreien binären Quellensignals,  
+
To simplify the notation and to align the nomenclature with the [[Digital_Signal_Transmission| "first main chapter"]],&nbsp; we use in the following
*die Symboldauer $T = T_c$ von Codersignal und Sendesignal, sowie
+
*the bit duration &nbsp;$T_{\rm B} = T_q$&nbsp; of the redundancy-free binary source signal,
*die Stufenzahl $M = M_c$.<br>
+
*the symbol duration &nbsp;$T = T_c$&nbsp; of the encoded  signal and the transmitted signal, and
 +
*the number &nbsp;$M = M_c$&nbsp; of levels.<br>}}
  
  
Damit ergibt sich für das Sendesignal die identische Form  wie bei der Binärübertragung, jedoch mit anderen Amplitudenkoeffizienten:
+
This results in the identical form for the transmitted signal as for the binary transmission,&nbsp; but with different amplitude coefficients:
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm mit}\hspace{0.3cm} a_\nu \in \{ a_1, \text{...} , a_\mu , \text{...} , a_{ M}\}\hspace{0.05cm}.$$
+
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm} a_\nu \in \{ a_1, \text{...} , a_\mu , \text{...} , a_{ M}\}\hspace{0.05cm}.$$
  
Die Amplitudenkoeffizienten $a_\nu$ können prinzipiell beliebig &ndash; aber eindeutig &ndash; den Codersymbolen $c_\nu$ zugeordnet werden. Es ist zweckmäßig, die Abstände zwischen benachbarten Amplituden gleich groß zu wählen. Bei bipolarer Signalisierung $(-1 \le a_\nu \le +1)$ gilt somit für die möglichen Amplitudenkoeffizienten mit dem Laufindex $\mu = 1$, ... , $M$:
+
*In principle,&nbsp; the amplitude coefficients &nbsp;$a_\nu$&nbsp; can be assigned arbitrarily&nbsp; &ndash; but uniquely &ndash;&nbsp; to the encoder symbols &nbsp;$c_\nu$.&nbsp; It is convenient to choose equal distances between adjacent amplitude coefficients.
 +
 +
*Thus,&nbsp; for bipolar signaling &nbsp;$(-1 \le a_\nu \le +1)$,&nbsp; the following applies to the possible amplitude coefficients with index &nbsp;$\mu = 1$, ... , $M$:
 
:$$a_\mu = \frac{2\mu - M - 1}{M-1} \hspace{0.05cm}.$$
 
:$$a_\mu = \frac{2\mu - M - 1}{M-1} \hspace{0.05cm}.$$
*Unabhängig von der Stufenzahl $M$ erhält man hieraus für die äußeren Amplitudenkoeffizienten $a_1 = -1$ und $a_M = +1$.  
+
*Independently of the level number &nbsp;$M$&nbsp; one obtains from this for the outer amplitude coefficients &nbsp;$a_1 = -1$&nbsp; and &nbsp;$a_M = +1$.
*Bei einem ternären Signal $(M = 3)$ sind die möglichen Amplitudenkoeffizienten $-1$, $0$ und $+1$.  
+
*Bei einem Quaternärsignal $(M = 4)$ gibt es die  Koeffizienten $-1$, $-1/3$, $+1/3$ und $+1$<br>
+
*For a ternary signal &nbsp;$(M = 3)$,&nbsp; the possible amplitude coefficients are &nbsp;$-1$, &nbsp;$0$&nbsp; and &nbsp;$+1$.
 +
 +
*For a quaternary signal &nbsp;$(M = 4)$,&nbsp; the coefficients are &nbsp;$-1$, &nbsp;$-1/3$, &nbsp;$+1/3$&nbsp; and &nbsp;$+1$.<br>
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Die Grafik zeigt oben das quaternäre redundanzfreie Sendesignal
+
$\text{Example 2:}$&nbsp; The graphic above shows the quaternary redundancy-free transmitted signal &nbsp;$s_4(t)$&nbsp; with the possible amplitude coefficients &nbsp;$\pm 1$&nbsp; and &nbsp;$\pm 1/3$,&nbsp; which results from the binary source signal &nbsp;$q(t)$&nbsp; shown in the center.
$s_4(t)$ mit den möglichen Amplitudenkoeffizienten $\pm 1$ und $\pm 1/3$, das sich aus dem in der Mitte dargestellten binären Quellensignal $q(t)$ ergibt.  
+
[[File:EN_Dig_T_2_2_S2.png|right|frame|Redundancy-free ternary and quaternary signal|class=fit]]
 +
 
 +
*Two binary symbols each are combined to a quaternary coefficient according to the table with red background. The symbol duration &nbsp;$T$&nbsp; of the signal &nbsp;$s_4(t)$&nbsp; is twice the bit duration &nbsp;$T_{\rm B}$&nbsp; $($previously: &nbsp;$T_q)$&nbsp; of the source signal.  
  
Jeweils zwei Binärsymbole werden nach der rot hinterlegten Tabelle zu einem quaternären Amplitudenkoeffizienten zusammengefasst. Die Symboldauer $T$ des Signals $s_4(t)$ ist doppelt so groß wie die Bitdauer $T_{\rm B}$ (vorher: $T_q$) des Quellensignals.  
+
*If &nbsp;$q(t)$&nbsp; is redundancy-free, it also results in a redundancy-free quaternary signal, i.e., the possible amplitude coefficients &nbsp;$\pm 1$&nbsp; and &nbsp;$\pm 1/3$&nbsp; are equally probable and there are no statistical ties within the sequence &nbsp;$⟨a_ν⟩$.&nbsp;
 +
  
Ist $q(t)$ redundanzfrei, so ergibt sich auch ein redundanzfreies Quaternärsignal, das heißt, die möglichen Amplitudenkoeffizienten $\pm 1$ und $\pm 1/3$ sind gleichwahrscheinlich und innerhalb der Folge $⟨a_ν⟩$  gibt es keine statistischen Bindungen.
 
  
[[File:P_ID1313__Dig_T_2_2_S2_v1.png|center|frame|Redundanzfreies Ternär- und Quaternärsignal|class=fit]]
+
The lower plot shows the $($almost$)$ redundancy-free ternary signal &nbsp;$s_3(t)$&nbsp; and the mapping of three binary symbols each to two ternary symbols.
Die untere Darstellung zeigt das (nahezu) redundanzfreie Ternärsignal $s_3(t)$ und die Zuordnung von jeweils drei Binärsymbolen zu zwei Ternärsymbolen. Die möglichen Amplitudenkoeffizienten sind $-1$, $0$ und $+1$ und es gilt $T/T_{\rm B} = 3/2$.
+
*The possible amplitude coefficients are &nbsp;$-1$, &nbsp;$0$&nbsp; and &nbsp;$+1$&nbsp; and the symbol duration of the encoded  signal &nbsp;$T = 3/2 \cdot T_{\rm B}$.
  
Man erkennt aus der angegebenen Zuordnungstabelle, dass die Amplitudenkoeffizienten $+1$ und $-1$ etwas häufiger auftreten als der Amplitudenkoeffizent$a_\nu = 0$. Hieraus ergibt sich die oben genannte relative Redundanz von $5\%$. Aus dem sehr kurzen Signalausschnitt &ndash; nur acht Ternärsymbole entsprechend zwölf Binärsymbole &ndash; ist diese Eigenschaft allerdings nicht zu erkennen.}}<br>
+
*It can be seen from the green mapping table that the coefficients &nbsp;$+1$&nbsp; and &nbsp;$-1$&nbsp; occur somewhat more frequently than the coefficient &nbsp;$a_\nu = 0$.&nbsp; This results in the above mentioned relative redundancy of&nbsp; $5\%$.
 +
 +
*However,&nbsp; from the very short signal section&nbsp; &ndash; only eight ternary symbols corresponding to twelve binary symbols &ndash;&nbsp; this property is not apparent.}}<br>
  
  
== AKF und LDS eines Mehrstufensignals ==
+
== ACF and PSD of a multilevel signal ==
 
<br>
 
<br>
Bei einem redundanzfrei codierten $M$&ndash;stufigen bipolaren Digitalsignal $s(t)$  gilt für die [[Digitalsignal%C3%BCbertragung/Grundlagen_der_codierten_%C3%9Cbertragung#AKF.E2.80.93Berechnung_eines_Digitalsignals_.281.29|diskrete Autokorrelationsfunktion]] (AKF) der Amplitudenkoeffizienten sowie für das entsprechende [[Digitalsignal%C3%BCbertragung/Grundlagen_der_codierten_%C3%9Cbertragung#LDS.E2.80.93Berechnung_eines_Digitalsignals|Leistungsdichtespektrum]] (LDS):
+
For a redundancy-free coded&nbsp; $M$&ndash;level bipolar digital signal &nbsp;$s(t)$,&nbsp; the following holds for the &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#ACF_calculation_of_a_digital_signal|"discrete auto-correlation function"]]&nbsp; $\rm (ACF)$&nbsp; of the amplitude coefficients and for the corresponding &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#PSD_calculation_of_a_digital_signal|"power-spectral density"]]&nbsp; $\rm (PSD)$:
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} \frac{M+ 1}{3 \cdot (M-1)}    \\
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} \frac{M+ 1}{3 \cdot (M-1)}    \\
 
  \\ 0  \\  \end{array} \right.\quad
 
  \\ 0  \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\ {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  \\ {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c}\lambda = 0, \\ \\  \lambda \ne 0 \\
 
\begin{array}{*{20}c}\lambda = 0, \\ \\  \lambda \ne 0 \\
 
\end{array}
 
\end{array}
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\it \Phi_a(f)}  =
+
\hspace{0.9cm}\Rightarrow \hspace{0.9cm}{\it \Phi_a(f)}  =
 
