Difference between revisions of "Digital Signal Transmission/System Components of a Baseband Transmission System"

From LNTwww
m (Text replacement - "„" to """)
Line 6: Line 6:
 
}}
 
}}
  
== # ÜBERBLICK ZUM ERSTEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
 
<br>
 
<br>
Das erste Hauptkapitel führt in das weite Gebiet der Digitalsignalübertragung ein, wobei einige vereinfachende Annahmen getroffen werden: &nbsp;ein redundanzfreies binäres Sendesignal, keine Impulsinterferenzen. Obwohl die Beschreibung vorwiegend im Basisband erfolgt, lassen sich die Ergebnisse meist auch auf die digitalen Trägerfrequenzsysteme übertragen.  
+
The first main chapter introduces the broad field of digital signal transmission, with some simplifying assumptions: &nbsp;a redundancy-free binary transmitted signal, no intersymbol interference. Although the description is mainly in baseband, most of the results can be applied to the digital carrier frequency systems as well.
  
Im Einzelnen werden behandelt:
+
In particular, the following are dealt with:
*der prinzipielle Aufbau und die Komponenten eines Basisbandübertragungssystems,
+
*the basic structure and components of a baseband transmission system,
*die Definitionen von Bitfehlerwahrscheinlichkeit und Bitfehlerhäufigkeit (BER),
+
*the definitions of bit error probability and bit error frequency (BER),
*die Eigenschaften der Nyquistsysteme, die eine impulsinterferenzfreie Übertragung erlauben,
+
*the characteristics of Nyquist systems that allow intersymbol interference-free transmission,
*die Optimierung der binären Basisbandsysteme bei Leistungs- und Spitzenwertbegrenzung,
+
*the optimization of the binary baseband systems under power and peak constraints,
*die Verallgemeinerung der Ergebnisse auf Trägerfrequenzsysteme, &nbsp;und
+
*the generalization of the results to carrier frequency systems, &nbsp;and
*die weitgehend gemeinsame Beschreibung von ASK, BPSK und 4–QAM.
+
*the largely common description of ASK, BPSK, and 4-QAM.
  
  
  
== Vereinfachtes Systemmodell ==  
+
== Simplified system model ==  
 
<br>
 
<br>
Im gesamten ersten Kapitel wird für das Digitalsystem entsprechend der Beschreibung in [ST85]<ref>Söder, G.; Tröndle, K: ''Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme''. Berlin – Heidelberg: Springer, 1985.</ref> von folgendem Blockschaltbild ausgegangen:
+
Throughout the first chapter, the following block diagram is assumed for the digital system as described in [ST85]<ref>Söder, G.; Tröndle, K: ''Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme''. Berlin – Heidelberg: Springer, 1985.</ref>:
  
[[File:P_ID1247__Dig_T_1_1_S1_v1.png|center|frame|Vereinfachtes Systemmodell eines digitalen Übertragungssystems|class=fit]]
+
[[File:P_ID1247__Dig_T_1_1_S1_v1.png|center|frame|Simplified system model of a digital transmission system '''KORREKTUR''': source, sender...|class=fit]]
  
