Difference between revisions of "Digital Signal Transmission/Redundancy-Free Coding"

From LNTwww
 
(27 intermediate revisions by 2 users not shown)
Line 7: Line 7:
  
  
== Blockwise coding vs. symbolwise coding ==
+
== Symbolwise coding vs. blockwise coding ==
 
<br>
 
<br>
In transmission coding, a distinction is made between two fundamentally different methods:
+
In transmission coding,&nbsp; a distinction is made between two fundamentally different methods:
  
 
'''Symbolwise coding'''
 
'''Symbolwise coding'''
*Here, a code symbol &nbsp;$c_\nu$&nbsp; is generated with each incoming source symbol &nbsp;$q_\nu$,&nbsp; which can depend not only on the current symbol but also on previous symbols &nbsp;$q_{\nu -1}$, &nbsp;$q_{\nu -2}$, ... <br>
+
*Here,&nbsp; an encoder symbol &nbsp;$c_\nu$&nbsp; is generated with each incoming source symbol &nbsp;$q_\nu$,&nbsp; which can depend not only on the current symbol but also on previous symbols &nbsp;$q_{\nu -1}$, &nbsp;$q_{\nu -2}$, ... <br>
*It is typical for all transmission codes for symbolwise coding that the symbol duration &nbsp;$T_c$&nbsp; of the usually multilevel and redundant encoder signal &nbsp;$c(t)$&nbsp; corresponds to the bit duration &nbsp;$T_q$&nbsp; of the message source, which is assumed to be binary and redundancy-free.<br>
 
  
 +
*It is typical for all transmission codes for symbolwise coding that the symbol duration &nbsp;$T_c$&nbsp; of the usually multilevel and redundant encoded  signal &nbsp;$c(t)$&nbsp; corresponds to the bit duration &nbsp;$T_q$&nbsp; of the source signal,&nbsp; which is assumed to be binary and redundancy-free.<br>
  
Details can be found in the chapter &nbsp;[[Digital_Signal_Transmission/Symbol-Wise_Coding_with_Pseudo_Ternary_Codes|Symbol-Wise Coding with Pseudo Ternary Codes]].
+
 
 +
Details can be found in the chapter &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"Symbolwise Coding with Pseudo-Ternary Codes"]].
  
  
 
'''Blockwise coding'''
 
'''Blockwise coding'''
*Here, a block of &nbsp;$m_q$&nbsp; binary source symbols &nbsp;$(M_q = 2)$&nbsp; of bit duration &nbsp;$T_q$&nbsp; is assigned a one&ndash;to&ndash;one sequence of &nbsp;$m_c$&nbsp; code symbols from an alphabet with code symbol range &nbsp;$M_c  \ge 2$.&nbsp;  
+
*Here,&nbsp; a block of &nbsp;$m_q$&nbsp; binary source symbols &nbsp;$(M_q = 2)$&nbsp; of bit duration &nbsp;$T_q$&nbsp; is assigned a one-to-one sequence of &nbsp;$m_c$&nbsp; encoder symbols from an alphabet with encoder symbol set size &nbsp;$M_c  \ge 2$.&nbsp;
*For the ''symbol duration of a code symbol''&nbsp; then holds:
+
 +
*For the&nbsp; '''symbol duration of an encoder symbol'''&nbsp; then holds:
 
:$$T_c = \frac{m_q}{m_c} \cdot T_q \hspace{0.05cm},$$
 
:$$T_c = \frac{m_q}{m_c} \cdot T_q \hspace{0.05cm},$$
*The ''relative redundancy of a block code''&nbsp; is in general
+
*The&nbsp; '''relative redundancy of a block code'''&nbsp; is in general
 
:$$r_c = 1- \frac{R_q}{R_c} = 1- \frac{T_c}{T_q} \cdot \frac{{\rm log_2}\hspace{0.05cm} (M_q)}{{\rm log_2} \hspace{0.05cm}(M_c)} = 1- \frac{T_c}{T_q \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\hspace{0.05cm}.$$
 
:$$r_c = 1- \frac{R_q}{R_c} = 1- \frac{T_c}{T_q} \cdot \frac{{\rm log_2}\hspace{0.05cm} (M_q)}{{\rm log_2} \hspace{0.05cm}(M_c)} = 1- \frac{T_c}{T_q \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\hspace{0.05cm}.$$
  
More detailed information on the block codes can be found in the chapter&nbsp; [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|Block Coding with 4B3T Codes]].<br>
+
More detailed information on the block codes can be found in the chapter&nbsp; [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"Block Coding with 4B3T Codes"]].<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp; For the ''pseudoternary codes'',&nbsp; increasing the number of stages from &nbsp;$M_q = 2$&nbsp; to &nbsp;$M_c = 3$&nbsp; for the same symbol duration &nbsp;$(T_c = T_q)$&nbsp; adds a relative redundancy of &nbsp;$r_c = 1 - 1/\log_2 \hspace{0.05cm} (3) \approx 37\%$.&nbsp;  
+
$\text{Example 1:}$&nbsp; For the&nbsp; "pseudo-ternary codes"',&nbsp; increasing the number of levels from &nbsp;$M_q = 2$&nbsp; to &nbsp;$M_c = 3$&nbsp; for the same symbol duration &nbsp;$(T_c = T_q)$&nbsp; adds a relative redundancy of &nbsp;$r_c = 1 - 1/\log_2 \hspace{0.05cm} (3) \approx 37\%$.&nbsp;  
  
In contrast, the so-called ''4B3T codes''&nbsp; operate at block level with the code parameters &nbsp;$m_q = 4$, &nbsp;$M_q = 2$, &nbsp;$m_c = 3$&nbsp; and &nbsp;$M_c = 3$&nbsp; and have a relative redundancy of approx. &nbsp;$16\%$. Because of &nbsp;${T_c}/{T_q} = 4/3$,&nbsp; the transmitted signal &nbsp;$s(t)$&nbsp; is lower in frequency here than in uncoded transmission, which reduces the expensive bandwidth and is also advantageous for many message channels from a transmission point of view.}}<br>
+
In contrast,&nbsp; the so-called&nbsp; "4B3T codes"&nbsp; operate at block level with the code parameters &nbsp;$m_q = 4$, &nbsp;$M_q = 2$, &nbsp;$m_c = 3$&nbsp; and &nbsp;$M_c = 3$&nbsp; and have a relative redundancy of approx. &nbsp;$16\%$.&nbsp; Because of &nbsp;${T_c}/{T_q} = 4/3$,&nbsp; the transmitted signal &nbsp;$s(t)$&nbsp; is lower in frequency here than in uncoded transmission, which reduces the expensive bandwidth and is also advantageous for many channels from a transmission point of view.}}<br>
  
  
== Quaternary signal with <i>r<sub>c</sub></i> = 0 and ternary signal with <i>r<sub>c</sub></i> &asymp; 0==
+
== Quaternary signal with&nbsp; $r_{\rm c} \equiv 0$&nbsp;  and ternary signal with&nbsp; $r_{\rm c} \approx 0$==
 
<br>
 
<br>
A special case of a block code is a '''redundancy-free multilevel code'''. Starting from the redundancy-free binary source signal &nbsp;$q(t)$&nbsp; with bit duration &nbsp;$T_q$,&nbsp; a &nbsp;$M_c$&ndash;level code signal &nbsp;$c(t)$&nbsp; with symbol duration &nbsp;$T_c = T_q \cdot \log_2 \hspace{0.05cm} (M_c)$&nbsp; is generated. Thus, the relative redundancy is given by:
+
A special case of a block code is a&nbsp; '''redundancy-free multilevel code'''.&nbsp;
 +
 
 +
*Starting from the redundancy-free binary source signal &nbsp;$q(t)$&nbsp; with bit duration &nbsp;$T_q$,&nbsp;  
 +
*a &nbsp;$M_c$&ndash;level encoded signal &nbsp;$c(t)$&nbsp; with symbol duration &nbsp;$T_c = T_q \cdot \log_2 \hspace{0.05cm} (M_c)$&nbsp; is generated.
 +
 
 +
 
 +
Thus,&nbsp; the relative redundancy is given by:
 
:$$r_c = 1- \frac{T_c}{T_q \cdot {\rm log_2}\hspace{0.05cm} (M_c)} = 1- \frac{m_q}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\to 0 \hspace{0.05cm}.$$
 
:$$r_c = 1- \frac{T_c}{T_q \cdot {\rm log_2}\hspace{0.05cm} (M_c)} = 1- \frac{m_q}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\to 0 \hspace{0.05cm}.$$
  
 
Thereby holds:
 
Thereby holds:
*If &nbsp;$M_c$&nbsp; is a power to the base &nbsp;$2$, then &nbsp;$m_q = \log_2 \hspace{0.05cm} (M_c)$&nbsp; are combined into a single code symbol &nbsp;$(m_c = 1)$.&nbsp; In this case, the relative redundancy is actually &nbsp;$r_c = 0$.<br>
+
#If &nbsp;$M_c$&nbsp; is a power to the base &nbsp;$2$,&nbsp; then &nbsp;$m_q = \log_2 \hspace{0.05cm} (M_c)$&nbsp; are combined into a single encoder symbol &nbsp;$(m_c = 1)$.&nbsp; In this case, the relative redundancy is actually &nbsp;$r_c = 0$.<br>
*If &nbsp;$M_c$&nbsp; is not a power of two, a hundred percent redundancy-free block coding is not possible. For example, if &nbsp;$m_q = 3$&nbsp; binary symbols are encoded by &nbsp;$m_c = 2$&nbsp; ternary symbols and &nbsp;$T_c = 1.5 \cdot T_q$ is set, a relative redundancy of &nbsp;$r_c = 1-1.5/ \log_2 \hspace{0.05cm} (3) \approx 5\%$ remains.<br>
+
#If &nbsp;$M_c$&nbsp; is not a power of two,&nbsp; a hundred percent redundancy-free block coding is not possible.&nbsp; For example, if &nbsp;$m_q = 3$&nbsp; binary symbols are encoded by &nbsp;$m_c = 2$&nbsp; ternary symbols and &nbsp;$T_c = 1.5 \cdot T_q$&nbsp; is set,&nbsp; a relative redundancy of &nbsp;$r_c = 1-1.5/ \log_2 \hspace{0.05cm} (3) \approx 5\%$&nbsp; remains.<br>
*Encoding a block of &nbsp;$128$&nbsp; binary symbols with &nbsp;$81$&nbsp; ternary symbols results in a relative code redundancy of less than &nbsp;$r_c = 0.3\%$.<br><br>
+
#Encoding a block of &nbsp;$128$&nbsp; binary symbols with &nbsp;$81$&nbsp; ternary symbols results in a relative code redundancy of less than &nbsp;$r_c = 0.3\%$.<br><br>
  