\frac{M+ 1}{3  \cdot (M-1)}= {\rm const.}$$
 
\frac{M+ 1}{3  \cdot (M-1)}= {\rm const.}$$
  
Unter Berücksichtigung der spektralen Formung durch den Sendegrundimpuls $g_s(t)$ mit Spektrum $G_s(f)$ erhält man:
+
Considering the spectral shaping by the basic transmission pulse &nbsp;$g_s(t)$&nbsp; with spectrum &nbsp;$G_s(f)$,&nbsp; we obtain:
 
:$$\varphi_{s}(\tau) = \frac{M+ 1}{3 \cdot (M-1)} \cdot \varphi^{^{\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet
 
:$$\varphi_{s}(\tau) = \frac{M+ 1}{3 \cdot (M-1)} \cdot \varphi^{^{\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet
 
\hspace{0.4cm}
 
\hspace{0.4cm}
Line 86: Line 108:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Man erkennt aus diesen Gleichungen:
+
One can see from these equations:
*Bei redundanzfreier mehrstufiger Codierung wird die Form von AKF und LDS allein durch den Sendegrundimpuls  $g_s(t)$ bestimmt.<br>
+
*In the case of redundancy-free multilevel coding,&nbsp; the shape of ACF and PSD is determined solely by the basic transmission pulse &nbsp;$g_s(t)$.&nbsp;<br>
*Die Höhe der AKF ist bei gleicher Form gegenüber dem redundanzfreien Binärsignal um den Faktor $\varphi_a(\lambda = 0) = {\rm E}[a_\nu^2] = (M + 1)/(3M-3)$ geringer.<br>
 
*Dieser Faktor beschreibt die geringere Signalleistung des Mehrstufensignals aufgrund der $M-2$ inneren Amplitudenkoeffizienten. Bei $M = 3$ ist dieser Faktor gleich $2/3$, bei $M = 4$ gleich $5/9$.<br>
 
*Ein fairer Vergleich zwischen Binärsignal und Mehrstufensignal bei gleichem Informationsfluss (gleicher äquivalenter Bitrate) sollte aber auch die unterschiedlichen Symboldauern berücksichtigen.<br>
 
*Dabei zeigt sich, dass ein Mehrstufensignal aufgrund des schmaleren LDS weniger Bandbreite benötigt als das Binärsignal, wenn die gleiche Information übertragen wird.<br><br>
 
  
 +
*The magnitude of the ACF is lower than the redundancy-free binary signal by a factor &nbsp;$\varphi_a(\lambda = 0) = {\rm E}\big[a_\nu^2\big] = (M + 1)/(3M-3)$&nbsp; for the same shape.<br>
  
{{GraueBox|TEXT= 
+
*This factor describes the lower signal power of the multilevel signal due to the &nbsp;$M-2$&nbsp; inner amplitude coefficients.&nbsp; For &nbsp;$M = 3$&nbsp; this factor is equal to &nbsp;$2/3$, for &nbsp;$M = 4$&nbsp; it is equal to &nbsp;$5/9$.<br>
$\text{Beispiel 3:}$&nbsp; Wir gehen von einer binären Quelle mit der Bitrate $R_{\rm B} = 1 \ \rm Mbit/s$ aus, so dass die Bitdauer $T_{\rm B} = 1 \ \rm \mu s$beträgt.  
 
*Bei Binärübertragung $(M = 2)$ ist die Symboldauer $T$ des Sendesignals gleich $T_{\rm B}$ und es ergibt sich bei NRZ&ndash;Rechteckimpulsen die blau eingezeichnete AKF in der linken Grafik (vorausgesetzt ist $s_0^2 = 10 \ \rm mW$).
 
*Beim Quaternärsystem $(M = 4)$ ist die Autokorrelationsfunktion ebenfalls dreieckförmig, aber um den Faktor $5/9$ niedriger und wegen $T = 2 \cdot T_{\rm B}$ doppelt so breit.
 
  
[[File:P_ID1332__Dig_T_2_2_S3_v1.png|center|frame|AKF und LDS von Binär- und Quaternärsignal|class=fit]]
+
*However,&nbsp; a fair comparison between binary and multilevel signal with the same information flow&nbsp; (same equivalent bit rate)&nbsp; should also take into account the different symbol durations.&nbsp; This shows that a multilevel signal requires less bandwidth than the binary signal due to the narrower PSD when the same information is transmitted.<br><br>
 
 
Das $\rm s^2$&ndash;förmige Leistungsdichtespektrum hat im binären Fall (blaue Kurve) bei den hier gewählten Signalparametern den Maximalwert ${\it \Phi}_{s}(f = 0) = 10^{-8} \ \rm  W/Hz$ (Fläche des blauen Dreiecks) und die erste Nullstelle liegt bei $f = 1 \ \rm MHz$.  
 
*Demgegenüber ist das Leistungsdichtespektrum des Quaternärsignals  (blaue Kurve) nur halb so breit und auch nur geringfügig höher. Hier gilt  ${\it \Phi}_{s}(f = 0) \approx 1.1 \cdot 10^{-8} \ \rm  W/Hz$  (Fläche des roten Dreiecks, gegenüber dem blauen Dreieck um den Faktor $0.55$ niedriger und um den Faktor $2$ breiter).}}<br>
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; We assume a binary source with bit rate &nbsp;$R_{\rm B} = 1 \ \rm Mbit/s$,&nbsp; so that the bit duration &nbsp;$T_{\rm B} = 1 \ \rm &micro; s$.&nbsp;
 +
[[File:Dig_T_1_5_S3_version2.png|right|frame|Auto-correlation function and power-spectral density of binary and quaternary signal|class=fit]]
  
== Fehlerwahrscheinlichkeit eines Mehrstufensystems ==
+
*For binary transmission &nbsp;$(M = 2)$,&nbsp; the symbol duration of the transmitted signal is &nbsp;$T =T_{\rm B}$&nbsp; and the auto-correlation function shown in blue in the left graph results for NRZ rectangular pulses (assuming &nbsp;$s_0^2 = 10 \ \rm mW$).
<br>
+
*For the quaternary system &nbsp;$(M = 4)$,&nbsp; the ACF is also triangular, but lower by a factor of &nbsp;$5/9$&nbsp; and twice as wide because of &nbsp;$T = 2 \cdot T_{\rm B}$.&nbsp;
Nachfolgend sehen Sie die Augendiagramme eines binären (<i>M</i> = 2), eines ternären
 
(<i>M</i> = 3) und eines quaternären (<i>M</i> = 4) Übertragungssystems. Hierbei ist für das Gesamtsystem <i>H</i><sub>S</sub>(<i>f</i>) &middot; <i>H</i><sub>E</sub>(<i>f</i>) von Sender und Empfänger eine Cosinus&ndash;Rolloff&ndash;Charakteristik mit dem Rolloff&ndash;Faktor <i>r</i> = 0.5 vorausgesetzt, so dass Impulsinteferenzen keine Rolle spielen. Das Rauschen wird als vernachlässigbar klein angenommen.
 
  
[[File:P_ID1315__Dig_T_2_2_S4_v1.png|center|frame|Augendiagramme bei redundanzfreien Binär-, Ternär- und Quaternärsignalen|class=fit]]
 
  
Das Augendiagramm wird vorwiegend zur Abschätzung von Impulsinterferenzen genutzt. Eine genaue Beschreibung folgt in [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_unter_Ber%C3%BCcksichtigung_von_Impulsinterferenzen#Definition_und_Aussagen_des_Augendiagramms Kapitel 3.2] Der folgende Text ist aber auch ohne Detailkenntnisse verständlich.<br>
+
The &nbsp;$\rm sinc^2$&ndash;shaped power-spectral density in the binary case&nbsp;  (blue curve)&nbsp; has the maximum value &nbsp;${\it \Phi}_{s}(f = 0) = 10^{-8} \ \rm  W/Hz$&nbsp; (area of the blue triangle)&nbsp; for the signal parameters selected here.&nbsp; The first zero point is at &nbsp;$f = 1 \ \rm MHz$.
 +
*The PSD of the quaternary signal&nbsp; (red curve)&nbsp; is only half as wide and slightly higher.&nbsp; Here: &nbsp;${\it \Phi}_{s}(f = 0) \approx 1.1 \cdot 10^{-8} \ \rm  W/Hz$.
 +
*The value results from the area of the red triangle.&nbsp; <br>This is lower &nbsp;$($factor &nbsp;$0.55)$&nbsp; and wider (factor $2$).}}<br>
  
Man erkennt aus obigen Darstellungen:
 
*Beim Binärsystem (<i>M</i> = 2) gibt es nur eine einzige Entscheiderschwelle: <i>E</i><sub>1</sub> = 0. Zu einem Übertragungsfehler kommt es, wenn die Rauschkomponente <i>d</i><sub>N</sub>(<i>T</i><sub>D</sub>) zum Detektionszeitpunkt größer ist als +<i>s</i><sub>0</sub> (falls <i>d</i><sub>S</sub>(<i>T</i><sub>D</sub>) = &ndash;<i>s</i><sub>0</sub>) bzw. wenn <i>d</i><sub>N</sub>(<i>T</i><sub>D</sub>) kleiner ist als &ndash;<i>s</i><sub>0</sub>, falls <i>d</i><sub>S</sub>(<i>T</i><sub>D</sub>) = +<i>s</i><sub>0</sub> gilt.<br>
 