Im Vergleich zu einem &nbsp;[[Modulationsverfahren/Zielsetzung_von_Modulation_und_Demodulation#Betrachtetes_Nachrichten.C3.BCbertragungssystem|analogen Übertragungssystem]]&nbsp; entsprechend dem  Buch "Modulationsverfahren" erkennt man in diesem vereinfachten Systemmodell folgende Gemeinsamkeiten und Unterschiede:
+
In comparison to an &nbsp;[[Modulation_Methods/Objectives_of_Modulation_and_Demodulation#The_communication_system_under_consideration|analog transmission system]]&nbsp; according to the book "Modulation Methods", the following similarities and differences can be recognized in this simplified system model:
*Das Blockschaltbild ist in beiden Fällen in genau gleicher Weise aufgebaut – bestehend aus Quelle, Sender, Kanal, Empfänger und Sinke – und auch die Signale werden gleich bezeichnet.
+
*The block diagram is constructed in exactly the same way in both cases - consisting of source, transmitter, channel, receiver and sink - and the signals are also designated in the same way.
*Auch beim digitalen Übertragungssystem ist das Empfangssignal &nbsp;$r(t)$&nbsp; aufgrund der Störungen zeit– und wertkontinuierlich. Das Sendesignal &nbsp;$s(t)$&nbsp; kann zeit– und wertdiskret sein, muss aber nicht.  
+
*In the digital transmission system, the received signal &nbsp;$r(t)$&nbsp; is also continuous in time and value due to the interference. The transmitted signal &nbsp;$s(t)$&nbsp; can be discrete in time and value, but does not have to be.
*Im Unterschied zum Buch "Modulationsverfahren" sind aber nun das Quellensignal &nbsp;$q(t)$&nbsp; und das Sinkensignal &nbsp;$v(t)$&nbsp; stets Digitalsignale. Sie sind dementsprechend sowohl zeit– als auch wertdiskret.  
+
*In contrast to the book "Modulation Methods", however, the source signal &nbsp;$q(t)$&nbsp; and the sink signal &nbsp;$v(t)$&nbsp; are always digital signals. Accordingly, they are both time and value discrete.
*Alle Informationen über &nbsp;$q(t)$&nbsp; und &nbsp;$v(t)$&nbsp; können somit auch durch die ''Quellensymbolfolge'' &nbsp;$〈q_ν〉$&nbsp; und die ''Sinkensymbolfolge'' &nbsp;$〈v_ν〉$&nbsp; gemeinsam mit der Symboldauer &nbsp;$T$&nbsp; ausgedrückt werden.
+
*All information about &nbsp;$q(t)$&nbsp; and &nbsp;$v(t)$&nbsp; can thus also be expressed by the ''source symbol sequence'' &nbsp;$〈q_ν〉$&nbsp; and the ''sink symbol sequence'' &nbsp;$〈v_ν〉$&nbsp; together with the symbol duration &nbsp;$T$.&nbsp;  
*Ein Digitalempfänger unterscheidet sich grundsätzlich vom Empfänger eines Analogsystems, da er zusätzlich eine &nbsp;'''Entscheidungskomponente'''&nbsp; zur Gewinnung des digitalen Sinkensignals &nbsp;$v(t)$&nbsp; aus dem analogen Empfangssignals &nbsp;$r(t)$&nbsp; beinhalten muss.
+
*A digital receiver differs fundamentally from the receiver of an analog system in that it must also include a &nbsp;'''decision component'''&nbsp; for obtaining the digital sink signal &nbsp;$v(t)$&nbsp; from the analog received signal &nbsp;$r(t)$.&nbsp;
*In den ersten drei Kapiteln dieses Buches betrachten wir die &nbsp;'''digitale Basisbandübertragung''', was besagt, dass das Nachrichtensignal &nbsp;$q(t)$&nbsp; ohne vorherige Frequenzumsetzung (Modulation mit einer Trägerschwingung) übertragen wird.  
+
*In the first three chapters of this book, we consider &nbsp;'''digital baseband transmission''', which means that the message signal &nbsp;$q(t)$&nbsp; is transmitted without prior frequency conversion (modulation with a carrier wave).
*Deshalb sind hier &nbsp;$s(t)$&nbsp; und &nbsp;$r(t)$&nbsp; Tiefpass–Signale und auch für den Kanal (inklusive der Störungen) muss stets von einer Tiefpass–Charakteristik ausgegangen werden.<br>
+
*Therefore, &nbsp;$s(t)$&nbsp; and &nbsp;$r(t)$&nbsp; are low-pass signals here, and the channel (including the interference) must always be assumed to have low-pass characteristics as well.<br>
 
<br>
 
<br>
Nachfolgend werden die Eigenschaften der einzelnen Systemkomponenten detailliert beschrieben, wobei die idealisierenden Voraussetzungen für dieses Kapitel  geeignet berücksichtigt werden.
+
In the following, the characteristics of the individual system components are described in detail, suitably considering the idealizing assumptions for this chapter.
  
== Beschreibungsgrößen der digitalen Quelle ==
+
== Descriptive variables of the digital source ==
 
<br>
 
<br>
Die &nbsp;'''digitale Quelle'''&nbsp; erzeugt die Quellensymbolfolge &nbsp;$〈q_ν〉$, die möglichst fehlerfrei zur Sinke übertragen werden soll. Im Allgemeinen entstammt jedes Symbol der zeitlichen Folge &nbsp;$〈q_ν〉$&nbsp; mit &nbsp;$\nu = 1, 2,$ ...&nbsp; einem Symbolvorrat &nbsp;$\{q_\mu\}$&nbsp; mit &nbsp;$\mu = 1$, ... , $M$, wobei &nbsp;$M$&nbsp; als ''Quellensymbolumfang''&nbsp; oder auch als ''Stufenzahl''&nbsp; bezeichnet wird.
+
The &nbsp;'''digital source'''&nbsp; generates the source symbol sequence &nbsp;$〈q_ν〉$, which is to be transmitted to the sink as error-free as possible. In general, each symbol of the temporal sequence &nbsp;$〈q_ν〉$&nbsp; with &nbsp;$\nu = 1, 2,$ ...&nbsp; from a symbol set &nbsp;$\{q_\mu\}$&nbsp; with &nbsp;$\mu = 1$, ... , $M$, where &nbsp;$M$&nbsp; is called the ''source symbol range''&nbsp; or also the ''number of stages''.&nbsp;
  