To simplify the notation and to align the nomenclature with the [[Digital_Signal_Transmission| first main chapter]],&nbsp; we use in the following
+
{{BlueBox|TEXT=
 +
To simplify the notation and to align the nomenclature with the [[Digital_Signal_Transmission| "first main chapter"]],&nbsp; we use in the following
 
*the bit duration &nbsp;$T_{\rm B} = T_q$&nbsp; of the redundancy-free binary source signal,
 
*the bit duration &nbsp;$T_{\rm B} = T_q$&nbsp; of the redundancy-free binary source signal,
*the symbol duration &nbsp;$T = T_c$&nbsp; of the encoder signal and the transmitted signal, and
+
*the symbol duration &nbsp;$T = T_c$&nbsp; of the encoded  signal and the transmitted signal, and
*the number of steps &nbsp;$M = M_c$.<br>
+
*the number &nbsp;$M = M_c$&nbsp; of levels.<br>}}
  
  
This results in the identical form for the transmitted signal as for the binary transmission, but with different amplitude coefficients:
+
This results in the identical form for the transmitted signal as for the binary transmission,&nbsp; but with different amplitude coefficients:
 
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm} a_\nu \in \{ a_1, \text{...} , a_\mu , \text{...} , a_{ M}\}\hspace{0.05cm}.$$
 
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm} a_\nu \in \{ a_1, \text{...} , a_\mu , \text{...} , a_{ M}\}\hspace{0.05cm}.$$
  
*In principle, the amplitude coefficients &nbsp;$a_\nu$&nbsp; can be assigned arbitrarily &ndash; but uniquely &ndash; to the encoder symbols &nbsp;$c_\nu$.&nbsp; It is convenient to choose equal distances between adjacent amplitude coefficients.  
+
*In principle,&nbsp; the amplitude coefficients &nbsp;$a_\nu$&nbsp; can be assigned arbitrarily&nbsp; &ndash; but uniquely &ndash;&nbsp; to the encoder symbols &nbsp;$c_\nu$.&nbsp; It is convenient to choose equal distances between adjacent amplitude coefficients.
*Thus, for bipolar signaling &nbsp;$(-1 \le a_\nu \le +1)$,&nbsp; the following applies to the possible amplitude coefficients with index &nbsp;$\mu = 1$, ... , $M$:
+
 +
*Thus,&nbsp; for bipolar signaling &nbsp;$(-1 \le a_\nu \le +1)$,&nbsp; the following applies to the possible amplitude coefficients with index &nbsp;$\mu = 1$, ... , $M$:
 
:$$a_\mu = \frac{2\mu - M - 1}{M-1} \hspace{0.05cm}.$$
 
:$$a_\mu = \frac{2\mu - M - 1}{M-1} \hspace{0.05cm}.$$
*Independently of the number of steps &nbsp;$M$&nbsp; one obtains from this for the outer amplitude coefficients &nbsp;$a_1 = -1$&nbsp; and &nbsp;$a_M = +1$.  
+
*Independently of the level number &nbsp;$M$&nbsp; one obtains from this for the outer amplitude coefficients &nbsp;$a_1 = -1$&nbsp; and &nbsp;$a_M = +1$.
*For a ternary signal &nbsp;$(M = 3)$,&nbsp; the possible amplitude coefficients are &nbsp;$-1$, &nbsp;$0$&nbsp; and &nbsp;$+1$.  
+
 +
*For a ternary signal &nbsp;$(M = 3)$,&nbsp; the possible amplitude coefficients are &nbsp;$-1$, &nbsp;$0$&nbsp; and &nbsp;$+1$.
 +
 
*For a quaternary signal &nbsp;$(M = 4)$,&nbsp; the coefficients are &nbsp;$-1$, &nbsp;$-1/3$, &nbsp;$+1/3$&nbsp; and &nbsp;$+1$.<br>
 
*For a quaternary signal &nbsp;$(M = 4)$,&nbsp; the coefficients are &nbsp;$-1$, &nbsp;$-1/3$, &nbsp;$+1/3$&nbsp; and &nbsp;$+1$.<br>
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 2:}$&nbsp; The graphic above shows the quaternary redundancy-free transmitted signal &nbsp;$s_4(t)$&nbsp; with the possible amplitude coefficients &nbsp;$\pm 1$&nbsp; and &nbsp;$\pm 1/3$, which results from the binary source signal &nbsp;$q(t)$&nbsp; shown in the center.
+
$\text{Example 2:}$&nbsp; The graphic above shows the quaternary redundancy-free transmitted signal &nbsp;$s_4(t)$&nbsp; with the possible amplitude coefficients &nbsp;$\pm 1$&nbsp; and &nbsp;$\pm 1/3$,&nbsp; which results from the binary source signal &nbsp;$q(t)$&nbsp; shown in the center.
 +
[[File:EN_Dig_T_2_2_S2.png|right|frame|Redundancy-free ternary and quaternary signal|class=fit]]
  
*Two binary symbols each are combined to a quaternary amplitude coefficient according to the table with red background. The symbol duration &nbsp;$T$&nbsp; of the signal &nbsp;$s_4(t)$&nbsp; is twice the bit duration &nbsp;$T_{\rm B}$&nbsp; (previously: &nbsp;$T_q$)&nbsp; of the source signal.  
+
*Two binary symbols each are combined to a quaternary coefficient according to the table with red background. The symbol duration &nbsp;$T$&nbsp; of the signal &nbsp;$s_4(t)$&nbsp; is twice the bit duration &nbsp;$T_{\rm B}$&nbsp; $($previously: &nbsp;$T_q)$&nbsp; of the source signal.  
  
 
*If &nbsp;$q(t)$&nbsp; is redundancy-free, it also results in a redundancy-free quaternary signal, i.e., the possible amplitude coefficients &nbsp;$\pm 1$&nbsp; and &nbsp;$\pm 1/3$&nbsp; are equally probable and there are no statistical ties within the sequence &nbsp;$⟨a_ν⟩$.&nbsp;
 
*If &nbsp;$q(t)$&nbsp; is redundancy-free, it also results in a redundancy-free quaternary signal, i.e., the possible amplitude coefficients &nbsp;$\pm 1$&nbsp; and &nbsp;$\pm 1/3$&nbsp; are equally probable and there are no statistical ties within the sequence &nbsp;$⟨a_ν⟩$.&nbsp;
 
   
 
   
  
[[File:EN_Dig_T_2_2_S2.png|center|frame|Redundancy-free ternary and quaternary signal|class=fit]]
 
  
The lower plot shows the (almost) redundancy-free ternary signal &nbsp;$s_3(t)$&nbsp; and the mapping of three binary symbols each to two ternary symbols.
+
The lower plot shows the $($almost$)$ redundancy-free ternary signal &nbsp;$s_3(t)$&nbsp; and the mapping of three binary symbols each to two ternary symbols.
*The possible amplitude coefficients are &nbsp;$-1$, &nbsp;$0$&nbsp; and &nbsp;$+1$&nbsp; and &nbsp;$T/T_{\rm B} = 3/2$.
+
*The possible amplitude coefficients are &nbsp;$-1$, &nbsp;$0$&nbsp; and &nbsp;$+1$&nbsp; and the symbol duration of the encoded  signal &nbsp;$T = 3/2 \cdot T_{\rm B}$.
*It can be seen from the green mapping table that the amplitude coefficients &nbsp;$+1$&nbsp; and &nbsp;$-1$&nbsp; occur somewhat more frequently than the amplitude coefficient &nbsp;$a_\nu = 0$.  
+
 
*This results in the above mentioned relative redundancy of $5\%$.  
+
*It can be seen from the green mapping table that the coefficients &nbsp;$+1$&nbsp; and &nbsp;$-1$&nbsp; occur somewhat more frequently than the coefficient &nbsp;$a_\nu = 0$.&nbsp; This results in the above mentioned relative redundancy of&nbsp; $5\%$.
*However, from the very short signal section &ndash; only eight ternary symbols corresponding to twelve binary symbols &ndash; this property is not apparent.}}<br>
+
 +
*However,&nbsp; from the very short signal section&nbsp; &ndash; only eight ternary symbols corresponding to twelve binary symbols &ndash;&nbsp; this property is not apparent.}}<br>
  
  
 
== ACF and PSD of a multilevel signal ==
 
== ACF and PSD of a multilevel signal ==
 
<br>
 
<br>
For a redundancy-free coded $M$&ndash;level bipolar digital signal &nbsp;$s(t)$,&nbsp;  the following holds for the &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#ACF_calculation_of_a_digital_signal|discrete auto-correlation function]]&nbsp; (ACF) of the amplitude coefficients and for the corresponding &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#PSD_calculation_of_a_digital_signal|power-spectral density]]&nbsp; (PSD):
+
For a redundancy-free coded&nbsp; $M$&ndash;level bipolar digital signal &nbsp;$s(t)$,&nbsp;  the following holds for the &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#ACF_calculation_of_a_digital_signal|"discrete auto-correlation function"]]&nbsp; $\rm (ACF)$&nbsp; of the amplitude coefficients and for the corresponding &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#PSD_calculation_of_a_digital_signal|"power-spectral density"]]&nbsp; $\rm (PSD)$:
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} \frac{M+ 1}{3 \cdot (M-1)}    \\
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} \frac{M+ 1}{3 \cdot (M-1)}    \\
 
  \\ 0  \\  \end{array} \right.\quad
 
  \\ 0  \\  \end{array} \right.\quad
Line 96: Line 109:
  
 
One can see from these equations:
 
One can see from these equations:
*In the case of redundancy-free multilevel coding, the shape of ACF and PSD is determined solely by the basic transmission pulse &nbsp;$g_s(t)$.&nbsp;<br>
+
*In the case of redundancy-free multilevel coding,&nbsp; the shape of ACF and PSD is determined solely by the basic transmission pulse &nbsp;$g_s(t)$.&nbsp;<br>
 +
 
 
*The magnitude of the ACF is lower than the redundancy-free binary signal by a factor &nbsp;$\varphi_a(\lambda = 0) = {\rm E}\big[a_\nu^2\big] = (M + 1)/(3M-3)$&nbsp; for the same shape.<br>
 
*The magnitude of the ACF is lower than the redundancy-free binary signal by a factor &nbsp;$\varphi_a(\lambda = 0) = {\rm E}\big[a_\nu^2\big] = (M + 1)/(3M-3)$&nbsp; for the same shape.<br>
*This factor describes the lower signal power of the multilevel signal due to the &nbsp;$M-2$&nbsp; inner amplitude coefficients.
+
 