*Beim Ternärsystem (<i>M</i> = 3) erkennt man zwei Augenöffnungen und zwei Entscheiderschwellen <i>E</i><sub>1</sub> = &ndash;<i>s</i><sub>0</sub>/2 und <i>E</i><sub>2</sub> = +<i>s</i><sub>0</sub>/2. Der Abstand der möglichen Detektionsnutzsignalwerte <i>d</i><sub>S</sub>(<i>T</i><sub>D</sub>) zu der nächstgelegenen Schwelle beträgt jeweils  <i>s</i><sub>0</sub>/2. Die äußeren Amplitudenwerte (&plusmn;<i>s</i><sub>0</sub>) können nur in jeweils eine Richtung verfälscht werden, während <i>d</i><sub>S</sub>(<i>T</i><sub>D</sub>) = 0 von zwei Schwellen begrenzt wird.<br>
 
*Dementsprechend wird ein Amplitudenkoeffizient <i>a<sub>&nu;</sub></i> = 0 gegenüber <i>a<sub>&nu;</sub></i> = +1 bzw. <i>a<sub>&nu;</sub></i> = &ndash;1 doppelt so oft verfälscht. Bei gleichwahrscheinlichen Amplitudenkoeffizienten sowie AWGN&ndash;Rauschen mit dem Effektivwert <i>&sigma;<sub>d</sub></i> ergibt sich gemäß [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung#Definition_der_Bitfehlerwahrscheinlichkeit Kapitel 1.2] für die Symbolfehlerwahrscheinlichkeit:
 
  
::<math>p_{\rm S} = { 1}/{3} \cdot \left[{\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+
+
== Error probability of a multilevel system ==
2 \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+ {\rm Q} \left(
 
\frac{s_0/2}{\sigma_d}\right)\right]=
 
\frac{ 4}{3} \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\hspace{0.05cm}.</math>
 
 
 
Die Bildbeschreibung wird auf der nächsten Seite fortgesetzt. Beachten Sie aber bereits hier, dass mit dieser Gleichung nicht mehr die Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub>, sondern die Symbolfehlerwahrschein-
 
lichkeit <i>p</i><sub>S</sub> angegeben wird. Die entsprechenden Aposteriori&ndash;Kenngrößen sind <i>Bit Error Rate</i> (BER) bzw. <i>Symbol Error Rate</i> (SER). Näheres hierzu auf der letzten Seite dieses Kapitels.<br>
 
 
 
 
 
== Fehlerwahrscheinlichkeit eines Mehrstufensystems (2) ==
 
 
<br>
 
<br>
 +
[[File:P_ID1315__Dig_T_2_2_S4_v1.png|right|frame|Eye diagrams for redundancy&ndash;free binary, ternary and quaternary signals|class=fit]]
 +
The diagram on the right shows the eye diagrams
 +
*of a binary transmission system &nbsp;$(M = 2)$,
 +
*a ternary transmission system &nbsp;$(M = 3)$ and
 +
*a quaternary transmission system &nbsp;$(M = 4)$.
 +
  
 +
Here,&nbsp; a cosine rolloff characteristic is assumed for the overall system &nbsp;$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f)$&nbsp;  of transmitter, channel and receiver,&nbsp; so that intersymbol interference does not play a role.&nbsp; The rolloff factor is &nbsp;$r= 0.5$.&nbsp; The noise is assumed to be negligible.
  
Beim Quaternärsystem (<i>M</i> = 4) mit den möglichen Amplitudenwerten &plusmn;<i>s</i><sub>0</sub> und &plusmn;<i>s</i><sub>0</sub>/3 gibt es drei Augenöffnungen und entsprechend auch drei Entscheiderschwellen bei <i>E</i><sub>1</sub> = &ndash;2<i>s</i><sub>0</sub>/3, <i>E</i><sub>2</sub> = 0 und <i>E</i><sub>3</sub> = +2<i>s</i><sub>0</sub>/3. Unter Berücksichtigung der Auftrittswahrscheinlichkeiten (bei gleichwahrscheinlichen Symbolen jeweils 1/4) und der sechs Verfälschungsmöglichkeiten (siehe Pfeile in der Grafik) erhält man nun:
+
The eye diagram is used to estimate intersymbol interference.&nbsp; A detailed description follows in the section &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|"Definition and statements of the eye diagram"]].&nbsp; However,&nbsp; the following text should be understandable even without detailed knowledge.<br>
  
:<math>p_{\rm S} =
+
It can be seen from the above diagrams:
{ 6}/{4} \cdot {\rm Q} \left( \frac{s_0/3}{\sigma_d}\right)\hspace{0.05cm}.</math>
+
<br clear = all>
 +
*In the&nbsp; '''binary system'''&nbsp; &nbsp;$(M = 2)$,&nbsp; there is only one decision threshold: &nbsp; $E_1 = 0$.&nbsp; A transmission error occurs if the noise component &nbsp;$d_{\rm N}(T_{\rm D})$&nbsp; at the detection time is greater than &nbsp;$+s_0$ &nbsp; $\big ($if &nbsp;$d_{\rm S}(T_{\rm D}) = -s_0$  $\big )$ &nbsp;or&nbsp; if &nbsp;$d_{\rm N}(T_{\rm D})$&nbsp; is less than &nbsp;$-s_0$ &nbsp;  $\big ($if &nbsp;$d_{\rm S}(T_{\rm D}) = +s_0$ $\big )$.<br>
  
Durch Erweiterung auf größere Werte von <i>M</i> ergibt sich allgemein:
+
*In the case of the&nbsp; '''ternary system''' &nbsp;$(M = 3)$,&nbsp; two eye openings and two decision thresholds &nbsp;$E_1 = -s_0/2$&nbsp; and &nbsp;$E_2 = +s_0/2$&nbsp; can be recognized.&nbsp; The distance of the possible useful detection signal values &nbsp;$d_{\rm S}(T_{\rm D})$&nbsp; to the nearest threshold is &nbsp;$-s_0/2$ in each case.&nbsp; The outer amplitude values &nbsp;$(d_{\rm S}(T_{\rm D}) = \pm s_0)$&nbsp; can only be falsified in one direction in each case,&nbsp; while &nbsp;$d_{\rm S}(T_{\rm D}) = 0$&nbsp; is limited by two thresholds.<br>
  
:<math>p_{\rm S}  =  
+
*Accordingly,&nbsp; an amplitude coefficient &nbsp;$a_\nu = 0$&nbsp; is falsified twice as often compared to &nbsp;$a_\nu = +1$&nbsp; or &nbsp;$a_\nu = -1$.&nbsp; For AWGN noise with rms value &nbsp;$\sigma_d$&nbsp; as well as equal probability amplitude coefficients,&nbsp; according to the section &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_of_the_bit_error_probability|"Definition of the bit error probability"]]&nbsp; for the&nbsp; "symbol error probability":
\frac{ 2 + 2 \cdot (M-2)}{M} \cdot {\rm Q} \left( \frac{s_0/(M-1)}{\sigma_d}\right) = </math>
 
::<math> = \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \frac{s_0}{\sigma_d (M)\cdot (M-1)}\right)\hspace{0.05cm}.</math>
 
  
Die Schreibweise <i>&sigma;<sub>d</sub></i>(<i>M</i>) soll deutlich machen, dass der Effektivwert des Detektionsrauschsignals <i>d</i><sub>N</sub>(<i>t</i>) signifikant von der Stufenzahl <i>M</i> abhängt.<br>
+
:$$p_{\rm S} = { 1}/{3} \cdot \left[{\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+
 +
2 \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+ {\rm Q} \left(
 +
\frac{s_0/2}{\sigma_d}\right)\right]=
 +
\frac{ 4}{3} \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\hspace{0.05cm}.$$
  
 +
*Please note that this equation no longer specifies the bit error probability &nbsp;$p_{\rm B}$, but the&nbsp;  "symbol error probability" &nbsp;$p_{\rm S}$.&nbsp; The corresponding a-posteriori parameters are&nbsp; "bit error rate"&nbsp; $\rm (BER)$&nbsp; and&nbsp; "symbol error rate"&nbsp; $\rm (SER)$.&nbsp; More details are given in the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding#Symbol_and_bit_error_probability|"last section"]]&nbsp; of this chapter.<br>
  
== Vergleich zwischen Binär– und Mehrstufensystem (1) ==
 
<br>[[File:P_ID2191__Dig_T_2_2_S5_v3.png|Fehlerwahrscheinlichkeitskurve in Abhängigkeit der Stufenzahl|250px|right|class=fit]]<br><br>
 
Die Grafik zeigt die Symbolfehlerwahrscheinlichkeit <i>p</i><sub>S</sub>, die sich mit <i>M</i>&ndash;stufiger redundanzfreier Codierung erreichen lässt. Als Abszisse ist das Verhältnis <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> logarithmisch aufgetragen.
 
  
<br><br><br><br><br><br>
+
For the '''quaternary system''' &nbsp;$(M = 4)$&nbsp; with the possible amplitude values &nbsp;$\pm s_0$&nbsp; and &nbsp;$\pm s_0/3$,&nbsp;
Für diesen Systemvergleich unter fairen Bedingungen werden vorausgesetzt:
+
*there are three eye-openings,&nbsp; and
*Die äquivalente Bitrate <i>R</i><sub>B</sub> = 1/<i>T</i><sub>B</sub> sei konstant. Abhängig von der Stufenzahl <i>M</i> beträgt somit die Symboldauer von Codersignal und Sendesignal:
+
*thus also three decision thresholds at &nbsp;$E_1 = -2s_0/3$, &nbsp;$E_2 = 0$&nbsp; and &nbsp;$E_3 = +2s_0/3$.  
  