Für das erste Kapitel dieses Buches wird von folgenden Voraussetzungen ausgegangen:
+
For the first chapter of this book, the following assumptions are made:
*Die Quelle ist ''binär'' &nbsp;$(\hspace{-0.05cm}M= 2)$&nbsp; und die beiden möglichen Symbole sind &nbsp;$\rm L$ ("Low") und &nbsp;$\rm H$ ("High"). Diese etwas ungewöhnliche Nomenklatur haben wir gewählt, um sowohl unipolare als auch bipolare Signalisierung in gleicher Weise beschreiben zu können. Beachten Sie bitte den Hinweis vor &nbsp;$\text{Beispiel 1}$.
+
*The source is ''binary'' &nbsp;$(\hspace{-0.05cm}M= 2)$&nbsp; and the two possible symbols are &nbsp;$\rm L$ ("Low") and &nbsp;$\rm H$ ("High"). We have chosen this somewhat unusual nomenclature in order to be able to describe both unipolar and bipolar signaling in the same way. Please see the note before &nbsp;$\text{Example 1}$.
*Die Quellensymbole sind ''statistisch unabhängig''&nbsp; voneinander, das heißt, die Wahrscheinlichkeit &nbsp;${\rm Pr}(q_\nu = q_\mu)$, dass das &nbsp;$\nu$&ndash;te Symbol der Folge &nbsp;$〈q_ν〉$&nbsp; gleich dem &nbsp;$\mu$&ndash;ten Symbol des Symbolvorrates &nbsp;$\{q_\mu\}$&nbsp; ist, hängt nicht von &nbsp;$\nu$&nbsp; ab.
+
*The source symbols are ''statistically independent'',&nbsp; that is, the probability &nbsp;${\rm Pr}(q_\nu = q_\mu)$, that the &nbsp;$\nu$&ndash;th symbol of the sequence &nbsp;$〈q_ν〉$&nbsp; is equal to the &nbsp;$\mu$&ndash;th symbol of the symbol set &nbsp;$\{q_\mu\}$&nbsp; does not depend on &nbsp;$\nu$.&nbsp;  
*Aufgrund dieser beiden Annahmen wird die digitale Quelle durch die ''Symbolwahrscheinlichkeiten'' &nbsp;$p_{\rm L} = {\rm Pr}(q_\nu = {\rm L}) $&nbsp; und &nbsp;$p_{\rm H} = {\rm Pr}(q_\nu = {\rm H}) = 1- p_{\rm L}$&nbsp; vollständig beschrieben.
+
*Given these two assumptions, the digital source is completely described by the ''symbol probabilities'' &nbsp;$p_{\rm L} = {\rm Pr}(q_\nu = {\rm L}) $&nbsp; and &nbsp;$p_{\rm H} = {\rm Pr}(q_\nu = {\rm H}) = 1- p_{\rm L}$.&nbsp;  
*Gilt weiterhin &nbsp;$p_{\rm L} =p_{\rm H}= 0.5$, so ist die Quelle ''redundanzfrei''. Meist &ndash; jedoch nicht immer &ndash; wird im vorliegenden ersten Kapitel  eine solche redundanzfreie Binärquelle vorausgesetzt.
+
*If &nbsp;$p_{\rm L} =p_{\rm H}= 0.5$ is still valid, the source is ''redundancy-free''. Mostly &ndash; but not always &ndash; such a redundancy-free binary source is assumed in the present first chapter.
*Der zeitliche Abstand zweier Symbole sei &nbsp;$T$. Man bezeichnet diese Größe als die ''Symboldauer''&nbsp; und den Kehrwert als die ''Symbolrate'' &nbsp;$R = 1/T$. Bei Binärquellen &nbsp;$(\hspace{-0.05cm}M= 2)$&nbsp; nennt man diese Größen auch ''Bitdauer''&nbsp; bzw. ''Bitrate''.
+
*Let the time interval between two symbols be &nbsp;$T$. This quantity is called the ''symbol duration''&nbsp; and the reciprocal value the ''symbol rate'' &nbsp;$R = 1/T$. For binary sources &nbsp;$(\hspace{-0.05cm}M= 2)$&nbsp; these quantities are also called ''bit duration''&nbsp; and ''bit rate'', respectively.
*Bei systemtheoretischer Betrachtungsweise der digitalen Basisbandübertragung beschreibt man das Quellensignal am besten durch eine Folge gewichteter und verschobener Diracimpulse:
+
*In a systems theory approach to digital baseband transmission, the source signal is best described by a sequence of weighted and shifted Dirac delta impulses:
 
::<math>q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.05cm}. </math>
 
::<math>q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.05cm}. </math>
*Hierbei bezeichnet man &nbsp;$a_\nu$&nbsp; als die &nbsp;'''Amplitudenkoeffizienten'''. Im Falle der ''binären unipolaren''&nbsp; Digitalsignalübertragung gilt:
+
*Here, we refer to &nbsp;$a_\nu$&nbsp; as the &nbsp;'''amplitude coefficients'''. In the case of ''binary unipolar''&nbsp; digital signal transmission:
 
::<math>a_\nu  =  \left\{ \begin{array}{c} 1  \\
 
::<math>a_\nu  =  \left\{ \begin{array}{c} 1  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
Line 57: Line 57:
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
\end{array}</math>
 
\end{array}</math>
*Entsprechend gilt bei einem ''bipolaren''&nbsp; (oder ''antipodischen'') System:
+
*Correspondingly, in the case of a ''bipolar''&nbsp; (or ''antipolar'') system:
 
::<math>a_\nu  =  \left\{ \begin{array}{c} +1  \\
 
::<math>a_\nu  =  \left\{ \begin{array}{c} +1  \\
 
  -1 \\  \end{array} \right.\quad
 
  -1 \\  \end{array} \right.\quad
Line 65: Line 65:
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
\end{array}</math>
 
\end{array}</math>
:Die nachfolgende Beschreibung erfolgt meist für diesen zweiten Fall.<br>
+
:The following description is mostly for this second case.<br>
  