*For &nbsp;$M = 3$&nbsp; this factor is equal to &nbsp;$2/3$, for &nbsp;$M = 4$&nbsp; it is equal to &nbsp;$5/9$.<br>
+
*This factor describes the lower signal power of the multilevel signal due to the &nbsp;$M-2$&nbsp; inner amplitude coefficients.&nbsp; For &nbsp;$M = 3$&nbsp; this factor is equal to &nbsp;$2/3$, for &nbsp;$M = 4$&nbsp; it is equal to &nbsp;$5/9$.<br>
*However, a fair comparison between binary signal and multilevel signal with the same information flow (same equivalent bit rate) should also take into account the different symbol durations.<br>
+
 
*This shows that a multilevel signal requires less bandwidth than the binary signal due to the narrower PSD when the same information is transmitted.<br><br>
+
*However,&nbsp; a fair comparison between binary and multilevel signal with the same information flow&nbsp; (same equivalent bit rate)&nbsp; should also take into account the different symbol durations.&nbsp; This shows that a multilevel signal requires less bandwidth than the binary signal due to the narrower PSD when the same information is transmitted.<br><br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 3:}$&nbsp; We assume a binary source with bit rate &nbsp;$R_{\rm B} = 1 \ \rm Mbit/s$,&nbsp; so that the bit duration &nbsp;$T_{\rm B} = 1 \ \rm &micro; s$.&nbsp;  
+
$\text{Example 3:}$&nbsp; We assume a binary source with bit rate &nbsp;$R_{\rm B} = 1 \ \rm Mbit/s$,&nbsp; so that the bit duration &nbsp;$T_{\rm B} = 1 \ \rm &micro; s$.&nbsp;
*For binary transmission &nbsp;$(M = 2)$,&nbsp; the symbol duration &nbsp;$T$&nbsp; of the transmitted signal is equal to &nbsp;$T_{\rm B}$&nbsp; and the auto-correlation function shown in blue in the left graph results for NRZ rectangular pulses (assuming &nbsp;$s_0^2 = 10 \ \rm mW$).  
+
[[File:Dig_T_1_5_S3_version2.png|right|frame|Auto-correlation function and power-spectral density of binary and quaternary signal|class=fit]]
 +
 
 +
*For binary transmission &nbsp;$(M = 2)$,&nbsp; the symbol duration of the transmitted signal is &nbsp;$T =T_{\rm B}$&nbsp; and the auto-correlation function shown in blue in the left graph results for NRZ rectangular pulses (assuming &nbsp;$s_0^2 = 10 \ \rm mW$).  
 
*For the quaternary system &nbsp;$(M = 4)$,&nbsp; the ACF is also triangular, but lower by a factor of &nbsp;$5/9$&nbsp; and twice as wide because of &nbsp;$T = 2 \cdot T_{\rm B}$.&nbsp;
 
*For the quaternary system &nbsp;$(M = 4)$,&nbsp; the ACF is also triangular, but lower by a factor of &nbsp;$5/9$&nbsp; and twice as wide because of &nbsp;$T = 2 \cdot T_{\rm B}$.&nbsp;
  
  
[[File:Dig_T_1_5_S3_version2.png|center|frame|ACF and PSD of binary and quaternary signal|class=fit]]
+
The &nbsp;$\rm sinc^2$&ndash;shaped power-spectral density in the binary case&nbsp;  (blue curve)&nbsp; has the maximum value &nbsp;${\it \Phi}_{s}(f = 0) = 10^{-8} \ \rm  W/Hz$&nbsp; (area of the blue triangle)&nbsp; for the signal parameters selected here.&nbsp; The first zero point is at &nbsp;$f = 1 \ \rm MHz$.  
 
+
*The PSD of the quaternary signal&nbsp; (red curve)&nbsp; is only half as wide and slightly higher.&nbsp; Here: &nbsp;${\it \Phi}_{s}(f = 0) \approx 1.1 \cdot 10^{-8} \ \rm  W/Hz$.   
The &nbsp;$\rm sinc^2$&ndash;shaped power-spectral density in the binary case (blue curve) has the maximum value &nbsp;${\it \Phi}_{s}(f = 0) = 10^{-8} \ \rm  W/Hz$&nbsp; (area of the blue triangle) for the signal parameters selected here and the first zero point is at &nbsp;$f = 1 \ \rm MHz$.  
+
*The value results from the area of the red triangle.&nbsp; <br>This is lower &nbsp;$($factor &nbsp;$0.55)$&nbsp; and wider (factor $2$).}}<br>
*The power-spectral density of the quaternary signal (red curve) is only half as wide and slightly higher. Here  &nbsp;${\it \Phi}_{s}(f = 0) \approx 1.1 \cdot 10^{-8} \ \rm  W/Hz$ is valid.   
 
*The value results from the area of the red triangle. This is lower &nbsp;$($factor &nbsp;$0.55)$&nbsp; and wider (factor $2$).}}<br>
 
  
  
Line 119: Line 133:
 
<br>
 
<br>
 
[[File:P_ID1315__Dig_T_2_2_S4_v1.png|right|frame|Eye diagrams for redundancy&ndash;free binary, ternary and quaternary signals|class=fit]]
 
[[File:P_ID1315__Dig_T_2_2_S4_v1.png|right|frame|Eye diagrams for redundancy&ndash;free binary, ternary and quaternary signals|class=fit]]
The diagram shows the eye diagrams  
+
The diagram on the right shows the eye diagrams  
 
*of a binary transmission system &nbsp;$(M = 2)$,  
 
*of a binary transmission system &nbsp;$(M = 2)$,  
 
*a ternary transmission system &nbsp;$(M = 3)$ and  
 
*a ternary transmission system &nbsp;$(M = 3)$ and  
Line 125: Line 139:
 
   
 
   
  
Here, a cosine rolloff characteristic is assumed for the overall system &nbsp;$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f)$&nbsp;  of transmitter, channel and receiver, so that intersymbol interference does not play a role. The rolloff factor is &nbsp;$r= 0.5$. The noise is assumed to be negligible.
+
Here,&nbsp; a cosine rolloff characteristic is assumed for the overall system &nbsp;$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f)$&nbsp;  of transmitter, channel and receiver,&nbsp; so that intersymbol interference does not play a role.&nbsp; The rolloff factor is &nbsp;$r= 0.5$.&nbsp; The noise is assumed to be negligible.
  
The eye diagram is used to estimate intersymbol interference. A detailed description follows in the section &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|Definition and statements of the eye diagram]]. However, the following text should be understandable even without detailed knowledge.<br>
+
The eye diagram is used to estimate intersymbol interference.&nbsp; A detailed description follows in the section &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|"Definition and statements of the eye diagram"]].&nbsp; However,&nbsp; the following text should be understandable even without detailed knowledge.<br>
  
 
It can be seen from the above diagrams:
 
It can be seen from the above diagrams:
 
<br clear = all>
 
<br clear = all>
*In the '''binary system''' &nbsp;$(M = 2)$,&nbsp; there is only one decision threshold: &nbsp; $E_1 = 0$. A transmission error occurs if the noise component &nbsp;$d_{\rm N}(T_{\rm D})$&nbsp; at the time of detection is greater than &nbsp;$+s_0$ &nbsp; $\big ($if &nbsp;$d_{\rm S}(T_{\rm D}) = -s_0$  $\big )$ &nbsp;or&nbsp; if &nbsp;$d_{\rm N}(T_{\rm D})$&nbsp; is less than &nbsp;$-s_0$ &nbsp;  $\big ($if &nbsp;$d_{\rm S}(T_{\rm D}) = +s_0$ $\big )$.<br>
+
*In the&nbsp; '''binary system'''&nbsp; &nbsp;$(M = 2)$,&nbsp; there is only one decision threshold: &nbsp; $E_1 = 0$.&nbsp; A transmission error occurs if the noise component &nbsp;$d_{\rm N}(T_{\rm D})$&nbsp; at the detection time is greater than &nbsp;$+s_0$ &nbsp; $\big ($if &nbsp;$d_{\rm S}(T_{\rm D}) = -s_0$  $\big )$ &nbsp;or&nbsp; if &nbsp;$d_{\rm N}(T_{\rm D})$&nbsp; is less than &nbsp;$-s_0$ &nbsp;  $\big ($if &nbsp;$d_{\rm S}(T_{\rm D}) = +s_0$ $\big )$.<br>
 
 
 
 
*In the case of the '''ternary system''' &nbsp;$(M = 3)$,&nbsp; two eye openings and two decision thresholds &nbsp;$E_1 = -s_0/2$&nbsp; and &nbsp;$E_2 = +s_0/2$ can be recognized. The distance of the possible detection useful signal values &nbsp;$d_{\rm S}(T_{\rm D})$&nbsp; to the nearest threshold is &nbsp;$-s_0/2$ in each case. The outer amplitude values &nbsp;$(d_{\rm S}(T_{\rm D}) = \pm s_0)$&nbsp; can only be falsified in one direction in each case, while &nbsp;$d_{\rm S}(T_{\rm D}) = 0$&nbsp; is limited by two thresholds.<br>
 
  
 +
*In the case of the&nbsp; '''ternary system''' &nbsp;$(M = 3)$,&nbsp; two eye openings and two decision thresholds &nbsp;$E_1 = -s_0/2$&nbsp; and &nbsp;$E_2 = +s_0/2$&nbsp; can be recognized.&nbsp; The distance of the possible useful detection signal values &nbsp;$d_{\rm S}(T_{\rm D})$&nbsp; to the nearest threshold is &nbsp;$-s_0/2$ in each case.&nbsp; The outer amplitude values &nbsp;$(d_{\rm S}(T_{\rm D}) = \pm s_0)$&nbsp; can only be falsified in one direction in each case,&nbsp; while &nbsp;$d_{\rm S}(T_{\rm D}) = 0$&nbsp; is limited by two thresholds.<br>
  
*Accordingly, an amplitude coefficient &nbsp;$a_\nu = 0$&nbsp; is falsified twice as often compared to &nbsp;$a_\nu = +1$&nbsp; or &nbsp;$a_\nu = -1$.&nbsp; For AWGN noise with rms value &nbsp;$\sigma_d$&nbsp; as well as equal probability amplitude coefficients, according to the section &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_of_the_bit_error_probability|Definition of the bit error probability
+
*Accordingly,&nbsp; an amplitude coefficient &nbsp;$a_\nu = 0$&nbsp; is falsified twice as often compared to &nbsp;$a_\nu = +1$&nbsp; or &nbsp;$a_\nu = -1$.&nbsp; For AWGN noise with rms value &nbsp;$\sigma_d$&nbsp; as well as equal probability amplitude coefficients,&nbsp; according to the section &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_of_the_bit_error_probability|"Definition of the bit error probability"]]&nbsp; for the&nbsp; "symbol error probability":
]]&nbsp; for the symbol error probability:
 