::<math>T = T_{\rm B} \cdot {\rm log_2} (M)  \hspace{0.05cm}.</math>
 
  
*Die Nyquistbedingung wird durch eine Wurzel&ndash;Wurzel&ndash;Charakteristik mit Rolloff&ndash;Faktor <i>r</i> erfüllt. Es treten weiterhin keine Impulsinterferenzen auf. Für die Detektionsrauschleistung gilt:
+
Taking into account the occurrence probabilities&nbsp; $(1/4$&nbsp; for equally probable symbols$)$&nbsp; and the six possibilities of falsification (see arrows in the graph),&nbsp; we obtain:
 +
:$$p_{\rm S} =
 +
{ 6}/{4} \cdot {\rm Q} \left( \frac{s_0/3}{\sigma_d}\right)\hspace{0.05cm}.$$
  
::<math>\sigma_d^2 = \frac{N_0}{2T}   \hspace{0.05cm}.</math>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; In general, the&nbsp; '''symbol error probability'''&nbsp; for &nbsp;$M$&ndash;level digital signal transmission is:
 +
:$$p_{\rm S}  =
 +
\frac{ 2 + 2 \cdot (M-2)}{M} \cdot {\rm Q} \left( \frac{s_0/(M-1)}{\sigma_d(M)}\right) = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( \frac{s_0}{\sigma_d (M)\cdot (M-1)}\right)\hspace{0.05cm}.$$
  
*Der Vergleich der Symbolfehlerwahrscheinlichkeiten <i>p</i><sub>S</sub> erfolgt unter der Nebenbedingung der Leistungsbegrenzung. Die Energie pro Bit beträgt bei <i>M</i>&ndash;stufiger Übertragung:
+
*The notation &nbsp;$\sigma_d(M)$&nbsp; is intended to make clear that the rms value of the noise component &nbsp;$d_{\rm N}(t)$&nbsp; depends significantly on the  level number &nbsp;$M$.&nbsp;}}<br>
  
::<math>E_{\rm B} = \frac{M+ 1}{3 \cdot (M-1)} \cdot s_0^2 \cdot T_{\rm B}
 
  \hspace{0.05cm}.</math>
 
  
Setzt man diese Gleichungen in das allgemeine Ergebnis der letzten Seite ein, so erhält man:
+
== Comparison between binary system and multilevel system==
 +
<br>
 +
For this system comparison under fair conditions,&nbsp; the following are assumed:
 +
*Let the equivalent bit rate &nbsp;$R_{\rm B} = 1/T_{\rm B}$&nbsp; be constant.&nbsp; Depending on the  level number &nbsp;$M$,&nbsp; the symbol duration of the encoded  signal and the transmitted signal is thus:
 +
:$$T = T_{\rm B} \cdot {\rm log_2} (M)  \hspace{0.05cm}.$$
 +
*The Nyquist condition is satisfied by a &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Root_Nyquist_systems|"root&ndash;root characteristic"]]&nbsp; with rolloff factor &nbsp;$r$.&nbsp; Furthermore,&nbsp; no intersymbol interference occurs.&nbsp; The detection noise power is:
 +
::$$\sigma_d^2 = \frac{N_0}{2T}  \hspace{0.05cm}.$$
 +
*The comparison of the symbol error probabilities &nbsp;$p_{\rm S}$&nbsp; is performed for &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_power_limitation|"power limitation"]]. The energy per bit for &nbsp;$M$&ndash;level transmission is:
 +
:$$E_{\rm B} = \frac{M+ 1}{3 \cdot (M-1)} \cdot s_0^2 \cdot T_{\rm B}
 +
  \hspace{0.05cm}.$$
  
:<math>p_{\rm S}  =  
+
Substituting these equations into the general result on the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding#Error_probability_of_a_multilevel_system|"last section"]],&nbsp; we obtain for the symbol error probability:
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{s_0^2 /(M-1)^2}{\sigma_d^2}}\right) =</math>
+
:$$p_{\rm S}  =  
::<math> =  
+
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{s_0^2 /(M-1)^2}{\sigma_d^2}}\right) =
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{3 \cdot {\rm log_2} (M)}{M^2 -1}\cdot
+
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{3 \cdot {\rm log_2}\hspace{0.05cm} (M)}{M^2 -1}\cdot
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)= K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
+
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)$$
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)\hspace{0.05cm}.</math>
+
[[File:EN_Dig_T_2_3_S3b_v2.png|right|frame|Symbol error probability curves for different level numbers &nbsp;$M$]]
 +
:$$\Rightarrow \hspace{0.3cm} p_{\rm S}  =  
 +
  K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
 +
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)\hspace{0.05cm}.$$
  
Für <i>M</i> = 2 ist <i>K</i><sub>1</sub> = <i>K</i><sub>2</sub> = 1 zu setzen. Für größere Stufenzahlen erhält man:<br><br>
+
For &nbsp;$M = 2$,&nbsp; set &nbsp;$K_1 = K_2 = 1$.&nbsp; For larger level numbers,&nbsp; one obtains  for the symbol error probability that can be achieved with &nbsp;$M$&ndash;level redundancy-free coding:
 +
:$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.594;\hspace{0.5cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.400;$$
 +
:$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.290;\hspace{0.5cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.221;$$
 +
:$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.175;\hspace{0.5cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.143.$$
  
:<i>M</i> = 3: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.333, <i>K</i><sub>2</sub> = 0.594,                                                                                                          <i>M</i> = 4: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.500, <i>K</i><sub>2</sub> = 0.400,
+
The graph summarizes the results for &nbsp;$M$&ndash;level redundancy-free coding.
:<i>M</i> = 5: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.600, <i>K</i><sub>2</sub> = 0.290,                                                                                                          <i>M</i> = 6: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.666, <i>K</i><sub>2</sub> = 0.221,
+
*Plotted are the symbol error probabilities &nbsp;$p_{\rm S}$&nbsp; over the abscissa &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0)$.
:<i>M</i> = 7: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.714, <i>K</i><sub>2</sub> = 0.175,                                                                                                         <i>M</i> = 8: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.750, <i>K</i><sub>2</sub> = 0.143.<br><br>
+
 +
*All systems are optimal for the respective &nbsp;$M$,&nbsp; assuming the AWGN channel and power limitation.
  
Die Beschreibung und Interpretation der obigen Grafik erfolgt auf der nächsten Seite.<br>
+
*Due to the double logarithmic representation chosen here, a &nbsp;$K_2$ value smaller than &nbsp;$1$&nbsp; leads to a parallel shift of the error probability curve to the right.
  
 +
*If &nbsp;$K_1 > 1$ applies, the curve shifts upwards compared to the binary system &nbsp;$(K_1= 1)$.&nbsp;<br>
  
== Vergleich zwischen Binär– und Mehrstufensystem (2) ==
 
[[File:P_ID2191__Dig_T_2_2_S5_v3.png|center|frame|Fehlerwahrscheinlichkeitskurve  in Abhängigkeit der Stufenzahl|250px|right|class=fit]]<br><br>
 
  
<b>Die Bildbeschreibung wird fortgesetzt:</b><br>
+
{{BlaueBox|TEXT= 
Die Grafik zeigt die Symbolfehlerwahrscheinlichkeit <i>p</i><sub>S</sub> in Abhängigkeit des Quotienten <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> in dB, gültig für redundanzfreie <i>M</i>&ndash;stufige Digitalsysteme. Alle Systeme sind für die jeweilige Stufenzahl optimal, wenn vom AWGN&ndash;Kanal und Leistungsbegrenzung ausgegangen wird.
+
$\text{System comparison under the constraint of power limitation:}$&nbsp; The above curves can be interpreted as follows:
 +
#Regarding symbol error probability,&nbsp; the binary system &nbsp;$(M = 2)$&nbsp; is superior to the multilevel systems.&nbsp; Already with &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 12 \ \rm dB$&nbsp; one reaches  &nbsp;$p_{\rm S} <10^{-8}$.&nbsp; For the quaternary system &nbsp;$(M = 4)$,&nbsp; &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) > 16 \ \rm dB$&nbsp; must be spent to reach the same symbol error probability &nbsp;$p_{\rm S} =10^{-8}$.&nbsp;
 +
#However,&nbsp; this statement is valid only for distortion-free channel,&nbsp; i.e., for &nbsp;$H_{\rm K}(f)= 1$.&nbsp; On the other hand,&nbsp; for distorting transmission channels,&nbsp; a higher-level system can provide a significant improvement because of the significantly smaller noise component of the detection signal&nbsp; (after the equalizer).<br>
 +
#For the AWGN channel,&nbsp; the only advantage of a higher-level transmission is the lower bandwidth requirement due to the smaller equivalent bit rate,&nbsp; which plays only a minor role in baseband transmission in contrast to digital carrier frequency systems,&nbsp; e.g. &nbsp;[[Modulation_Methods/Quadrature_Amplitude_Modulation#Quadratic_QAM_signal_space_constellations|"quadrature amplitude modulation"]]&nbsp; $\rm (QAM)$.}}
  
<br><br><br>
 
Die Kurvenverläufe kann man wie folgt interpretieren:
 
*Aufgrund der hier gewählten doppelt&ndash;logarithmischen Darstellung führt ein <i>K</i><sub>2</sub>&ndash;Wert kleiner als 1 zu einer Parallelverschiebung der Fehlerwahrscheinlichkeitskurve nach rechts. Gilt <i>K</i><sub>1</sub> > 1, so verschiebt sich die Kurve gegenüber dem Binärsystem (<i>K</i><sub>1</sub> = 1) nach oben.<br>
 
  
*Hinsichtlich Fehlerwahrscheinlichkeit ist das Binärsystem den Mehrstufensystemen überlegen. Für <i>M</i> = 2 und 10 &middot; lg <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = 12 dB ist <i>p</i><sub>S</sub> bereits kleiner als 10<sup>&ndash;8</sup>. Beim Quaternärsystem (<i>M</i> = 4) muss für die gleiche Fehlerwahrscheinlichkeit 10 &middot; lg <i>E<sub>B</sub></i>/<i>N</i><sub>0</sub> etwas mehr als 16 dB betragen.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{System comparison under the peak limitation constraint:}$&nbsp;
 +
*With the constraint&nbsp; "peak limitation",&nbsp; the combination of rectangular &nbsp;$g_s(t)$&nbsp; and rectangular &nbsp;$h_{\rm E}(t)$&nbsp; leads to the optimum regardless of the level number  &nbsp;$M$.&nbsp; <br>
  
*Diese Aussage gilt jedoch nur bei verzerrungsfreiem Kanal, das heißt <i>H<sub>K</sub></i>(<i>f</i>) = 1. Bei verzerrenden Übertragungskanälen kann dagegen ein höherstufiges System wegen der signifikant kleineren Detektionsstörleistung (nach dem Entzerrer) eine deutliche Verbesserung bringen.<br>
+
*The loss of the multilevel system compared to the binary system is here even greater than with power limitation.  
  