''Hinweis zur Nomenklatur:'' &nbsp; In der Literatur wird oft unser Symbol &nbsp;$\rm H$&nbsp; mit $\mathbf{0}$ bezeichnet. Bei unipolarer Signalisierung wird dann das Symbol &nbsp;$\mathbf{0}$&nbsp; durch den Amplitudenkoeffizienten &nbsp;$a_\nu =1$&nbsp; und das Symbol &nbsp;$\rm L$&nbsp; durch den Zahlenwert &nbsp;$a_\nu =0$&nbsp; dargestellt.
+
''Note on nomenclature:'' &nbsp; In the literature, our symbol &nbsp;$\rm H$&nbsp; is often denoted by $\mathbf{0}$. In unipolar signaling, the symbol &nbsp;$\mathbf{0}$&nbsp; is then represented by the amplitude coefficient &nbsp;$a_\nu =1$&nbsp; and the symbol &nbsp;$\rm L$&nbsp; by the numerical value &nbsp;$a_\nu =0$.&nbsp;
Um diesen unschönen Sachverhalt zu vermeiden, wird in $\rm LNTwww$ das Symbol &nbsp;$\mathbf{0}$&nbsp; mit &nbsp;$\rm H$&nbsp; bezeichnet, wobei "High" den Sachverhalt richtig ausdrückt.
+
To avoid this unattractive situation, in $\rm LNTwww$ the symbol &nbsp;$\mathbf{0}$&nbsp; is denoted by &nbsp;$\rm H$,&nbsp; where "High" expresses the situation correctly.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Die Grafik zeigt vier binäre diracförmige Quellensignale im Bereich von &nbsp;$-4 \ \rm  &micro; s$&nbsp; bis &nbsp;$+4 \ \rm  &micro; s$, wobei jeweils die Quellensymbolfolge
+
$\text{Example 1:}$&nbsp; The graphic shows four binary Dirac-shaped source signals in the range from &nbsp;$-4 \ \rm  &micro; s$&nbsp; to &nbsp;$+4 \ \rm  &micro; s$, each based on the source symbol sequence
 
:$$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm} \mathbf{L},\mathbf{L},
 
:$$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm} \mathbf{L},\mathbf{L},
 
  \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle \hspace{0.05cm} $$
 
  \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle \hspace{0.05cm} $$
  
zugrundeliegt. Das mittlere Symbol &nbsp;(in der Gleichung durch größeren Zeichenabstand markiert)&nbsp; bezieht sich jeweils auf den Zeitpunkt &nbsp;$t = 0$.
+
The middle symbol &nbsp;(marked in the equation by larger character spacing)&nbsp; refers in each case to the time &nbsp;$t = 0$.
  
[[File:P_ID127_8.png|center|frame|Zur Beschreibung digitaler Quellensignale]]
+
[[File:P_ID127_8.png|center|frame|Description of digital source signals]]
*Die zwei oberen Signale eignen sich zur Beschreibung unipolarer Systeme, die unteren für die bipolare (antipodische) Digitalsignalübertragung.
+
*The two upper signals are suitable for describing unipolar systems, the lower ones for bipolar (antipodal) digital signal transmission.
*Für die jeweils linken Grafiken ist &nbsp;$T = 1\ \rm  &micro; s$&nbsp; vorausgesetzt. Für die beiden rechten gilt dagegen &nbsp;$T = 2\ \rm  &micro; s$&nbsp; und damit die halbe Symbolrate.}}
+
*For the diagrams on the left, &nbsp;$T = 1\ \rm  &micro; s$&nbsp; s assumed. For the two right ones, however, &nbsp;$T = 2\ \rm  &micro; s$&nbsp; and thus half the symbol rate applies.}}
  
== Kenngrößen des digitalen Senders==
+
== Characteristics of the digital transmitter==
 
<br>
 
<br>
Der &nbsp;'''Sender'''&nbsp; eines digitalen Übertragungssystems hat die Aufgabe, aus dem (diracförmigen) Quellensignal ein geeignetes Sendesignal &nbsp;$s(t)$&nbsp; zu erzeugen, das die Nachricht der Quelle vollständig beinhaltet und an die Eigenschaften von Übertragungskanal, Störungen sowie aller technischen Empfangseinrichtungen angepasst ist. Außerdem sorgt der Sender für die Bereitstellung einer hinreichend großen Sendeleistung.
+
The &nbsp;'''transmitter'''&nbsp; of a digital transmission system has the task of generating a suitable transmission signal &nbsp;$s(t)$&nbsp; from the (Dirac-shaped) source signal, which contains the message of the source completely and is adapted to the characteristics of transmission channel, interference as well as all technical receiving equipment. In addition, the transmitter ensures the provision of a sufficiently large transmission power.
 +
 
 +
As a descriptive quantity for the transmitter, we use the ''basic transmission pulse'' &nbsp;$g_s(t)$. Due to the definition of the source signal &nbsp;$q(t)$&nbsp; as a sum of weighted and shifted Dirac delta functions, the transmitted signal can be represented with the amplitude coefficients &nbsp;$a_\nu$&nbsp; in the following way:
  
Als Beschreibungsgröße für den Sender verwenden wir den ''Sendegrundimpuls'' &nbsp;$g_s(t)$. Aufgrund der Definition des Quellensignals &nbsp;$q(t)$&nbsp; als Summe von gewichteten und verschobenen Diracfunktionen lässt sich das Sendesignal mit den Amplitudenkoeffizienten &nbsp;$a_\nu$&nbsp;  in folgender Weise darstellen:
 