  
 
:$$p_{\rm S} = { 1}/{3} \cdot \left[{\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+
 
:$$p_{\rm S} = { 1}/{3} \cdot \left[{\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+
Line 145: Line 156:
 
  \frac{ 4}{3} \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\hspace{0.05cm}.$$
 
  \frac{ 4}{3} \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\hspace{0.05cm}.$$
  
*Please note that this equation no longer specifies the bit error probability &nbsp;$p_{\rm B}$, but the  ''symbol error probability'' &nbsp;$p_{\rm S}$.&nbsp; The corresponding a posteriori parameters are ''Bit Error Rate''&nbsp; (BER) and ''Symbol Error Rate''&nbsp; (SER). More details are given in the &nbsp;[[Digital_Signal_Transmission/Redundanzfreie_Codierung#Symbol.E2.80.93_und_Bitfehlerwahrscheinlichkeit|last section]]&nbsp; of this chapter.<br>
+
*Please note that this equation no longer specifies the bit error probability &nbsp;$p_{\rm B}$, but the&nbsp; "symbol error probability" &nbsp;$p_{\rm S}$.&nbsp; The corresponding a-posteriori parameters are&nbsp; "bit error rate"&nbsp; $\rm (BER)$&nbsp; and&nbsp; "symbol error rate"&nbsp; $\rm (SER)$.&nbsp; More details are given in the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding#Symbol_and_bit_error_probability|"last section"]]&nbsp; of this chapter.<br>
  
  
*Beim '''Quaternärsystem''' &nbsp;$(M = 4)$&nbsp; mit den möglichen Amplitudenwerten &nbsp;$\pm s_0$&nbsp; und &nbsp;$\pm s_0/3$&nbsp; gibt es drei Augenöffnungen und somit auch drei Entscheiderschwellen bei &nbsp;$E_1 = -2s_0/3$, &nbsp;$E_2 = 0$&nbsp; und &nbsp;$E_3 = +2s_0/3$. Unter Berücksichtigung der Auftrittswahrscheinlichkeiten $($bei gleichwahrscheinlichen Symbolen jeweils $1/4)$&nbsp; und der sechs Verfälschungsmöglichkeiten (siehe Pfeile in der Grafik) erhält man nun:
+
For the '''quaternary system''' &nbsp;$(M = 4)$&nbsp; with the possible amplitude values &nbsp;$\pm s_0$&nbsp; and &nbsp;$\pm s_0/3$,&nbsp;
 +
*there are three eye-openings,&nbsp; and
 +
*thus also three decision thresholds at &nbsp;$E_1 = -2s_0/3$, &nbsp;$E_2 = 0$&nbsp; and &nbsp;$E_3 = +2s_0/3$.  
 +
 
 +
 
 +
Taking into account the occurrence probabilities&nbsp;  $(1/4$&nbsp; for equally probable symbols$)$&nbsp; and the six possibilities of falsification (see arrows in the graph),&nbsp; we obtain:
 
:$$p_{\rm S} =
 
:$$p_{\rm S} =
 
{ 6}/{4} \cdot {\rm Q} \left( \frac{s_0/3}{\sigma_d}\right)\hspace{0.05cm}.$$
 
{ 6}/{4} \cdot {\rm Q} \left( \frac{s_0/3}{\sigma_d}\right)\hspace{0.05cm}.$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Allgemein gilt für die '''Symbolfehlerwahrscheinlichkeit''' bei &nbsp;$M$&ndash;stufiger Digitalsignalübertragung:
+
$\text{Conclusion:}$&nbsp; In general, the&nbsp; '''symbol error probability'''&nbsp; for &nbsp;$M$&ndash;level digital signal transmission is:
 
:$$p_{\rm S}  =  
 
:$$p_{\rm S}  =  
 
  \frac{ 2 + 2 \cdot (M-2)}{M} \cdot {\rm Q} \left( \frac{s_0/(M-1)}{\sigma_d(M)}\right) = \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \frac{s_0}{\sigma_d (M)\cdot (M-1)}\right)\hspace{0.05cm}.$$
 
  \frac{ 2 + 2 \cdot (M-2)}{M} \cdot {\rm Q} \left( \frac{s_0/(M-1)}{\sigma_d(M)}\right) = \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \frac{s_0}{\sigma_d (M)\cdot (M-1)}\right)\hspace{0.05cm}.$$
  
Die Schreibweise &nbsp;$\sigma_d(M)$&nbsp; soll deutlich machen, dass der Effektivwert des Rauschanteils &nbsp;$d_{\rm N}(t)$&nbsp; signifikant von der Stufenzahl &nbsp;$M$&nbsp; abhängt.}}<br>
+
*The notation &nbsp;$\sigma_d(M)$&nbsp; is intended to make clear that the rms value of the noise component &nbsp;$d_{\rm N}(t)$&nbsp; depends significantly on the  level number &nbsp;$M$.&nbsp;}}<br>
  
  
== Vergleich zwischen Binärsystem und Mehrstufensystem==
+
== Comparison between binary system and multilevel system==
 
<br>
 
<br>
Für diesen Systemvergleich unter fairen Bedingungen werden vorausgesetzt:
+
For this system comparison under fair conditions,&nbsp; the following are assumed:
*Die äquivalente Bitrate &nbsp;$R_{\rm B} = 1/T_{\rm B}$&nbsp; sei konstant. Abhängig von der Stufenzahl &nbsp;$M$&nbsp; beträgt somit die Symboldauer von Codersignal und Sendesignal:
+
*Let the equivalent bit rate &nbsp;$R_{\rm B} = 1/T_{\rm B}$&nbsp; be constant.&nbsp; Depending on the  level number &nbsp;$M$,&nbsp; the symbol duration of the encoded  signal and the transmitted signal is thus:
 
:$$T = T_{\rm B} \cdot {\rm log_2} (M)  \hspace{0.05cm}.$$
 
:$$T = T_{\rm B} \cdot {\rm log_2} (M)  \hspace{0.05cm}.$$
*Die Nyquistbedingung wird durch eine &nbsp;[[Digital_Signal_Transmission/Optimierung_der_Basisbandübertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme|Wurzel&ndash;Wurzel&ndash;Charakteristik]]&nbsp; mit Rolloff&ndash;Faktor &nbsp;$r$&nbsp; erfüllt. Es treten weiterhin keine Impulsinterferenzen auf. Für die Detektionsrauschleistung gilt:
+
*The Nyquist condition is satisfied by a &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Root_Nyquist_systems|"root&ndash;root characteristic"]]&nbsp; with rolloff factor &nbsp;$r$.&nbsp; Furthermore,&nbsp; no intersymbol interference occurs.&nbsp; The detection noise power is:
 
::$$\sigma_d^2 = \frac{N_0}{2T}  \hspace{0.05cm}.$$
 
::$$\sigma_d^2 = \frac{N_0}{2T}  \hspace{0.05cm}.$$
*Der Vergleich der Symbolfehlerwahrscheinlichkeiten &nbsp;$p_{\rm S}$&nbsp; erfolgt für &nbsp;[[Digital_Signal_Transmission/Optimierung_der_Basisbandübertragungssysteme#Systemoptimierung_bei_Leistungsbegrenzung|Leistungsbegrenzung]]. Die Energie pro Bit beträgt bei &nbsp;$M$&ndash;stufiger Übertragung:
+
*The comparison of the symbol error probabilities &nbsp;$p_{\rm S}$&nbsp; is performed for &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_power_limitation|"power limitation"]]. The energy per bit for &nbsp;$M$&ndash;level transmission is:
 
:$$E_{\rm B} = \frac{M+ 1}{3 \cdot (M-1)} \cdot s_0^2 \cdot T_{\rm B}
 
:$$E_{\rm B} = \frac{M+ 1}{3 \cdot (M-1)} \cdot s_0^2 \cdot T_{\rm B}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Setzt man diese Gleichungen in das allgemeine Ergebnis der &nbsp;[[Digital_Signal_Transmission/Redundanzfreie_Codierung#Fehlerwahrscheinlichkeit_eines_Mehrstufensystems|letzten Seite]]&nbsp; ein, so erhält man:
+
Substituting these equations into the general result on the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding#Error_probability_of_a_multilevel_system|"last section"]],&nbsp; we obtain for the symbol error probability:
 
:$$p_{\rm S}  =  
 
:$$p_{\rm S}  =  
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{s_0^2 /(M-1)^2}{\sigma_d^2}}\right) =
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{s_0^2 /(M-1)^2}{\sigma_d^2}}\right) =
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{3 \cdot {\rm log_2}\hspace{0.05cm} (M)}{M^2 -1}\cdot
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{3 \cdot {\rm log_2}\hspace{0.05cm} (M)}{M^2 -1}\cdot
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)= K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
+
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)$$
 +
[[File:EN_Dig_T_2_3_S3b_v2.png|right|frame|Symbol error probability curves for different level numbers &nbsp;$M$]]
 +
:$$\Rightarrow \hspace{0.3cm} p_{\rm S}  =  
 +
  K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
 
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)\hspace{0.05cm}.$$
 
  \frac{2 \cdot E_{\rm B}}{N_0}}\right)\hspace{0.05cm}.$$
  
Für &nbsp;$M = 2$&nbsp; ist &nbsp;$K_1 = K_2 = 1$&nbsp; zu setzen. Für größere Stufenzahlen erhält man für die Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$, die sich mit &nbsp;$M$&ndash;stufiger redundanzfreier Codierung erreichen lässt:
+
For &nbsp;$M = 2$,&nbsp; set &nbsp;$K_1 = K_2 = 1$.&nbsp; For larger level numbers,&nbsp; one obtains  for the symbol error probability that can be achieved with &nbsp;$M$&ndash;level redundancy-free coding:
[[File:P_ID2191__Dig_T_2_2_S5_v3.png|right|frame|Symbolfehlerwahrscheinlichkeitskurven für verschiedene Stufenzahlen &nbsp;$M$]]
 
 
:$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.594;\hspace{0.5cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.400;$$
 
:$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.594;\hspace{0.5cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.400;$$
 
:$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.290;\hspace{0.5cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.221;$$
 
:$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.290;\hspace{0.5cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.221;$$
 
:$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.175;\hspace{0.5cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.143.$$
 
:$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.175;\hspace{0.5cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.143.$$
  
 +
The graph summarizes the results for &nbsp;$M$&ndash;level redundancy-free coding.
 +
*Plotted are the symbol error probabilities &nbsp;$p_{\rm S}$&nbsp; over the abscissa &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0)$.
 +
 +
*All systems are optimal for the respective &nbsp;$M$,&nbsp; assuming the AWGN channel and power limitation.
 +
 +
*Due to the double logarithmic representation chosen here, a &nbsp;$K_2$ value smaller than &nbsp;$1$&nbsp; leads to a parallel shift of the error probability curve to the right.
  