*Beim AWGN&ndash;Kanal ist der einzige Vorteil einer höherstufigen Übertragung der niedrigere Bandbreitenbedarf aufgrund der kleineren äquivalenten Bitrate, der bei Basisbandübertragung nur eine untergeordnete Rolle spielt im Gegensatz zu den Trägerfrequenzsystemen gemäß [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Lineare_digitale_Modulation_%E2%80%93_Koh%C3%A4rente_Demodulation#Gemeinsames_Blockschaltbild_f.C3.BCr_ASK_und_BPSK Kapitel 1.5].<br>
+
*This can be seen from the factor &nbsp;$K_2$&nbsp; decreasing with &nbsp;$M$,&nbsp; for which then applies:
 +
:$$p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
 +
\frac{2 \cdot s_{\rm 0}^2 \cdot T}{N_0} }\right)\hspace{0.3cm}{\rm with}\hspace{0.3cm}
 +
K_2 = \frac{ {\rm log_2}\,(M)}{(M-1)^2}
 +
\hspace{0.05cm}.$$
 +
*The constant &nbsp;$K_1$&nbsp; is unchanged from the above specification for power limitation,&nbsp; while &nbsp;$K_2$&nbsp; is smaller by a factor of &nbsp;$3$:&nbsp;
 +
:$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.198;\hspace{1cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.133;$$
 +
:$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.097;\hspace{1cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.074;$$
 +
:$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.058;\hspace{1cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.048.$$}}
  
*Mit der Nebenbedingung &bdquo;Spitzenwertbegrenzung&rdquo; führt die Kombination aus rechteckförmigem <i>g<sub>s</sub></i>(<i>t</i>) und rechteckförmigem <i>h</i><sub>E</sub>(<i>t</i>) unabhängig von der Stufenzahl zum Optimum.<br>
 
  
*Der Verlust der Mehrstufensystemen gegenüber dem Binärsystem ist hier noch größer als bei Leistungsbegrenzung. Dies erkennt man an dem mit <i>M</i> abnehmenden Faktor <i>K</i><sub>2</sub>, für den dann gilt:
+
== Symbol and bit error probability==
::<math>p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
+
<br>
\frac{2 \cdot s_{\rm 0}^2 \cdot T}{N_0}}\right)\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
+
In a multilevel transmission system,&nbsp; one must distinguish between the &nbsp;"symbol error probability"&nbsp; and the &nbsp;"bit error probability",&nbsp; which are given here both as ensemble averages and as time averages:
K_2 = \frac{{\rm log_2}\,(M)}{(M-1)^2}
+
[[File:EN_Dig_T_2_2_S6a.png|right|frame|Symbol error probability and bit error probability|class=fit]]
\hspace{0.05cm}.</math>
 
 
 
Die Konstante <i>K</i><sub>1</sub> ist gegenüber der letzten Seite (Leistungsbegrenzung) unverändert, während <i>K</i><sub>2</sub> um den Faktor 3 kleiner ist:
 
::<i>M</i> = 3: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.333, <i>K</i><sub>2</sub> = 0.198,      <i>M</i> = 6: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.666, <i>K</i><sub>2</sub> = 0.074,
 
::<i>M</i> = 5: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.600, <i>K</i><sub>2</sub> = 0.097,      <i>M</i> = 6: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.666, <i>K</i><sub>2</sub> = 0.074,
 
::<i>M</i> = 7: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.714, <i>K</i><sub>2</sub> = 0.058,      <i>M</i> = 8: &nbsp;&nbsp; <i>K</i><sub>1</sub> = 1.750, <i>K</i><sub>2</sub> = 0.048. <br>
 
  
 +
*The&nbsp; '''symbol error probability'''&nbsp; refers to the &nbsp;$M$&ndash;level and possibly redundant sequences &nbsp;$\langle c_\nu \rangle$&nbsp; and &nbsp;$\langle w_\nu \rangle$:
 +
:$$p_{\rm S}  = \overline{{\rm Pr} (w_\nu \ne c_\nu)} =
 +
\lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (w_\nu \ne c_\nu) \hspace{0.05cm}.$$
 +
*The&nbsp; '''bit error probability'''&nbsp; describes the falsifications with respect to the binary sequences  &nbsp;$\langle q_\nu \rangle$&nbsp; and &nbsp;$\langle v_\nu \rangle$&nbsp; of source and sink:
 +
:$$p_{\rm B}  = \overline{{\rm Pr} (v_\nu \ne q_\nu)} =
 +
\lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (v_\nu \ne q_\nu) \hspace{0.05cm}.$$
  
== Symbol– und Bitfehlerwahrscheinlichkeit (1) ==
+
The diagram illustrates these two definitions and is also valid for the next chapters.&nbsp; The block&nbsp; "encoder"&nbsp; causes
<br>
+
*in the present chapter a redundancy-free coding,
Bei einem mehrstufigen Übertragungssystem muss zwischen der Symbolfehlerwahrscheinlichkeit und der Bitfehlerwahrscheinlichkeit unterschieden werden:
+
*in the &nbsp;[[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"following chapter"]]&nbsp; a blockwise transmission coding,&nbsp; and finally
 +
* in the &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"last chapter"]]&nbsp; symbolwise coding with pseudo-ternary codes.
  
*Die Symbolfehlerwahrscheinlichkeit bezieht sich auf die <i>M</i>&ndash;stufigen und eventuell redundanten Folgen &#9001;<i>c<sub>&nu;</sub></i>&#9002; und &#9001;<i>w<sub>&nu;</sub></i>&#9002;:
 
::<math>p_{\rm S}  = \overline{{\rm Pr} (w_\nu \ne c_\nu)} =
 
\lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (w_\nu \ne c_\nu) \hspace{0.05cm}.</math>
 
  
*Im Gegensatz dazu beschreibt die Bitfehlerwahrscheinlichkeit die Verfälschungen bezüglich der Binärfolgen &#9001;<i>q<sub>&nu;</sub></i>&#9002; und &#9001;<i>&upsilon;<sub>&nu;</sub></i>&#9002;, also hinsichtlich Quellen&ndash; und Sinkensignal:
+
{{BlaueBox|TEXT= 
::<math>p_{\rm B} = \overline{{\rm Pr} (v_\nu \ne q_\nu)} =
+
$\text{Conclusion:}$&nbsp;  
\lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (v_\nu \ne q_\nu) \hspace{0.05cm}.</math>
+
*For multilevel and/or coded transmission,&nbsp; a distinction must be made between the bit error probability &nbsp;$p_{\rm B}$&nbsp; and the symbol error probability &nbsp;$p_{\rm S}$.&nbsp; Only in the case of the redundancy-free binary system does &nbsp;$p_{\rm B} = p_{\rm S}$ apply.
  
Beide Wahrscheinlichkeiten sind hier als Zeitmittelwerte angegeben.<br>
+
*In general,&nbsp; the symbol error probability &nbsp;$p_{\rm S}$&nbsp; can be calculated somewhat more easily than the bit error probability &nbsp;$p_{\rm B}$&nbsp; for redundancy-containing multilevel systems.
  
Die folgende Grafik veranschaulicht diese beiden Definitionen und ist auch für die nachfolgenden Abschnitte gültig. Während im Kapitel 2.2 der Block &bdquo;Coder&rdquo; eine redundanzfreie Codierung bewirkt, wird im [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Blockweise_Codierung_mit_4B3T-Codes#Allgemeine_Beschreibung_von_Blockcodes Kapitel 2.3] eine blockweise Übertragungscodierung betrachtet, während im [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Symbolweise_Codierung_mit_Pseudotern%C3%A4rcodes#Allgemeine_Beschreibung_von_Partial_Response_Codes_.281.29 Kapitel 2.4] die symbolweisen Pseudoternärcodes behandelt werden. In beiden Fällen unterscheiden sich <i>p</i><sub>B</sub> und <i>p</i><sub>S</sub>. Nur beim redundanzfreien Binärsystem entsprechend Kapitel 1 sind <i>p</i><sub>B</sub> und  <i>p</i><sub>S</sub> identisch.
+
* However,&nbsp; a comparison of systems with different level numbers&nbsp; $M$&nbsp; or different types of coding should always be based on the bit error probability &nbsp;$p_{\rm B}$&nbsp; for reasons of fairness.&nbsp; The mapping between the source and encoder symbols must also be taken into account,&nbsp; as shown in the following example.}}<br>
  
[[File:P_ID1333__Dig_T_2_2_S6a_v1.png|center|frame|Symbolfehlerwahrscheinlichkeit und Bitfehlerwahrscheinlichkeit|class=fit]]
+
{{GraueBox|TEXT=
 