 
::<math>s(t) = q(t) \star g_s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.05cm}.</math>
 
::<math>s(t) = q(t) \star g_s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.05cm}.</math>
  
Häufig wird der Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; als rechteckförmig angenommen mit
+
Often the basic transmission pulse &nbsp;$g_s(t)$&nbsp; is assumed to be rectangular with
*der Impulshöhe &nbsp;$s_0 = g_s(t = 0)$&nbsp; und
+
*the pulse height &nbsp;$s_0 = g_s(t = 0)$&nbsp; and
*der (absoluten) Impulsdauer &nbsp;$T_{\rm S}$.
+
*the (absolute) pulse duration &nbsp;$T_{\rm S}$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Gilt &nbsp;$T_{\rm S} < T$, so spricht man von einem &nbsp;'''RZ&ndash;Impuls'''&nbsp; ("return&ndash;to&ndash;zero"), bei &nbsp;$T_{\rm S} = T$&nbsp; von einem 
+
$\text{Definition:}$&nbsp; If &nbsp;$T_{\rm S} < T$ applies, this is referred to as an &nbsp;'''RZ pulse'''&nbsp; ("return&ndash;to&ndash;zero"), and if &nbsp;$T_{\rm S} = T$,&nbsp; this is referred to as an
&nbsp;'''NRZ&ndash;Impuls'''&nbsp; ("non&ndash;return&ndash;to&ndash;zero").}}
+
&nbsp;'''NRZ pulse'''&nbsp; ("non&ndash;return&ndash;to&ndash;zero").}}
  
  
Bei anderem Sendegrundimpuls, zum Beispiel
+
With a different basic transmission pulse, for example
*einem &nbsp;[[Signal_Representation/Special_Cases_of_Impulse_Signals#Gau.C3.9Fimpuls|Gauß&ndash;Impuls]],  
+
*a &nbsp;[[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|Gaussian pulse]],  
*einem &nbsp;[[Aufgaben:3.4Z_Trapez,_Rechteck_und_Dreieck|Trapez&ndash;Impuls]],  
+
*a &nbsp;[[Aufgaben:Exercise_3.4Z:_Trapezoid,_Rectangle_and_Triangle|trapezoidal pulse]],  
*einem &nbsp;[[Aufgaben:1.1_Sendegrundimpulse|cos<sup>2</sup>&ndash;Impuls]] oder
+
*a &nbsp;[[Aufgaben:1.1_Sendegrundimpulse|cos<sup>2</sup> pulse]] or
*einem &nbsp;[[Digital_Signal_Transmission/Optimierung_der_Basisbandübertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme|Wurzel&ndash;Nyquist&ndash;Impuls]],  
+
*a &nbsp;[[Digital_Signal_Transmission/Optimierung_der_Basisbandübertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme|root Nyquist pulse]],  
  
  
verwendet man als Beschreibungsparameter anstelle der absoluten Impulsdauer &nbsp;$T_{\rm S}$&nbsp; meist die über das flächengleiche Rechteck definierte &nbsp;[[Signal_Representation/Special_Cases_of_Impulse_Signals#Gau.C3.9Fimpuls|äquivalente Impulsdauer]]:
+
the [[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|equivalent pulse duration]] defined by the equal-area rectangle is usually used as description parameter instead of the absolute pulse duration &nbsp;$T_{\rm S}$:&nbsp;
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \le T_{\rm S} \hspace{0.05cm}.$$
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \le T_{\rm S} \hspace{0.05cm}.$$
  
Nur bei rechteckförmigem Sendegrundimpuls gilt &nbsp;$\Delta t_{\rm S} = T_{\rm S}$.
+
Only in case of rectangular basic transmission pulse &nbsp;$\Delta t_{\rm S} = T_{\rm S}$ is valid.
  
Unterscheidet sich die Amplitude des Sendegrundimpulses &nbsp;$g_s(t)$&nbsp; vom Maximalwert &nbsp;$s_0$&nbsp; des Sendesignals &nbsp;$s(t)$, so bezeichnen wir die Impulsamplitude mit &nbsp;$A_{\rm S}$. Dies trifft zum Beispiel beim Gaußimpuls zu.
+
If the amplitude of the basic transmission pulse &nbsp;$g_s(t)$&nbsp; differs from the maximum value &nbsp;$s_0$&nbsp; of the transmission signal &nbsp;$s(t)$, we denote the pulse amplitude by &nbsp;$A_{\rm S}$. This is true for the Gaussian pulse, for example.
  