Die Grafik fasst die Ergebnisse für &nbsp;$M$&ndash;stufige redundanzfreie Codierung zusammen.
+
*If &nbsp;$K_1 > 1$ applies, the curve shifts upwards compared to the binary system &nbsp;$(K_1= 1)$.&nbsp;<br>
*Aufgetragen sind die Symbolfehlerwahrscheinlichkeiten &nbsp;$p_{\rm S}$&nbsp; über  der Abszisse &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0)$.
 
*Alle Systeme sind für das jeweilige &nbsp;$M$&nbsp; optimal, wenn man vom AWGN&ndash;Kanal und Leistungsbegrenzung ausgeht.
 
*Aufgrund der hier gewählten doppelt&ndash;logarithmischen Darstellung führt ein &nbsp;$K_2$&ndash;Wert kleiner als &nbsp;$1$&nbsp; zu einer Parallelverschiebung der Fehlerwahrscheinlichkeitskurve nach rechts.
 
*Gilt &nbsp;$K_1 > 1$, so verschiebt sich die Kurve gegenüber dem Binärsystem &nbsp;$(K_1= 1)$&nbsp; nach oben.<br>
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Systemvergleich unter der Nebenbedingung Leistungsbegrenzung:}$&nbsp; <br>Die obigen Kurvenverläufe kann man wie folgt interpretieren:
+
$\text{System comparison under the constraint of power limitation:}$&nbsp; The above curves can be interpreted as follows:
*Hinsichtlich Symbolfehlerwahrscheinlichkeit ist das Binärsystem &nbsp;$(M = 2)$&nbsp; den Mehrstufensystemen überlegen. Bereits mit &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 12 \ \rm dB$&nbsp; erreicht man &nbsp;$p_{\rm S} <10^{-8}$. Beim Quaternärsystem &nbsp;$(M = 4)$&nbsp; muss &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) > 16 \ \rm dB$&nbsp; aufgewendet werden, um die gleiche Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S} =10^{-8}$&nbsp; zu erreichen.
+
#Regarding symbol error probability,&nbsp; the binary system &nbsp;$(M = 2)$&nbsp; is superior to the multilevel systems.&nbsp; Already with &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 12 \ \rm dB$&nbsp; one reaches &nbsp;$p_{\rm S} <10^{-8}$.&nbsp; For the quaternary system &nbsp;$(M = 4)$,&nbsp; &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) > 16 \ \rm dB$&nbsp; must be spent to reach the same symbol error probability &nbsp;$p_{\rm S} =10^{-8}$.&nbsp;
*Diese Aussage gilt jedoch nur bei verzerrungsfreiem Kanal, das heißt für &nbsp;$H_{\rm K}(f)= 1$. Bei verzerrenden Übertragungskanälen kann dagegen ein höherstufiges System wegen der signifikant kleineren Detektionsstörleistung (nach dem Entzerrer) eine deutliche Verbesserung bringen.<br>
+
#However,&nbsp; this statement is valid only for distortion-free channel,&nbsp; i.e., for &nbsp;$H_{\rm K}(f)= 1$.&nbsp; On the other hand,&nbsp; for distorting transmission channels,&nbsp; a higher-level system can provide a significant improvement because of the significantly smaller noise component of the detection signal&nbsp; (after the equalizer).<br>
*Beim AWGN&ndash;Kanal ist der einzige Vorteil einer höherstufigen Übertragung der niedrigere Bandbreitenbedarf aufgrund der kleineren äquivalenten Bitrate, der bei Basisbandübertragung nur eine untergeordnete Rolle spielt im Gegensatz zu digitalen Trägerfrequenzsystemen, z.&nbsp;B. &nbsp;[[Modulationsverfahren/Quadratur–Amplitudenmodulation#QAM.E2.80.93Signalraumkonstellationen|Quadratur–Amplitudenmodulation]]&nbsp; (QAM).}}
+
#For the AWGN channel,&nbsp; the only advantage of a higher-level transmission is the lower bandwidth requirement due to the smaller equivalent bit rate,&nbsp; which plays only a minor role in baseband transmission in contrast to digital carrier frequency systems,&nbsp; e.g. &nbsp;[[Modulation_Methods/Quadrature_Amplitude_Modulation#Quadratic_QAM_signal_space_constellations|"quadrature amplitude modulation"]]&nbsp; $\rm (QAM)$.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Systemvergleich unter der Nebenbedingung Spitzenwertbegrenzung:}$&nbsp;  
+
$\text{System comparison under the peak limitation constraint:}$&nbsp;  
*Mit der Nebenbedingung "Spitzenwertbegrenzung" führt die Kombination aus rechteckförmigem &nbsp;$g_s(t)$&nbsp; und rechteckförmigem &nbsp;$h_{\rm E}(t)$&nbsp; unabhängig von der Stufenzahl &nbsp;$M$&nbsp; zum Optimum.<br>
+
*With the constraint&nbsp; "peak limitation",&nbsp; the combination of rectangular &nbsp;$g_s(t)$&nbsp; and rectangular &nbsp;$h_{\rm E}(t)$&nbsp; leads to the optimum regardless of the level number  &nbsp;$M$.&nbsp; <br>
*Der Verlust der Mehrstufensystemen gegenüber dem Binärsystem ist hier noch größer als bei Leistungsbegrenzung. Dies erkennt man an dem mit &nbsp;$M$&nbsp; abnehmenden Faktor &nbsp;$K_2$, für den dann gilt:
+
 
 +
*The loss of the multilevel system compared to the binary system is here even greater than with power limitation.  
 +
 
 +
*This can be seen from the factor &nbsp;$K_2$&nbsp; decreasing with &nbsp;$M$,&nbsp; for which then applies:
 
:$$p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
 
:$$p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot
  \frac{2 \cdot s_{\rm 0}^2 \cdot T}{N_0} }\right)\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
+
  \frac{2 \cdot s_{\rm 0}^2 \cdot T}{N_0} }\right)\hspace{0.3cm}{\rm with}\hspace{0.3cm}
 
K_2 = \frac{ {\rm log_2}\,(M)}{(M-1)^2}
 
K_2 = \frac{ {\rm log_2}\,(M)}{(M-1)^2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 
+
*The constant &nbsp;$K_1$&nbsp; is unchanged from the above specification for power limitation,&nbsp; while &nbsp;$K_2$&nbsp; is smaller by a factor of &nbsp;$3$:&nbsp;  
Die Konstante &nbsp;$K_1$&nbsp; ist gegenüber der obigen Angabe für  Leistungsbegrenzung unverändert, während &nbsp;$K_2$&nbsp; um den Faktor &nbsp;$3$&nbsp; kleiner ist:
 
 
:$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.198;\hspace{1cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.133;$$
 
:$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.198;\hspace{1cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.133;$$
 
:$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.097;\hspace{1cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.074;$$
 
:$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.097;\hspace{1cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.074;$$
Line 216: Line 238:
 
== Symbol and bit error probability==
 
== Symbol and bit error probability==
 
<br>
 
<br>
Bei einem mehrstufigen Übertragungssystem muss man zwischen der &nbsp;''Symbolfehlerwahrscheinlichkeit''&nbsp; und der &nbsp;''Bitfehlerwahrscheinlichkeit''&nbsp; unterscheiden, die hier sowohl als Scharmittelwerte als auch als Zeitmittelwerte angegeben werden:
+
In a multilevel transmission system,&nbsp; one must distinguish between the &nbsp;"symbol error probability"&nbsp; and the &nbsp;"bit error probability",&nbsp; which are given here both as ensemble averages and as time averages:
 +
[[File:EN_Dig_T_2_2_S6a.png|right|frame|Symbol error probability and bit error probability|class=fit]]
  
*Die '''Symbolfehlerwahrscheinlichkeit''' bezieht sich auf die &nbsp;$M$&ndash;stufigen und eventuell redundanten Folgen  &nbsp;$\langle c_\nu \rangle$&nbsp; und  &nbsp;$\langle w_\nu \rangle$:
+
*The&nbsp; '''symbol error probability'''&nbsp; refers to the &nbsp;$M$&ndash;level and possibly redundant sequences &nbsp;$\langle c_\nu \rangle$&nbsp; and &nbsp;$\langle w_\nu \rangle$:
 
:$$p_{\rm S}  = \overline{{\rm Pr} (w_\nu \ne c_\nu)} =
 
:$$p_{\rm S}  = \overline{{\rm Pr} (w_\nu \ne c_\nu)} =
 
  \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (w_\nu \ne c_\nu) \hspace{0.05cm}.$$
 
  \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (w_\nu \ne c_\nu) \hspace{0.05cm}.$$
*Die '''Bitfehlerwahrscheinlichkeit''' beschreibt die Verfälschungen bezüglich der Binärfolgen &nbsp;$\langle q_\nu \rangle$&nbsp; und  &nbsp;$\langle v_\nu \rangle$&nbsp; von Quelle und Sinke:
+
*The&nbsp; '''bit error probability'''&nbsp; describes the falsifications with respect to the binary sequences &nbsp;$\langle q_\nu \rangle$&nbsp; and &nbsp;$\langle v_\nu \rangle$&nbsp; of source and sink:
 
:$$p_{\rm B}  = \overline{{\rm Pr} (v_\nu \ne q_\nu)} =
 
:$$p_{\rm B}  = \overline{{\rm Pr} (v_\nu \ne q_\nu)} =
 
  \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (v_\nu \ne q_\nu) \hspace{0.05cm}.$$
 
  \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (v_\nu \ne q_\nu) \hspace{0.05cm}.$$
  
Die Grafik veranschaulicht diese beiden Definitionen und ist auch für die nächsten Kapitel gültig. Der Block "Coder" bewirkt
+
The diagram illustrates these two definitions and is also valid for the next chapters.&nbsp; The block&nbsp; "encoder"&nbsp; causes
*im vorliegenden Kapitel eine redundanzfreie Codierung,  
+
*in the present chapter a redundancy-free coding,  
*im &nbsp;[[Digitalsignal%C3%BCbertragung/Blockweise_Codierung_mit_4B3T-Codes|anschließendem Kapitel]]&nbsp; eine blockweise Übertragungscodierung, und schließlich
+
*in the &nbsp;[[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"following chapter"]]&nbsp; a blockwise transmission coding,&nbsp; and finally
* im &nbsp;[[Digitalsignal%C3%BCbertragung/Symbolweise_Codierung_mit_Pseudotern%C3%A4rcodes|letzten Kapitel]]&nbsp; die symbolweise Codierung mit  Pseudoternärcodes.
+
* in the &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"last chapter"]]&nbsp; symbolwise coding with pseudo-ternary codes.
  