+
$\text{Example 4:}$&nbsp; We consider a quaternary transmission system whose transmission behavior can be characterized as follows&nbsp; (see left sketch in the graphic):
Im allgemeinen kann bei redundanzbehafteten Mehrstufensystem die Symbolfehlerwahrscheinlichkeit <i>p</i><sub>S</sub> etwas einfacher berechnet werden als die Bitfehlerwahrscheinlichkeit  <i>p</i><sub>B</sub>. Ein Vergleich von Systemen mit unterschiedlicher Stufenzahl oder verschiedenartiger Codierung sollte aber aus Fairnisgründen immer auf der Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> basieren. Dabei muss auch die Zuordnung zwischen den Quellen&ndash; und Codesymbolen berücksichtigt werden, wie auf der nächsten Seite gezeigt wird.<br>
 
  
 +
*The falsification probability to a neighboring symbol is &nbsp;
 +
:$$p={\rm Q}\big [s_0/(3\sigma_d)\big ].$$
 +
*A falsification to a non-adjacent symbol is excluded.<br>
 +
*The model considers the dual falsification possibilities of inner symbols.<br>
  
== Symbol– und Bitfehlerwahrscheinlichkeit (2) ==
 
 
<br>
 
<br>
{{Beispiel}}''':''' Wir betrachten ein quaternäres Übertragungssystem, dessen Übertragungsverhalten wie folgt charakterisiert werden kann (siehe linke Grafik):
+
For equally probable binary source symbols &nbsp;$q_\nu$&nbsp; the quaternary encoder symbols &nbsp;$c_\nu$&nbsp; also occur with equal probability.&nbsp; Thus,&nbsp; we obtain for the symbol error probability:
*Die Verfälschungswahrscheinlichkeit zu einem benachbarten Symbol ist <i>p</i> = Q[<i>s</i><sub>0</sub>/(3<i>&sigma;<sub>d</sub></i>)].<br>
+
:$$p_{\rm S}  ={1}/{4}\cdot (2 \cdot p + 2 \cdot 2 \cdot  p) =  {3}/{2} \cdot p\hspace{0.05cm}.$$
*Die Verfälschung zu einem nicht benachbarten Symbol wird ausgeschlossen.<br>
 
*Das Modell berücksichtigt die doppelten Verfälschungsmöglichkeiten der inneren Symbole.<br>
 
 
 
<br>[[File:P_ID1322__Dig_T_2_2_S6b_v2.png|Gegenüberstellung von Graycode und Dualcode|class=fit]]<br><br>
 
 
 
Bei gleichwahrscheinlichen binären Quellensymbolen <i>q<sub>&nu;</sub></i> treten auch die quaternären Codesymbole <i>c<sub>&nu;</sub></i> mit gleicher Wahrscheinlichkeit auf. Damit erhält man für die Symbolfehlerwahrscheinlichkeit:
 
 
 
:<math>p_{\rm S}  ={1}/{4}\cdot (2 \cdot p + 2 \cdot 2 \cdot  p) =  {3}/{2} \cdot p\hspace{0.05cm}.</math>
 
 
 
Zur Berechnung der Bitfehlerwahrscheinlichkeit muss zusätzlich die Zuordnung zwischen den Binär&ndash; und den Quaternärsymbolen berücksichtigt werden:
 
*Bei der Dualcodierung gemäß der gelb hinterlegten Tabelle kann ein Symbolfehler (<i>w<sub>&nu;</sub></i> &ne; <i>c<sub>&nu;</sub></i>) ein oder zwei Bitfehler (<i>&upsilon;<sub>&nu;</sub></i> &ne; <i>q<sub>&nu;</sub></i>) zur Folge haben. Von den sechs Verfälschungsmöglichkeiten auf Quaternärsymbolebene führen vier zu jeweils einem und nur die beiden inneren zu zwei Bitfehlern. Daraus folgt:
 
::<math>p_{\rm B}  = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 2 \cdot p ) \cdot {1}/{2} = p\hspace{0.05cm}.</math>
 
  
:Der Faktor 1/2 berücksichtigt, dass ein Quaternärsymbol zwei Binärsymbole beinhaltet.
+
[[File:EN_Dig_T_2_2_S6b.png|right|frame|Comparison of  dual code and Gray code|class=fit]]
 +
To calculate the bit error probability,&nbsp; one must also consider the mapping between the binary and the quaternary symbols:
 +
*In &nbsp;"dual coding"&nbsp; according to the table with yellow background,&nbsp; one symbol error &nbsp;$(w_\nu \ne c_\nu)$&nbsp; can result in one or two bit errors &nbsp;$(v_\nu \ne q_\nu)$.&nbsp; Of the six falsification possibilities at the quaternary symbol level,&nbsp; four result in one bit error each and only the two inner ones result in two bit errors.&nbsp; It follows:
 +
:$$p_{\rm B}  = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 2 \cdot p ) \cdot {1}/{2} = p\hspace{0.05cm}.$$
  
*Dagegen ist bei der sog. Graycodierung gemäß der grün hinterlegten Tabelle die Zuordnung zwischen den Binärsymbolen und den Quaternärsymbolen so gewählt, dass jeder Symbolfehler genau einen Bitfehler zur Folge hat. Daraus folgt:
+
:The factor &nbsp;$1/2$&nbsp; takes into account that a quaternary symbol contains two binary symbols.
  
::<math>p_{\rm B}  = {1}/{4}\cdot  (4 \cdot 1 \cdot p + 2 \cdot 1 \cdot p ) \cdot {1}/{2} =  {3}/{4} \cdot p\hspace{0.05cm}.</math>
+
*In contrast,&nbsp; in the so-called &nbsp;"Gray coding"&nbsp; according to the table with green background,&nbsp; the mapping between the binary symbols and the quaternary symbols is chosen in such a way that each symbol error results in exactly one bit error. From this follows:
  
{{end}}<br>
+
:$$p_{\rm B}  = {1}/{4}\cdot  (4 \cdot 1 \cdot p + 2 \cdot 1 \cdot p ) \cdot {1}/{2} =  {3}/{4} \cdot p\hspace{0.05cm}.$$
 +
}}<br>
  
  
==Aufgaben==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:2.3 Binär– und Quaternärsignal|A2.3 Binär– und Quaternärsignal]]
+
[[Aufgaben:Exercise_2.3:_Binary_Signal_and_Quaternary_Signal|Exercise 2.3: Binary Signal and Quaternary Signal]]
  
[[Aufgaben:2.4 Dual- & Graycodierung|A2.4 Dual- & Graycodierung]]
+
[[Aufgaben:Exercise_2.4:_Dualcode_and_Graycode|Exercise 2.4: Dual Code and Gray Code]]
  
[[Zusatzaufgaben:2.4 pS und pB bei einem Oktalsystem]]
+
[[Aufgaben:Exercise_2.4Z:_Error_Probabilities_for_the_Octal_System|Exercise 2.4Z: Error Probabilities for the Octal System]]
  
[[Aufgaben:2.5 Ternäre Signalübertragung|A2.5 Ternäre Signalübertragung]]
+
[[Aufgaben:Exercise_2.5:_Ternary_Signal_Transmission|Exercise 2.5: Ternary Signal Transmission]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:01, 23 January 2023


Symbolwise coding vs. blockwise coding


In transmission coding,  a distinction is made between two fundamentally different methods:

Symbolwise coding

  • Here,  an encoder symbol  $c_\nu$  is generated with each incoming source symbol  $q_\nu$,  which can depend not only on the current symbol but also on previous symbols  $q_{\nu -1}$,  $q_{\nu -2}$, ...
  • It is typical for all transmission codes for symbolwise coding that the symbol duration  $T_c$  of the usually multilevel and redundant encoded signal  $c(t)$  corresponds to the bit duration  $T_q$  of the source signal,  which is assumed to be binary and redundancy-free.


Details can be found in the chapter  "Symbolwise Coding with Pseudo-Ternary Codes".


Blockwise coding

  • Here,  a block of  $m_q$  binary source symbols  $(M_q = 2)$  of bit duration  $T_q$  is assigned a one-to-one sequence of  $m_c$  encoder symbols from an alphabet with encoder symbol set size  $M_c \ge 2$. 
  • For the  symbol duration of an encoder symbol  then holds:
$$T_c = \frac{m_q}{m_c} \cdot T_q \hspace{0.05cm},$$
  • The  relative redundancy of a block code  is in general
$$r_c = 1- \frac{R_q}{R_c} = 1- \frac{T_c}{T_q} \cdot \frac{{\rm log_2}\hspace{0.05cm} (M_q)}{{\rm log_2} \hspace{0.05cm}(M_c)} = 1- \frac{T_c}{T_q \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\hspace{0.05cm}.$$

More detailed information on the block codes can be found in the chapter  "Block Coding with 4B3T Codes".

$\text{Example 1:}$  For the  "pseudo-ternary codes"',  increasing the number of levels from  $M_q = 2$  to  $M_c = 3$  for the same symbol duration  $(T_c = T_q)$  adds a relative redundancy of  $r_c = 1 - 1/\log_2 \hspace{0.05cm} (3) \approx 37\%$. 

In contrast,  the so-called  "4B3T codes"  operate at block level with the code parameters  $m_q = 4$,  $M_q = 2$,  $m_c = 3$  and  $M_c = 3$  and have a relative redundancy of approx.  $16\%$.  Because of  ${T_c}/{T_q} = 4/3$,  the transmitted signal  $s(t)$  is lower in frequency here than in uncoded transmission, which reduces the expensive bandwidth and is also advantageous for many channels from a transmission point of view.



Quaternary signal with  $r_{\rm c} \equiv 0$  and ternary signal with  $r_{\rm c} \approx 0$


A special case of a block code is a  redundancy-free multilevel code

  • Starting from the redundancy-free binary source signal  $q(t)$  with bit duration  $T_q$, 
  • a  $M_c$–level encoded signal  $c(t)$  with symbol duration  $T_c = T_q \cdot \log_2 \hspace{0.05cm} (M_c)$  is generated.