Das Interaktionsmodul &nbsp;[[Applets:Impulse_und_Spektren|Impulse und Spektren]]&nbsp; zeigt einige geläufige Grundimpulse und die dazugehörigen Spektren.
+
The interaction module &nbsp;[[Applets:Pulses_and_Spectra|Pulses and Spectra]]&nbsp; shows some common basic pulses and the corresponding spectra.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Der folgenden Grafik liegt stets die Quellensymbolfolge
+
$\text{Example 2:}$&nbsp; The following graphic is always based on the source symbol sequence
$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm}\mathbf{L},\mathbf{L}, \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle $ zugrunde. Diese zeigt drei Sendesignale,
+
$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm}\mathbf{L},\mathbf{L}, \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle $ zugrunde. This shows three transmission signals,
  
[[File:P_ID1251__Dig_T_1_1_S3_v3_80.png|right|frame|Binäre Sendesignale mit unterschiedlicher Impulsform]]
+
[[File:P_ID1251__Dig_T_1_1_S3_v3_80.png|right|frame|Binary transmission signals with different pulse shapes]]
  
*ein bipolares Sendesignal  &nbsp;$s_{\rm A}(t)$&nbsp; mit NRZ&ndash;Rechteckimpulsen,
+
*a bipolar transmission signal &nbsp;$s_{\rm A}(t)$&nbsp; with NRZ rectangular pulses,
*ein bipolares Sendesignal &nbsp;$s_{\rm B}(t)$&nbsp; mit RZ&ndash;Rechteckimpulsen, und
+
*a bipolar transmission signal &nbsp;$s_{\rm B}(t)$&nbsp; with RZ rectangular pulses, and
*ein unipolares Sendesignal &nbsp;$s_{\rm C}(t)$&nbsp; mit Gaußimpulsen.
+
*a unipolar transmission signal &nbsp;$s_{\rm C}(t)$&nbsp; with Gaussian pulses.
  
  
Bei den folgenden Beschreibungen wird meist das bipolare NRZ&ndash;Rechtecksignal &nbsp;$s_{\rm A}(t)$&nbsp; vorausgesetzt. Die Dauer &nbsp;$T_{\rm S}$&nbsp; des in der Grafik rot eingezeichneten Sendegrundimpulses &nbsp;$g_s(t)$&nbsp; ist hier gleich dem Abstand &nbsp;$T$&nbsp; zweier aufeinanderfolgender Impulse.  
+
In the following descriptions, the bipolar NRZ square-wave signal &nbsp;$s_{\rm A}(t)$&nbsp; is usually assumed. The duration &nbsp;$T_{\rm S}$&nbsp; of the basic transmission pulse &nbsp;$g_s(t)$&nbsp; shown in red in the diagram is equal to the distance &nbsp;$T$&nbsp; between two successive pulses.
  
Aus den weiteren Skizzen erkennt man:
+
From the further diagrams one recognizes:
*Beim RZ&ndash;Sendesignal &nbsp;$s_{\rm B}(t)$&nbsp; unterscheidet sich die Impulsdauer &nbsp;$T_{\rm S}$&nbsp; vom Impulsabstand &nbsp;$T$. Die Skizze gilt für das Tastverhältnis &nbsp;$T_{\rm S}/T = 0.5$. Obwohl &nbsp;$s_{\rm B}(t)$ ebenfalls ein Binärsignal ist, gibt es hier drei mögliche Signalwerte, nämlich &nbsp;$+s_0$, &nbsp;$-s_0$&nbsp; und &nbsp;$0$.  
+
*For the RZ transmission signal &nbsp;$s_{\rm B}(t)$,&nbsp; the pulse duration &nbsp;$T_{\rm S}$&nbsp; differs from the pulse spacing &nbsp;$T$. The diagram applies to the duty cycle &nbsp;$T_{\rm S}/T = 0.5$. Although &nbsp;$s_{\rm B}(t)$ is also a binary signal, there are three possible signal values here, namely &nbsp;$+s_0$, &nbsp;$-s_0$&nbsp; and &nbsp;$0$.  
*Von Vorteil ist, dass sich auch bei einer langen &nbsp;$\rm H$&ndash; oder &nbsp;$\rm L$&ndash;Folge kein Gleichsignal ergibt, wodurch die Taktsynchronisierung einfacher wird. Nachteilig bei RZ&ndash;Signalisierung ist das breitere Spektrum sowie die niedrigere Energie pro Symbol, was zu einer höheren Bitfehlerrate führt.
+
*An advantage is that even with a long &nbsp;$\rm H$ or &nbsp;$\rm L$ sequence there is no DC signal, which makes clock synchronization easier. A disadvantage of RZ signaling is the wider spectrum as well as the lower energy per symbol, which leads to a higher bit error rate.
*Das Signal &nbsp;$s_{\rm C}(t)$&nbsp; ist unipolar und verwendet einen gaußförmigen Grundimpuls &nbsp;$g_s(t)$. Ein solches Signal findet man zum Beispiel bei optischen Systemen mit Intensitätsmodulation, da ein Laser oder eine LED &nbsp;(''Light Emitting Diode'')&nbsp; prinzipiell keine negativen Impulse erzeugen kann und ein Rechteckimpuls technologisch schwieriger zu erreichen ist als die Gaußform.
+
*The signal &nbsp;$s_{\rm C}(t)$&nbsp; is unipolar and uses a Gaussian basic pulse &nbsp;$g_s(t)$. Such a signal is found, for example, in optical systems with intensity modulation, since a laser or an LED &nbsp;(''Light Emitting Diode'')&nbsp; cannot in principle generate negative pulses and a square pulse is technologically more difficult to achieve than the Gaussian form.
*Im Falle eines "echten Gaußimpulses" gilt für die absolute Impulsdauer stets &nbsp;$T_{\rm S} \to \infty$. Die (normierte) äquivalente Impulsdauer ist hier mit &nbsp;$\Delta t_{\rm S} /T = 0.3$&nbsp; relativ klein gewählt, so dass der Maximalwert &nbsp;$s_0$&nbsp; des Sendesignals etwa  gleich der Impulsamplitude &nbsp;$A_{\rm S}$&nbsp; ist.
+
*In case of a "real Gaussian pulse" the absolute pulse duration is always &nbsp;$T_{\rm S} \to \infty$. The (normalized) equivalent pulse duration is chosen here with &nbsp;$\Delta t_{\rm S} /T = 0.3$&nbsp; relatively small, so that the maximum value &nbsp;$s_0$&nbsp; of the transmission signal is approximately equal to the pulse amplitude &nbsp;$A_{\rm S}$.&nbsp;  
*Bei breiteren Gaußimpulsen überlappen sich diese; die Näherung &nbsp;$s_0 \approx A_{\rm S}$&nbsp; trifft in diesem Fall nicht mehr zu.}}
+
*For wider Gaussian pulses these overlap; the approximation &nbsp;$s_0 \approx A_{\rm S}$&nbsp; no longer applies in this case.}}
  