[[File:EN_Dig_T_2_2_S6a.png|center|frame|Symbolfehlerwahrscheinlichkeit und Bitfehlerwahrscheinlichkeit|class=fit]]
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
*Bei mehrstufiger und(oder codierter Übertragung muss zwischen der Bitfehlerwahrscheinlichkeit  &nbsp;$p_{\rm B}$&nbsp; und der  Symbolfehlerwahrscheinlichkeit  &nbsp;$p_{\rm S}$&nbsp; unterschieden werden. Nur beim redundanzfreien Binärsystem gilt  &nbsp;$p_{\rm B} = p_{\rm S}$.
+
*For multilevel and/or coded transmission,&nbsp; a distinction must be made between the bit error probability &nbsp;$p_{\rm B}$&nbsp; and the symbol error probability &nbsp;$p_{\rm S}$.&nbsp; Only in the case of the redundancy-free binary system does &nbsp;$p_{\rm B} = p_{\rm S}$ apply.
*Im allgemeinen kann bei redundanzbehafteten Mehrstufensystem die Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp; etwas einfacher berechnet werden als die Bitfehlerwahrscheinlichkeit  &nbsp;$p_{\rm B}$.
+
 
* Ein Vergleich von Systemen mit unterschiedlicher Stufenzahl oder verschiedenartiger Codierung sollte aber aus Fairnisgründen stets auf der Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; basieren.  
+
*In general,&nbsp; the symbol error probability &nbsp;$p_{\rm S}$&nbsp; can be calculated somewhat more easily than the bit error probability &nbsp;$p_{\rm B}$&nbsp; for redundancy-containing multilevel systems.
*Dabei muss auch die Zuordnung zwischen den Quellen&ndash; und Codesymbolen berücksichtigt werden, wie im folgenden Beispiel gezeigt wird.}}<br>
+
 
 +
* However,&nbsp; a comparison of systems with different level numbers&nbsp; $M$&nbsp; or different types of coding should always be based on the bit error probability &nbsp;$p_{\rm B}$&nbsp; for reasons of fairness.&nbsp; The mapping between the source and encoder symbols must also be taken into account,&nbsp; as shown in the following example.}}<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp; Wir betrachten ein quaternäres Übertragungssystem, dessen Übertragungsverhalten wie folgt charakterisiert werden kann (siehe linke Grafik):
+
$\text{Example 4:}$&nbsp; We consider a quaternary transmission system whose transmission behavior can be characterized as follows&nbsp; (see left sketch in the graphic):
*Die Verfälschungswahrscheinlichkeit zu einem benachbarten Symbol ist &nbsp;$p={\rm Q}\big [s_0/(3\sigma_d)\big ]$.<br>
 
*Eine Verfälschung zu einem nicht benachbarten Symbol wird ausgeschlossen.<br>
 
*Das Modell berücksichtigt die doppelten Verfälschungsmöglichkeiten der inneren Symbole.<br>
 
  
 +
*The falsification probability to a neighboring symbol is &nbsp;
 +
:$$p={\rm Q}\big [s_0/(3\sigma_d)\big ].$$
 +
*A falsification to a non-adjacent symbol is excluded.<br>
 +
*The model considers the dual falsification possibilities of inner symbols.<br>
  
[[File:EN_Dig_T_2_2_S6b.png|right|frame|Gegenüberstellung von Graycode und Dualcode|class=fit]]
+
<br>
 
+
For equally probable binary source symbols &nbsp;$q_\nu$&nbsp; the quaternary encoder symbols &nbsp;$c_\nu$&nbsp; also occur with equal probability.&nbsp; Thus,&nbsp; we obtain for the symbol error probability:
Bei gleichwahrscheinlichen binären Quellensymbolen &nbsp;$q_\nu$&nbsp; treten auch die quaternären Codesymbole &nbsp;$c_\nu$&nbsp; mit gleicher Wahrscheinlichkeit auf. Damit erhält man für die Symbolfehlerwahrscheinlichkeit:
 
 
:$$p_{\rm S}  ={1}/{4}\cdot (2 \cdot p + 2 \cdot 2 \cdot  p) =  {3}/{2} \cdot p\hspace{0.05cm}.$$
 
:$$p_{\rm S}  ={1}/{4}\cdot (2 \cdot p + 2 \cdot 2 \cdot  p) =  {3}/{2} \cdot p\hspace{0.05cm}.$$
  
Zur Berechnung der Bitfehlerwahrscheinlichkeit muss man auch die Zuordnung zwischen den Binär&ndash; und den Quaternärsymbolen berücksichtigen:
+
[[File:EN_Dig_T_2_2_S6b.png|right|frame|Comparison of  dual code and Gray code|class=fit]]
*Bei der &nbsp;''Dualcodierung''&nbsp; gemäß der gelb hinterlegten Tabelle kann ein Symbolfehler &nbsp;$(w_\nu \ne c_\nu)$&nbsp; ein oder zwei Bitfehler &nbsp;$(v_\nu \ne q_\nu)$&nbsp; zur Folge haben. Von den sechs Verfälschungsmöglichkeiten auf Quaternärsymbolebene führen vier zu jeweils einem und nur die beiden inneren zu zwei Bitfehlern. Daraus folgt:
+
To calculate the bit error probability,&nbsp; one must also consider the mapping between the binary and the quaternary symbols:
 +
*In &nbsp;"dual coding"&nbsp; according to the table with yellow background,&nbsp; one symbol error &nbsp;$(w_\nu \ne c_\nu)$&nbsp; can result in one or two bit errors &nbsp;$(v_\nu \ne q_\nu)$.&nbsp; Of the six falsification possibilities at the quaternary symbol level,&nbsp; four result in one bit error each and only the two inner ones result in two bit errors.&nbsp; It follows:
 
:$$p_{\rm B}  = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 2 \cdot p ) \cdot {1}/{2} = p\hspace{0.05cm}.$$
 
:$$p_{\rm B}  = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 2 \cdot p ) \cdot {1}/{2} = p\hspace{0.05cm}.$$
  
:Der Faktor &nbsp;$1/2$&nbsp; berücksichtigt, dass ein Quaternärsymbol zwei Binärsymbole beinhaltet.
+
:The factor &nbsp;$1/2$&nbsp; takes into account that a quaternary symbol contains two binary symbols.
  
*Dagegen ist bei der so genannten &nbsp;''Graycodierung''&nbsp; gemäß der grün hinterlegten Tabelle die Zuordnung zwischen den Binärsymbolen und den Quaternärsymbolen so gewählt, dass jeder Symbolfehler genau einen Bitfehler zur Folge hat. Daraus folgt:
+
*In contrast,&nbsp; in the so-called &nbsp;"Gray coding"&nbsp; according to the table with green background,&nbsp; the mapping between the binary symbols and the quaternary symbols is chosen in such a way that each symbol error results in exactly one bit error. From this follows:
  
 
:$$p_{\rm B}  = {1}/{4}\cdot  (4 \cdot 1 \cdot p + 2 \cdot 1 \cdot p ) \cdot {1}/{2} =  {3}/{4} \cdot p\hspace{0.05cm}.$$
 
:$$p_{\rm B}  = {1}/{4}\cdot  (4 \cdot 1 \cdot p + 2 \cdot 1 \cdot p ) \cdot {1}/{2} =  {3}/{4} \cdot p\hspace{0.05cm}.$$
Line 263: Line 287:
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:2.3_Binärsignal_und_Quaternärsignal|Aufgabe 2.3: Binärsignal und Quaternärsignal]]
+
[[Aufgaben:Exercise_2.3:_Binary_Signal_and_Quaternary_Signal|Exercise 2.3: Binary Signal and Quaternary Signal]]
  
[[Aufgaben:2.4_Dualcodierung_und_Graycodierung|Aufgabe 2.4: Dualcodierung und Graycodierung]]
+
[[Aufgaben:Exercise_2.4:_Dualcode_and_Graycode|Exercise 2.4: Dual Code and Gray Code]]
  
[[Aufgaben:2.4Z_Fehlerwahrscheinlichkeiten_beim_Oktalsystem|Aufgabe 2.4Z: Fehlerwahrscheinlichkeiten beim Oktalsystem]]
+
[[Aufgaben:Exercise_2.4Z:_Error_Probabilities_for_the_Octal_System|Exercise 2.4Z: Error Probabilities for the Octal System]]
  
[[Aufgaben:2.5_Ternäre_Signalübertragung|Aufgabe 2.5: Ternäre Signalübertragung]]
+
[[Aufgaben:Exercise_2.5:_Ternary_Signal_Transmission|Exercise 2.5: Ternary Signal Transmission]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:01, 23 January 2023


Symbolwise coding vs. blockwise coding


In transmission coding,  a distinction is made between two fundamentally different methods:

Symbolwise coding

  • Here,  an encoder symbol  $c_\nu$  is generated with each incoming source symbol  $q_\nu$,  which can depend not only on the current symbol but also on previous symbols  $q_{\nu -1}$,  $q_{\nu -2}$, ...
  • It is typical for all transmission codes for symbolwise coding that the symbol duration  $T_c$  of the usually multilevel and redundant encoded signal  $c(t)$  corresponds to the bit duration  $T_q$  of the source signal,  which is assumed to be binary and redundancy-free.


Details can be found in the chapter  "Symbolwise Coding with Pseudo-Ternary Codes".


Blockwise coding

  • Here,  a block of  $m_q$  binary source symbols  $(M_q = 2)$  of bit duration  $T_q$  is assigned a one-to-one sequence of  $m_c$  encoder symbols from an alphabet with encoder symbol set size  $M_c \ge 2$. 
  • For the  symbol duration of an encoder symbol  then holds:
$$T_c = \frac{m_q}{m_c} \cdot T_q \hspace{0.05cm},$$
  • The  relative redundancy of a block code  is in general
$$r_c = 1- \frac{R_q}{R_c} = 1- \frac{T_c}{T_q} \cdot \frac{{\rm log_2}\hspace{0.05cm} (M_q)}{{\rm log_2} \hspace{0.05cm}(M_c)} = 1- \frac{T_c}{T_q \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\hspace{0.05cm}.$$

More detailed information on the block codes can be found in the chapter  "Block Coding with 4B3T Codes".