Thus,  the relative redundancy is given by:

$$r_c = 1- \frac{T_c}{T_q \cdot {\rm log_2}\hspace{0.05cm} (M_c)} = 1- \frac{m_q}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\to 0 \hspace{0.05cm}.$$

Thereby holds:

  1. If  $M_c$  is a power to the base  $2$,  then  $m_q = \log_2 \hspace{0.05cm} (M_c)$  are combined into a single encoder symbol  $(m_c = 1)$.  In this case, the relative redundancy is actually  $r_c = 0$.
  2. If  $M_c$  is not a power of two,  a hundred percent redundancy-free block coding is not possible.  For example, if  $m_q = 3$  binary symbols are encoded by  $m_c = 2$  ternary symbols and  $T_c = 1.5 \cdot T_q$  is set,  a relative redundancy of  $r_c = 1-1.5/ \log_2 \hspace{0.05cm} (3) \approx 5\%$  remains.
  3. Encoding a block of  $128$  binary symbols with  $81$  ternary symbols results in a relative code redundancy of less than  $r_c = 0.3\%$.

To simplify the notation and to align the nomenclature with the "first main chapter",  we use in the following

  • the bit duration  $T_{\rm B} = T_q$  of the redundancy-free binary source signal,
  • the symbol duration  $T = T_c$  of the encoded signal and the transmitted signal, and
  • the number  $M = M_c$  of levels.


This results in the identical form for the transmitted signal as for the binary transmission,  but with different amplitude coefficients:

$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm} a_\nu \in \{ a_1, \text{...} , a_\mu , \text{...} , a_{ M}\}\hspace{0.05cm}.$$
  • In principle,  the amplitude coefficients  $a_\nu$  can be assigned arbitrarily  – but uniquely –  to the encoder symbols  $c_\nu$.  It is convenient to choose equal distances between adjacent amplitude coefficients.
  • Thus,  for bipolar signaling  $(-1 \le a_\nu \le +1)$,  the following applies to the possible amplitude coefficients with index  $\mu = 1$, ... , $M$:
$$a_\mu = \frac{2\mu - M - 1}{M-1} \hspace{0.05cm}.$$
  • Independently of the level number  $M$  one obtains from this for the outer amplitude coefficients  $a_1 = -1$  and  $a_M = +1$.
  • For a ternary signal  $(M = 3)$,  the possible amplitude coefficients are  $-1$,  $0$  and  $+1$.
  • For a quaternary signal  $(M = 4)$,  the coefficients are  $-1$,  $-1/3$,  $+1/3$  and  $+1$.


$\text{Example 2:}$  The graphic above shows the quaternary redundancy-free transmitted signal  $s_4(t)$  with the possible amplitude coefficients  $\pm 1$  and  $\pm 1/3$,  which results from the binary source signal  $q(t)$  shown in the center.

Redundancy-free ternary and quaternary signal
  • Two binary symbols each are combined to a quaternary coefficient according to the table with red background. The symbol duration  $T$  of the signal  $s_4(t)$  is twice the bit duration  $T_{\rm B}$  $($previously:  $T_q)$  of the source signal.
  • If  $q(t)$  is redundancy-free, it also results in a redundancy-free quaternary signal, i.e., the possible amplitude coefficients  $\pm 1$  and  $\pm 1/3$  are equally probable and there are no statistical ties within the sequence  $⟨a_ν⟩$. 


The lower plot shows the $($almost$)$ redundancy-free ternary signal  $s_3(t)$  and the mapping of three binary symbols each to two ternary symbols.

  • The possible amplitude coefficients are  $-1$,  $0$  and  $+1$  and the symbol duration of the encoded signal  $T = 3/2 \cdot T_{\rm B}$.
  • It can be seen from the green mapping table that the coefficients  $+1$  and  $-1$  occur somewhat more frequently than the coefficient  $a_\nu = 0$.  This results in the above mentioned relative redundancy of  $5\%$.
  • However,  from the very short signal section  – only eight ternary symbols corresponding to twelve binary symbols –  this property is not apparent.



ACF and PSD of a multilevel signal


For a redundancy-free coded  $M$–level bipolar digital signal  $s(t)$,  the following holds for the  "discrete auto-correlation function"  $\rm (ACF)$  of the amplitude coefficients and for the corresponding  "power-spectral density"  $\rm (PSD)$:

$$\varphi_a(\lambda) = \left\{ \begin{array}{c} \frac{M+ 1}{3 \cdot (M-1)} \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \\ \lambda \ne 0 \\ \end{array} \hspace{0.9cm}\Rightarrow \hspace{0.9cm}{\it \Phi_a(f)} = \frac{M+ 1}{3 \cdot (M-1)}= {\rm const.}$$

Considering the spectral shaping by the basic transmission pulse  $g_s(t)$  with spectrum  $G_s(f)$,  we obtain:

$$\varphi_{s}(\tau) = \frac{M+ 1}{3 \cdot (M-1)} \cdot \varphi^{^{\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} {\it \Phi}_{s}(f) = \frac{M+ 1}{3 \cdot (M-1)}\cdot |G_s(f)|^2 \hspace{0.05cm}.$$

One can see from these equations:

  • In the case of redundancy-free multilevel coding,  the shape of ACF and PSD is determined solely by the basic transmission pulse  $g_s(t)$. 
  • The magnitude of the ACF is lower than the redundancy-free binary signal by a factor  $\varphi_a(\lambda = 0) = {\rm E}\big[a_\nu^2\big] = (M + 1)/(3M-3)$  for the same shape.
  • This factor describes the lower signal power of the multilevel signal due to the  $M-2$  inner amplitude coefficients.  For  $M = 3$  this factor is equal to  $2/3$, for  $M = 4$  it is equal to  $5/9$.
  • However,  a fair comparison between binary and multilevel signal with the same information flow  (same equivalent bit rate)  should also take into account the different symbol durations.  This shows that a multilevel signal requires less bandwidth than the binary signal due to the narrower PSD when the same information is transmitted.

$\text{Example 3:}$  We assume a binary source with bit rate  $R_{\rm B} = 1 \ \rm Mbit/s$,  so that the bit duration  $T_{\rm B} = 1 \ \rm µ s$. 

Auto-correlation function and power-spectral density of binary and quaternary signal
  • For binary transmission  $(M = 2)$,  the symbol duration of the transmitted signal is  $T =T_{\rm B}$  and the auto-correlation function shown in blue in the left graph results for NRZ rectangular pulses (assuming  $s_0^2 = 10 \ \rm mW$).
  • For the quaternary system  $(M = 4)$,  the ACF is also triangular, but lower by a factor of  $5/9$  and twice as wide because of  $T = 2 \cdot T_{\rm B}$. 


The  $\rm sinc^2$–shaped power-spectral density in the binary case  (blue curve)  has the maximum value  ${\it \Phi}_{s}(f = 0) = 10^{-8} \ \rm W/Hz$  (area of the blue triangle)  for the signal parameters selected here.  The first zero point is at  $f = 1 \ \rm MHz$.

  • The PSD of the quaternary signal  (red curve)  is only half as wide and slightly higher.  Here:  ${\it \Phi}_{s}(f = 0) \approx 1.1 \cdot 10^{-8} \ \rm W/Hz$.
  • The value results from the area of the red triangle. 
    This is lower  $($factor  $0.55)$  and wider (factor $2$).



Error probability of a multilevel system


Eye diagrams for redundancy–free binary, ternary and quaternary signals

The diagram on the right shows the eye diagrams

  • of a binary transmission system  $(M = 2)$,
  • a ternary transmission system  $(M = 3)$ and
  • a quaternary transmission system  $(M = 4)$.


Here,  a cosine rolloff characteristic is assumed for the overall system  $H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f)$  of transmitter, channel and receiver,  so that intersymbol interference does not play a role.  The rolloff factor is  $r= 0.5$.  The noise is assumed to be negligible.

The eye diagram is used to estimate intersymbol interference.  A detailed description follows in the section  "Definition and statements of the eye diagram".  However,  the following text should be understandable even without detailed knowledge.

It can be seen from the above diagrams:

  • In the  binary system   $(M = 2)$,  there is only one decision threshold:   $E_1 = 0$.  A transmission error occurs if the noise component  $d_{\rm N}(T_{\rm D})$  at the detection time is greater than  $+s_0$   $\big ($if  $d_{\rm S}(T_{\rm D}) = -s_0$ $\big )$  or  if  $d_{\rm N}(T_{\rm D})$  is less than  $-s_0$   $\big ($if  $d_{\rm S}(T_{\rm D}) = +s_0$ $\big )$.
  • In the case of the  ternary system  $(M = 3)$,  two eye openings and two decision thresholds  $E_1 = -s_0/2$  and  $E_2 = +s_0/2$  can be recognized.  The distance of the possible useful detection signal values  $d_{\rm S}(T_{\rm D})$  to the nearest threshold is  $-s_0/2$ in each case.  The outer amplitude values  $(d_{\rm S}(T_{\rm D}) = \pm s_0)$  can only be falsified in one direction in each case,  while  $d_{\rm S}(T_{\rm D}) = 0$  is limited by two thresholds.
  • Accordingly,  an amplitude coefficient  $a_\nu = 0$  is falsified twice as often compared to  $a_\nu = +1$  or  $a_\nu = -1$.  For AWGN noise with rms value  $\sigma_d$  as well as equal probability amplitude coefficients,  according to the section  "Definition of the bit error probability"  for the  "symbol error probability":
$$p_{\rm S} = { 1}/{3} \cdot \left[{\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+ 2 \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+ {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\right]= \frac{ 4}{3} \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\hspace{0.05cm}.$$
  • Please note that this equation no longer specifies the bit error probability  $p_{\rm B}$, but the  "symbol error probability"  $p_{\rm S}$.  The corresponding a-posteriori parameters are  "bit error rate"  $\rm (BER)$  and  "symbol error rate"  $\rm (SER)$.  More details are given in the  "last section"  of this chapter.