== Übertragungskanal und Störungen==
+
== Transmission channel and interference==
 
<br>
 
<br>
Der &nbsp;'''Übertragungskanal'''&nbsp; umfasst alle Einrichtungen, die zwischen dem Sender und dem Empfänger liegen. Hauptbestandteil des Kanals ist das Übertragungsmedium, das zum Beispiel eine symmetrische Doppelleitung, ein Koaxialkabel, ein Lichtwellenleiter (eine Glasfaser) oder ein Funkfeld sein kann. Daneben beinhaltet der Übertragungskanal verschiedene aus Betriebsgründen notwendige Einrichtungen wie Stromversorgung, Blitzschutz und Fehlerortung.<br>
+
The &nbsp;'''transmission channel'''&nbsp; includes all the equipment located between the transmitter and the receiver. The main component of the channel is the transmission medium, which can be, for example, a symmetrical double line, a coaxial cable, an optical fiber (a glass fiber) or a radio field. In addition, the transmission channel includes various equipment necessary for operational reasons, such as power supply, lightning protection and fault location.<br>
  
Im allgemeinsten Fall müssen folgende physikalischen Effekte berücksichtigt werden:
+
In the most general case, the following physical effects must be taken into account:
*Die Übertragungseigenschaften können zeitabhängig sein, insbesondere bei sich bewegendem Sender und/oder Empfänger, wie es im ersten Hauptkapitel "Zeitvariante Übertragungskanäle" des Buches &nbsp;[[Mobile Kommunikation]]&nbsp; im Detail beschrieben wird. Im vorliegenden  Buch "Digitalsignalübertragung" wird der Kanal stets als ''linear und zeitinvariant''&nbsp; (LZI) angenommen.
+
*The transmission characteristics may be time-dependent, especially in the case of a moving transmitter and/or receiver, as described in detail in the first main chapter "Time-Variant Transmission Channels" of the book &nbsp;[[Mobile Communications]].&nbsp; In this book, "Digital Signal Transmission," the channel is always assumed to be ''linear and time-invariant''&nbsp; (LTI).
*Die Eigenschaften des LZI&ndash;Kanals können frequenzabhängig sein, gekennzeichnet durch den Frequenzgang &nbsp;$H_{\rm K}(f)$. Bei leitungsgebundener Übertragung gilt stets &nbsp;$H_{\rm K}(f) \ne \rm const.$&nbsp; und es kommt zu Verzerrungen, wie auf der Seite &nbsp;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Definition_des_Begriffs_.E2.80.9EImpulsinterferenz.E2.80.9D|Definition des Begriffs "Impulsinterferenz"]]&nbsp; behandelt.
+
*The characteristics of the LTI channel can be frequency dependent, characterized by the frequency response &nbsp;$H_{\rm K}(f)$. In conducted transmission, &nbsp;$H_{\rm K}(f) \ne \rm const.$&nbsp; always holds and distortion occurs, as discussed on the &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Definition_of_the_term_.22Intersymbol_Interference.22|Definition of the term "Intersymbol Interference"]]&nbsp; page.
*Dem Nutzsignal überlagern sich stochastische Störungen &nbsp;$n(t)$, zum Beispiel das unvermeidbare thermische Rauschen, Impulsstörungen und Nebensprechstörungen anderer Teilnehmer.<br>
+
*Stochastic interference &nbsp;$n(t)$ is superimposed on the useful signal, for example the unavoidable thermal noise, pulse interference, and crosstalk interference from other subscribers.<br>
  
  
Für dieses erste Hauptkapitel wird stets &nbsp;$H_{\rm K}(f) =1$&nbsp; vorausgesetzt, das heißt, dass die beiden erstgenannten Punkte vorerst ausgeschlossen werden.  
+
For this first main chapter, &nbsp;$H_{\rm K}(f) =1$&nbsp; is always assumed, which means that the first two points mentioned are excluded for the time being.
[[File:P_ID3131__Dig_T_1_1_S4_v1.png|right|frame|AWGN-Kanalmodell: LDS (links) und WDF (rechts)]]
+
[[File:P_ID3131__Dig_T_1_1_S4_v1.png|right|frame|AWGN channel model: PSD (left) and PDF (right)]]
Somit gilt im Folgenden für das Signal am Kanalausgang stets:
+
Thus, in the following, for the signal at the channel output always holds:
 