$\text{Example 1:}$  For the  "pseudo-ternary codes"',  increasing the number of levels from  $M_q = 2$  to  $M_c = 3$  for the same symbol duration  $(T_c = T_q)$  adds a relative redundancy of  $r_c = 1 - 1/\log_2 \hspace{0.05cm} (3) \approx 37\%$. 

In contrast,  the so-called  "4B3T codes"  operate at block level with the code parameters  $m_q = 4$,  $M_q = 2$,  $m_c = 3$  and  $M_c = 3$  and have a relative redundancy of approx.  $16\%$.  Because of  ${T_c}/{T_q} = 4/3$,  the transmitted signal  $s(t)$  is lower in frequency here than in uncoded transmission, which reduces the expensive bandwidth and is also advantageous for many channels from a transmission point of view.



Quaternary signal with  $r_{\rm c} \equiv 0$  and ternary signal with  $r_{\rm c} \approx 0$


A special case of a block code is a  redundancy-free multilevel code

  • Starting from the redundancy-free binary source signal  $q(t)$  with bit duration  $T_q$, 
  • a  $M_c$–level encoded signal  $c(t)$  with symbol duration  $T_c = T_q \cdot \log_2 \hspace{0.05cm} (M_c)$  is generated.


Thus,  the relative redundancy is given by:

$$r_c = 1- \frac{T_c}{T_q \cdot {\rm log_2}\hspace{0.05cm} (M_c)} = 1- \frac{m_q}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)}\to 0 \hspace{0.05cm}.$$

Thereby holds:

  1. If  $M_c$  is a power to the base  $2$,  then  $m_q = \log_2 \hspace{0.05cm} (M_c)$  are combined into a single encoder symbol  $(m_c = 1)$.  In this case, the relative redundancy is actually  $r_c = 0$.
  2. If  $M_c$  is not a power of two,  a hundred percent redundancy-free block coding is not possible.  For example, if  $m_q = 3$  binary symbols are encoded by  $m_c = 2$  ternary symbols and  $T_c = 1.5 \cdot T_q$  is set,  a relative redundancy of  $r_c = 1-1.5/ \log_2 \hspace{0.05cm} (3) \approx 5\%$  remains.
  3. Encoding a block of  $128$  binary symbols with  $81$  ternary symbols results in a relative code redundancy of less than  $r_c = 0.3\%$.

To simplify the notation and to align the nomenclature with the "first main chapter",  we use in the following

  • the bit duration  $T_{\rm B} = T_q$  of the redundancy-free binary source signal,
  • the symbol duration  $T = T_c$  of the encoded signal and the transmitted signal, and
  • the number  $M = M_c$  of levels.


This results in the identical form for the transmitted signal as for the binary transmission,  but with different amplitude coefficients:

$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm} a_\nu \in \{ a_1, \text{...} , a_\mu , \text{...} , a_{ M}\}\hspace{0.05cm}.$$
  • In principle,  the amplitude coefficients  $a_\nu$  can be assigned arbitrarily  – but uniquely –  to the encoder symbols  $c_\nu$.  It is convenient to choose equal distances between adjacent amplitude coefficients.
  • Thus,  for bipolar signaling  $(-1 \le a_\nu \le +1)$,  the following applies to the possible amplitude coefficients with index  $\mu = 1$, ... , $M$:
$$a_\mu = \frac{2\mu - M - 1}{M-1} \hspace{0.05cm}.$$
  • Independently of the level number  $M$  one obtains from this for the outer amplitude coefficients  $a_1 = -1$  and  $a_M = +1$.
  • For a ternary signal  $(M = 3)$,  the possible amplitude coefficients are  $-1$,  $0$  and  $+1$.
  • For a quaternary signal  $(M = 4)$,  the coefficients are  $-1$,  $-1/3$,  $+1/3$  and  $+1$.


$\text{Example 2:}$  The graphic above shows the quaternary redundancy-free transmitted signal  $s_4(t)$  with the possible amplitude coefficients  $\pm 1$  and  $\pm 1/3$,  which results from the binary source signal  $q(t)$  shown in the center.

Redundancy-free ternary and quaternary signal
  • Two binary symbols each are combined to a quaternary coefficient according to the table with red background. The symbol duration  $T$  of the signal  $s_4(t)$  is twice the bit duration  $T_{\rm B}$  $($previously:  $T_q)$  of the source signal.
  • If  $q(t)$  is redundancy-free, it also results in a redundancy-free quaternary signal, i.e., the possible amplitude coefficients  $\pm 1$  and  $\pm 1/3$  are equally probable and there are no statistical ties within the sequence  $⟨a_ν⟩$. 


The lower plot shows the $($almost$)$ redundancy-free ternary signal  $s_3(t)$  and the mapping of three binary symbols each to two ternary symbols.

  • The possible amplitude coefficients are  $-1$,  $0$  and  $+1$  and the symbol duration of the encoded signal  $T = 3/2 \cdot T_{\rm B}$.
  • It can be seen from the green mapping table that the coefficients  $+1$  and  $-1$  occur somewhat more frequently than the coefficient  $a_\nu = 0$.  This results in the above mentioned relative redundancy of  $5\%$.
  • However,  from the very short signal section  – only eight ternary symbols corresponding to twelve binary symbols –  this property is not apparent.



ACF and PSD of a multilevel signal


For a redundancy-free coded  $M$–level bipolar digital signal  $s(t)$,  the following holds for the  "discrete auto-correlation function"  $\rm (ACF)$  of the amplitude coefficients and for the corresponding  "power-spectral density"  $\rm (PSD)$:

$$\varphi_a(\lambda) = \left\{ \begin{array}{c} \frac{M+ 1}{3 \cdot (M-1)} \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \\ \lambda \ne 0 \\ \end{array} \hspace{0.9cm}\Rightarrow \hspace{0.9cm}{\it \Phi_a(f)} = \frac{M+ 1}{3 \cdot (M-1)}= {\rm const.}$$

Considering the spectral shaping by the basic transmission pulse  $g_s(t)$  with spectrum  $G_s(f)$,  we obtain:

$$\varphi_{s}(\tau) = \frac{M+ 1}{3 \cdot (M-1)} \cdot \varphi^{^{\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} {\it \Phi}_{s}(f) = \frac{M+ 1}{3 \cdot (M-1)}\cdot |G_s(f)|^2 \hspace{0.05cm}.$$

One can see from these equations:

  • In the case of redundancy-free multilevel coding,  the shape of ACF and PSD is determined solely by the basic transmission pulse  $g_s(t)$. 
  • The magnitude of the ACF is lower than the redundancy-free binary signal by a factor  $\varphi_a(\lambda = 0) = {\rm E}\big[a_\nu^2\big] = (M + 1)/(3M-3)$  for the same shape.
  • This factor describes the lower signal power of the multilevel signal due to the  $M-2$  inner amplitude coefficients.  For  $M = 3$  this factor is equal to  $2/3$, for  $M = 4$  it is equal to  $5/9$.
  • However,  a fair comparison between binary and multilevel signal with the same information flow  (same equivalent bit rate)  should also take into account the different symbol durations.  This shows that a multilevel signal requires less bandwidth than the binary signal due to the narrower PSD when the same information is transmitted.

$\text{Example 3:}$  We assume a binary source with bit rate  $R_{\rm B} = 1 \ \rm Mbit/s$,  so that the bit duration  $T_{\rm B} = 1 \ \rm µ s$. 

Auto-correlation function and power-spectral density of binary and quaternary signal
  • For binary transmission  $(M = 2)$,  the symbol duration of the transmitted signal is  $T =T_{\rm B}$  and the auto-correlation function shown in blue in the left graph results for NRZ rectangular pulses (assuming  $s_0^2 = 10 \ \rm mW$).
  • For the quaternary system  $(M = 4)$,  the ACF is also triangular, but lower by a factor of  $5/9$  and twice as wide because of  $T = 2 \cdot T_{\rm B}$. 


The  $\rm sinc^2$–shaped power-spectral density in the binary case  (blue curve)  has the maximum value  ${\it \Phi}_{s}(f = 0) = 10^{-8} \ \rm W/Hz$  (area of the blue triangle)  for the signal parameters selected here.  The first zero point is at  $f = 1 \ \rm MHz$.

  • The PSD of the quaternary signal  (red curve)  is only half as wide and slightly higher.  Here:  ${\it \Phi}_{s}(f = 0) \approx 1.1 \cdot 10^{-8} \ \rm W/Hz$.
  • The value results from the area of the red triangle. 
    This is lower  $($factor  $0.55)$  and wider (factor $2$).



Error probability of a multilevel system


Eye diagrams for redundancy–free binary, ternary and quaternary signals

The diagram on the right shows the eye diagrams

  • of a binary transmission system  $(M = 2)$,
  • a ternary transmission system  $(M = 3)$ and
  • a quaternary transmission system  $(M = 4)$.


Here,  a cosine rolloff characteristic is assumed for the overall system  $H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f)$  of transmitter, channel and receiver,  so that intersymbol interference does not play a role.  The rolloff factor is  $r= 0.5$.  The noise is assumed to be negligible.

The eye diagram is used to estimate intersymbol interference.  A detailed description follows in the section  "Definition and statements of the eye diagram".  However,  the following text should be understandable even without detailed knowledge.

It can be seen from the above diagrams:

  • In the  binary system   $(M = 2)$,  there is only one decision threshold:   $E_1 = 0$.  A transmission error occurs if the noise component  $d_{\rm N}(T_{\rm D})$  at the detection time is greater than  $+s_0$   $\big ($if  $d_{\rm S}(T_{\rm D}) = -s_0$ $\big )$  or  if  $d_{\rm N}(T_{\rm D})$  is less than  $-s_0$   $\big ($if  $d_{\rm S}(T_{\rm D}) = +s_0$ $\big )$.
  • In the case of the  ternary system  $(M = 3)$,  two eye openings and two decision thresholds  $E_1 = -s_0/2$  and  $E_2 = +s_0/2$  can be recognized.  The distance of the possible useful detection signal values  $d_{\rm S}(T_{\rm D})$  to the nearest threshold is  $-s_0/2$ in each case.  The outer amplitude values  $(d_{\rm S}(T_{\rm D}) = \pm s_0)$  can only be falsified in one direction in each case,  while  $d_{\rm S}(T_{\rm D}) = 0$  is limited by two thresholds.
  • Accordingly,  an amplitude coefficient  $a_\nu = 0$  is falsified twice as often compared to  $a_\nu = +1$  or  $a_\nu = -1$.  For AWGN noise with rms value  $\sigma_d$  as well as equal probability amplitude coefficients,  according to the section  "Definition of the bit error probability"  for the  "symbol error probability":
$$p_{\rm S} = { 1}/{3} \cdot \left[{\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+ 2 \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)+ {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\right]= \frac{ 4}{3} \cdot {\rm Q} \left( \frac{s_0/2}{\sigma_d}\right)\hspace{0.05cm}.$$
  • Please note that this equation no longer specifies the bit error probability  $p_{\rm B}$, but the  "symbol error probability"  $p_{\rm S}$.  The corresponding a-posteriori parameters are  "bit error rate"  $\rm (BER)$  and  "symbol error rate"  $\rm (SER)$.  More details are given in the  "last section"  of this chapter.