For the quaternary system  $(M = 4)$  with the possible amplitude values  $\pm s_0$  and  $\pm s_0/3$, 

  • there are three eye-openings,  and
  • thus also three decision thresholds at  $E_1 = -2s_0/3$,  $E_2 = 0$  and  $E_3 = +2s_0/3$.


Taking into account the occurrence probabilities  $(1/4$  for equally probable symbols$)$  and the six possibilities of falsification (see arrows in the graph),  we obtain:

$$p_{\rm S} = { 6}/{4} \cdot {\rm Q} \left( \frac{s_0/3}{\sigma_d}\right)\hspace{0.05cm}.$$

$\text{Conclusion:}$  In general, the  symbol error probability  for  $M$–level digital signal transmission is:

$$p_{\rm S} = \frac{ 2 + 2 \cdot (M-2)}{M} \cdot {\rm Q} \left( \frac{s_0/(M-1)}{\sigma_d(M)}\right) = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( \frac{s_0}{\sigma_d (M)\cdot (M-1)}\right)\hspace{0.05cm}.$$
  • The notation  $\sigma_d(M)$  is intended to make clear that the rms value of the noise component  $d_{\rm N}(t)$  depends significantly on the level number  $M$. 



Comparison between binary system and multilevel system


For this system comparison under fair conditions,  the following are assumed:

  • Let the equivalent bit rate  $R_{\rm B} = 1/T_{\rm B}$  be constant.  Depending on the level number  $M$,  the symbol duration of the encoded signal and the transmitted signal is thus:
$$T = T_{\rm B} \cdot {\rm log_2} (M) \hspace{0.05cm}.$$
  • The Nyquist condition is satisfied by a  "root–root characteristic"  with rolloff factor  $r$.  Furthermore,  no intersymbol interference occurs.  The detection noise power is:
$$\sigma_d^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$
  • The comparison of the symbol error probabilities  $p_{\rm S}$  is performed for  "power limitation". The energy per bit for  $M$–level transmission is:
$$E_{\rm B} = \frac{M+ 1}{3 \cdot (M-1)} \cdot s_0^2 \cdot T_{\rm B} \hspace{0.05cm}.$$

Substituting these equations into the general result on the  "last section",  we obtain for the symbol error probability:

$$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{s_0^2 /(M-1)^2}{\sigma_d^2}}\right) = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{3 \cdot {\rm log_2}\hspace{0.05cm} (M)}{M^2 -1}\cdot \frac{2 \cdot E_{\rm B}}{N_0}}\right)$$
Symbol error probability curves for different level numbers  $M$
$$\Rightarrow \hspace{0.3cm} p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot \frac{2 \cdot E_{\rm B}}{N_0}}\right)\hspace{0.05cm}.$$

For  $M = 2$,  set  $K_1 = K_2 = 1$.  For larger level numbers,  one obtains for the symbol error probability that can be achieved with  $M$–level redundancy-free coding:

$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.594;\hspace{0.5cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.400;$$
$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.290;\hspace{0.5cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.221;$$
$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.175;\hspace{0.5cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.143.$$

The graph summarizes the results for  $M$–level redundancy-free coding.

  • Plotted are the symbol error probabilities  $p_{\rm S}$  over the abscissa  $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0)$.
  • All systems are optimal for the respective  $M$,  assuming the AWGN channel and power limitation.
  • Due to the double logarithmic representation chosen here, a  $K_2$ value smaller than  $1$  leads to a parallel shift of the error probability curve to the right.
  • If  $K_1 > 1$ applies, the curve shifts upwards compared to the binary system  $(K_1= 1)$. 


$\text{System comparison under the constraint of power limitation:}$  The above curves can be interpreted as follows:

  1. Regarding symbol error probability,  the binary system  $(M = 2)$  is superior to the multilevel systems.  Already with  $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 12 \ \rm dB$  one reaches  $p_{\rm S} <10^{-8}$.  For the quaternary system  $(M = 4)$,   $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) > 16 \ \rm dB$  must be spent to reach the same symbol error probability  $p_{\rm S} =10^{-8}$. 
  2. However,  this statement is valid only for distortion-free channel,  i.e., for  $H_{\rm K}(f)= 1$.  On the other hand,  for distorting transmission channels,  a higher-level system can provide a significant improvement because of the significantly smaller noise component of the detection signal  (after the equalizer).
  3. For the AWGN channel,  the only advantage of a higher-level transmission is the lower bandwidth requirement due to the smaller equivalent bit rate,  which plays only a minor role in baseband transmission in contrast to digital carrier frequency systems,  e.g.  "quadrature amplitude modulation"  $\rm (QAM)$.


$\text{System comparison under the peak limitation constraint:}$ 

  • With the constraint  "peak limitation",  the combination of rectangular  $g_s(t)$  and rectangular  $h_{\rm E}(t)$  leads to the optimum regardless of the level number  $M$. 
  • The loss of the multilevel system compared to the binary system is here even greater than with power limitation.
  • This can be seen from the factor  $K_2$  decreasing with  $M$,  for which then applies:
$$p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot \frac{2 \cdot s_{\rm 0}^2 \cdot T}{N_0} }\right)\hspace{0.3cm}{\rm with}\hspace{0.3cm} K_2 = \frac{ {\rm log_2}\,(M)}{(M-1)^2} \hspace{0.05cm}.$$
  • The constant  $K_1$  is unchanged from the above specification for power limitation,  while  $K_2$  is smaller by a factor of  $3$: 
$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.198;\hspace{1cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.133;$$
$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.097;\hspace{1cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.074;$$
$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.058;\hspace{1cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.048.$$


Symbol and bit error probability


In a multilevel transmission system,  one must distinguish between the  "symbol error probability"  and the  "bit error probability",  which are given here both as ensemble averages and as time averages:

Symbol error probability and bit error probability
  • The  symbol error probability  refers to the  $M$–level and possibly redundant sequences  $\langle c_\nu \rangle$  and  $\langle w_\nu \rangle$:
$$p_{\rm S} = \overline{{\rm Pr} (w_\nu \ne c_\nu)} = \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (w_\nu \ne c_\nu) \hspace{0.05cm}.$$
  • The  bit error probability  describes the falsifications with respect to the binary sequences  $\langle q_\nu \rangle$  and  $\langle v_\nu \rangle$  of source and sink:
$$p_{\rm B} = \overline{{\rm Pr} (v_\nu \ne q_\nu)} = \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (v_\nu \ne q_\nu) \hspace{0.05cm}.$$

The diagram illustrates these two definitions and is also valid for the next chapters.  The block  "encoder"  causes

  • in the present chapter a redundancy-free coding,
  • in the  "following chapter"  a blockwise transmission coding,  and finally
  • in the  "last chapter"  symbolwise coding with pseudo-ternary codes.


$\text{Conclusion:}$ 

  • For multilevel and/or coded transmission,  a distinction must be made between the bit error probability  $p_{\rm B}$  and the symbol error probability  $p_{\rm S}$.  Only in the case of the redundancy-free binary system does  $p_{\rm B} = p_{\rm S}$ apply.
  • In general,  the symbol error probability  $p_{\rm S}$  can be calculated somewhat more easily than the bit error probability  $p_{\rm B}$  for redundancy-containing multilevel systems.
  • However,  a comparison of systems with different level numbers  $M$  or different types of coding should always be based on the bit error probability  $p_{\rm B}$  for reasons of fairness.  The mapping between the source and encoder symbols must also be taken into account,  as shown in the following example.


$\text{Example 4:}$  We consider a quaternary transmission system whose transmission behavior can be characterized as follows  (see left sketch in the graphic):

  • The falsification probability to a neighboring symbol is  
$$p={\rm Q}\big [s_0/(3\sigma_d)\big ].$$
  • A falsification to a non-adjacent symbol is excluded.
  • The model considers the dual falsification possibilities of inner symbols.


For equally probable binary source symbols  $q_\nu$  the quaternary encoder symbols  $c_\nu$  also occur with equal probability.  Thus,  we obtain for the symbol error probability:

$$p_{\rm S} ={1}/{4}\cdot (2 \cdot p + 2 \cdot 2 \cdot p) = {3}/{2} \cdot p\hspace{0.05cm}.$$
Comparison of dual code and Gray code

To calculate the bit error probability,  one must also consider the mapping between the binary and the quaternary symbols:

  • In  "dual coding"  according to the table with yellow background,  one symbol error  $(w_\nu \ne c_\nu)$  can result in one or two bit errors  $(v_\nu \ne q_\nu)$.  Of the six falsification possibilities at the quaternary symbol level,  four result in one bit error each and only the two inner ones result in two bit errors.  It follows:
$$p_{\rm B} = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 2 \cdot p ) \cdot {1}/{2} = p\hspace{0.05cm}.$$
The factor  $1/2$  takes into account that a quaternary symbol contains two binary symbols.
  • In contrast,  in the so-called  "Gray coding"  according to the table with green background,  the mapping between the binary symbols and the quaternary symbols is chosen in such a way that each symbol error results in exactly one bit error. From this follows:
$$p_{\rm B} = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 1 \cdot p ) \cdot {1}/{2} = {3}/{4} \cdot p\hspace{0.05cm}.$$



Exercises for the chapter


Exercise 2.3: Binary Signal and Quaternary Signal

Exercise 2.4: Dual Code and Gray Code

Exercise 2.4Z: Error Probabilities for the Octal System

Exercise 2.5: Ternary Signal Transmission