For the quaternary system  $(M = 4)$  with the possible amplitude values  $\pm s_0$  and  $\pm s_0/3$, 

  • there are three eye-openings,  and
  • thus also three decision thresholds at  $E_1 = -2s_0/3$,  $E_2 = 0$  and  $E_3 = +2s_0/3$.


Taking into account the occurrence probabilities  $(1/4$  for equally probable symbols$)$  and the six possibilities of falsification (see arrows in the graph),  we obtain:

$$p_{\rm S} = { 6}/{4} \cdot {\rm Q} \left( \frac{s_0/3}{\sigma_d}\right)\hspace{0.05cm}.$$

$\text{Conclusion:}$  In general, the  symbol error probability  for  $M$–level digital signal transmission is:

$$p_{\rm S} = \frac{ 2 + 2 \cdot (M-2)}{M} \cdot {\rm Q} \left( \frac{s_0/(M-1)}{\sigma_d(M)}\right) = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( \frac{s_0}{\sigma_d (M)\cdot (M-1)}\right)\hspace{0.05cm}.$$
  • The notation  $\sigma_d(M)$  is intended to make clear that the rms value of the noise component  $d_{\rm N}(t)$  depends significantly on the level number  $M$. 



Comparison between binary system and multilevel system


For this system comparison under fair conditions,  the following are assumed:

  • Let the equivalent bit rate  $R_{\rm B} = 1/T_{\rm B}$  be constant.  Depending on the level number  $M$,  the symbol duration of the encoded signal and the transmitted signal is thus:
$$T = T_{\rm B} \cdot {\rm log_2} (M) \hspace{0.05cm}.$$
  • The Nyquist condition is satisfied by a  "root–root characteristic"  with rolloff factor  $r$.  Furthermore,  no intersymbol interference occurs.  The detection noise power is:
$$\sigma_d^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$
  • The comparison of the symbol error probabilities  $p_{\rm S}$  is performed for  "power limitation". The energy per bit for  $M$–level transmission is:
$$E_{\rm B} = \frac{M+ 1}{3 \cdot (M-1)} \cdot s_0^2 \cdot T_{\rm B} \hspace{0.05cm}.$$

Substituting these equations into the general result on the  "last section",  we obtain for the symbol error probability:

$$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{s_0^2 /(M-1)^2}{\sigma_d^2}}\right) = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( \sqrt{\frac{3 \cdot {\rm log_2}\hspace{0.05cm} (M)}{M^2 -1}\cdot \frac{2 \cdot E_{\rm B}}{N_0}}\right)$$
Symbol error probability curves for different level numbers  $M$
$$\Rightarrow \hspace{0.3cm} p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot \frac{2 \cdot E_{\rm B}}{N_0}}\right)\hspace{0.05cm}.$$

For  $M = 2$,  set  $K_1 = K_2 = 1$.  For larger level numbers,  one obtains for the symbol error probability that can be achieved with  $M$–level redundancy-free coding:

$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.594;\hspace{0.5cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.400;$$
$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.290;\hspace{0.5cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.221;$$
$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.175;\hspace{0.5cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.143.$$

The graph summarizes the results for  $M$–level redundancy-free coding.

  • Plotted are the symbol error probabilities  $p_{\rm S}$  over the abscissa  $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0)$.
  • All systems are optimal for the respective  $M$,  assuming the AWGN channel and power limitation.
  • Due to the double logarithmic representation chosen here, a  $K_2$ value smaller than  $1$  leads to a parallel shift of the error probability curve to the right.
  • If  $K_1 > 1$ applies, the curve shifts upwards compared to the binary system  $(K_1= 1)$. 


$\text{System comparison under the constraint of power limitation:}$  The above curves can be interpreted as follows:

  1. Regarding symbol error probability,  the binary system  $(M = 2)$  is superior to the multilevel systems.  Already with  $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 12 \ \rm dB$  one reaches  $p_{\rm S} <10^{-8}$.  For the quaternary system  $(M = 4)$,   $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) > 16 \ \rm dB$  must be spent to reach the same symbol error probability  $p_{\rm S} =10^{-8}$. 
  2. However,  this statement is valid only for distortion-free channel,  i.e., for  $H_{\rm K}(f)= 1$.  On the other hand,  for distorting transmission channels,  a higher-level system can provide a significant improvement because of the significantly smaller noise component of the detection signal  (after the equalizer).
  3. For the AWGN channel,  the only advantage of a higher-level transmission is the lower bandwidth requirement due to the smaller equivalent bit rate,  which plays only a minor role in baseband transmission in contrast to digital carrier frequency systems,  e.g.  "quadrature amplitude modulation"  $\rm (QAM)$.


$\text{System comparison under the peak limitation constraint:}$ 

  • With the constraint  "peak limitation",  the combination of rectangular  $g_s(t)$  and rectangular  $h_{\rm E}(t)$  leads to the optimum regardless of the level number  $M$. 
  • The loss of the multilevel system compared to the binary system is here even greater than with power limitation.
  • This can be seen from the factor  $K_2$  decreasing with  $M$,  for which then applies:
$$p_{\rm S} = K_1 \cdot {\rm Q} \left( \sqrt{K_2\cdot \frac{2 \cdot s_{\rm 0}^2 \cdot T}{N_0} }\right)\hspace{0.3cm}{\rm with}\hspace{0.3cm} K_2 = \frac{ {\rm log_2}\,(M)}{(M-1)^2} \hspace{0.05cm}.$$
  • The constant  $K_1$  is unchanged from the above specification for power limitation,  while  $K_2$  is smaller by a factor of  $3$: 
$$M = 3\text{:} \ \ K_1 = 1.333, \ K_2 = 0.198;\hspace{1cm}M = 4\text{:} \ \ K_1 = 1.500, \ K_2 = 0.133;$$
$$M = 5\text{:} \ \ K_1 = 1.600, \ K_2 = 0.097;\hspace{1cm}M = 6\text{:} \ \ K_1 = 1.666, \ K_2 = 0.074;$$
$$M = 7\text{:} \ \ K_1 = 1.714, \ K_2 = 0.058;\hspace{1cm}M = 8\text{:} \ \ K_1 = 1.750, \ K_2 = 0.048.$$


Symbol and bit error probability


In a multilevel transmission system,  one must distinguish between the  "symbol error probability"  and the  "bit error probability",  which are given here both as ensemble averages and as time averages:

Symbol error probability and bit error probability
  • The  symbol error probability  refers to the  $M$–level and possibly redundant sequences  $\langle c_\nu \rangle$  and  $\langle w_\nu \rangle$:
$$p_{\rm S} = \overline{{\rm Pr} (w_\nu \ne c_\nu)} = \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (w_\nu \ne c_\nu) \hspace{0.05cm}.$$
  • The  bit error probability  describes the falsifications with respect to the binary sequences  $\langle q_\nu \rangle$  and  $\langle v_\nu \rangle$  of source and sink:
$$p_{\rm B} = \overline{{\rm Pr} (v_\nu \ne q_\nu)} = \lim_{N \to \infty} \frac{1}{N} \cdot \sum \limits^{N} _{\nu = 1} {\rm Pr} (v_\nu \ne q_\nu) \hspace{0.05cm}.$$

The diagram illustrates these two definitions and is also valid for the next chapters.  The block  "encoder"  causes

  • in the present chapter a redundancy-free coding,
  • in the  "following chapter"  a blockwise transmission coding,  and finally
  • in the  "last chapter"  symbolwise coding with pseudo-ternary codes.


$\text{Conclusion:}$ 

  • For multilevel and/or coded transmission,  a distinction must be made between the bit error probability  $p_{\rm B}$  and the symbol error probability  $p_{\rm S}$.  Only in the case of the redundancy-free binary system does  $p_{\rm B} = p_{\rm S}$ apply.
  • In general,  the symbol error probability  $p_{\rm S}$  can be calculated somewhat more easily than the bit error probability  $p_{\rm B}$  for redundancy-containing multilevel systems.
  • However,  a comparison of systems with different level numbers  $M$  or different types of coding should always be based on the bit error probability  $p_{\rm B}$  for reasons of fairness.  The mapping between the source and encoder symbols must also be taken into account,  as shown in the following example.


$\text{Example 4:}$  We consider a quaternary transmission system whose transmission behavior can be characterized as follows  (see left sketch in the graphic):

  • The falsification probability to a neighboring symbol is  
$$p={\rm Q}\big [s_0/(3\sigma_d)\big ].$$
  • A falsification to a non-adjacent symbol is excluded.
  • The model considers the dual falsification possibilities of inner symbols.


For equally probable binary source symbols  $q_\nu$  the quaternary encoder symbols  $c_\nu$  also occur with equal probability.  Thus,  we obtain for the symbol error probability:

$$p_{\rm S} ={1}/{4}\cdot (2 \cdot p + 2 \cdot 2 \cdot p) = {3}/{2} \cdot p\hspace{0.05cm}.$$
Comparison of dual code and Gray code

To calculate the bit error probability,  one must also consider the mapping between the binary and the quaternary symbols:

  • In  "dual coding"  according to the table with yellow background,  one symbol error  $(w_\nu \ne c_\nu)$  can result in one or two bit errors  $(v_\nu \ne q_\nu)$.  Of the six falsification possibilities at the quaternary symbol level,  four result in one bit error each and only the two inner ones result in two bit errors.  It follows:
$$p_{\rm B} = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 2 \cdot p ) \cdot {1}/{2} = p\hspace{0.05cm}.$$
The factor  $1/2$  takes into account that a quaternary symbol contains two binary symbols.
  • In contrast,  in the so-called  "Gray coding"  according to the table with green background,  the mapping between the binary symbols and the quaternary symbols is chosen in such a way that each symbol error results in exactly one bit error. From this follows:
$$p_{\rm B} = {1}/{4}\cdot (4 \cdot 1 \cdot p + 2 \cdot 1 \cdot p ) \cdot {1}/{2} = {3}/{4} \cdot p\hspace{0.05cm}.$$



Exercises for the chapter


Exercise 2.3: Binary Signal and Quaternary Signal

Exercise 2.4: Dual Code and Gray Code

Exercise 2.4Z: Error Probabilities for the Octal System

Exercise 2.5: Ternary Signal Transmission