:$$r(t) = s(t) + n(t).$$
 
:$$r(t) = s(t) + n(t).$$
  
Die einfachste realistische Annahme für den Übertragungskanal eines Nachrichtenübertragungssystems ist &nbsp;''Additive White Gaussian Noise''&nbsp; (AWGN), wie bereits in anderen $\rm LNTwww$&ndash;Büchern ausgeführt wurde,
+
The simplest realistic assumption for the transmission channel of a message transmission system is &nbsp;''Additive White Gaussian Noise''&nbsp; (AWGN), as already stated in other $\rm LNTwww$ books,
*im Buch &nbsp;[[Theory_of_Stochastic_Signals/Gau%C3%9Fverteilte_Zufallsgr%C3%B6%C3%9Fe#Allgemeine_Beschreibung|Stochastische Signaltheorie]],  
+
*in the book &nbsp;[[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#General_description|Theory of Stochastic Signals]],  
*auf der Seite  &nbsp;[[Modulationsverfahren/Qualit%C3%A4tskriterien#Ideales_und_verzerrungsfreies_System|Ideales und verzerrungsfreies System]]&nbsp; des Buches "Modulationsverfahren".  
+
*on the page &nbsp;[[Modulation_Methods/Quality_Criteria#Ideal_and_Distortionless_System|Ideal and Distortionless System]]&nbsp; of the book "Modulation Methods".
  
  
Das &nbsp;'''AWGN&ndash;Modell'''&nbsp; lässt sich wie folgt zusammenfassen:
+
The &nbsp;'''AWGN model'''&nbsp; can be summarized as follows:
*Der Buchstabe "N" weist darauf hin, dass durch das AWGN&ndash;Modell ausschließlich Rauschen &nbsp;("Noise")&nbsp; berücksichtigt wird. Verzerrungen werden durch dieses einfache Modell nicht erfasst.
+
*The letter "N" indicates that only noise is considered by the AWGN model. Distortion is not accounted for by this simple model.
*Obwohl Rauschstörungen im Allgemeinen durch eine Vielzahl von Rauschquellen entlang der gesamten Übertragungsstrecke hervorgerufen werden, können diese bei linearen Systemen durch einen einzigen additiven Rauschterm  am Kanalausgang berücksichtigt werden (Buchstabe "A").
+
*Although noise is generally caused by a variety of noise sources along the entire transmission path, for linear systems it can be accounted for by a single additive noise term at the channel output (letter "A").
*Das Rauschen beinhaltet alle Frequenzen gleichermaßen; &nbsp;es besitzt ein konstantes, weißes &nbsp;("W")&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|Leistungsdichtespektrum]]&nbsp; (LDS) und eine diracförmige &nbsp;[[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)#Zufallsprozesse_.281.29| Autokorrelationsfunktion]]&nbsp; (AKF):
+
*The noise includes all frequencies equally; &nbsp;it has a constant white &nbsp;("W")&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Wiener-Khintchine_Theorem|power-spectral density]]&nbsp; (PSD) and a Dirac-shaped &nbsp;[[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)#Zufallsprozesse_.281.29|auto-correlation function]]&nbsp; (ACF):
 
:$${\it \Phi}_n(f) = {N_0}/{2}\hspace{0.15cm}
 
:$${\it \Phi}_n(f) = {N_0}/{2}\hspace{0.15cm}
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}
 
\varphi_n(\tau) = {N_0}/{2} \cdot \delta
 
\varphi_n(\tau) = {N_0}/{2} \cdot \delta
 
(\tau)\hspace{0.05cm}.$$
 
(\tau)\hspace{0.05cm}.$$
:Der Faktor $1/2$ auf beiden Seiten dieser Fouriertransformations&ndash;Gleichung berücksichtigt die zweiseitige Spektraldarstellung.
+
:The factor $1/2$ on both sides of this Fourier transform equation accounts for the two-sided spectral representation.
*Beispielsweise gilt bei thermischem Rauschen für die physikalische Rauschleistungsdichte &nbsp;(das heißt: &nbsp; einseitige Betrachtungsweise)&nbsp; mit der Rauschzahl &nbsp;$F \ge 1$&nbsp; und der absoluten Temperatur &nbsp;$\theta$:
+
*For example, in the case of thermal noise, for the physical noise power density &nbsp;(that is: &nbsp; one-sided view)&nbsp; with noise figure &nbsp;$F \ge 1$&nbsp; and absolute temperature &nbsp;$\theta$:
 
::<math>{N_0}= F \cdot k_{\rm B} \cdot \theta , \hspace{0.3cm}k_{\rm B} =
 
::<math>{N_0}= F \cdot k_{\rm B} \cdot \theta , \hspace{0.3cm}k_{\rm B} =
 
1.38 \cdot 10^{-23} \hspace{0.2cm}{ \rm Ws}/{\rm K}\hspace{0.2cm}{\rm
 
1.38 \cdot 10^{-23} \hspace{0.2cm}{ \rm Ws}/{\rm K}\hspace{0.2cm}{\rm
(Boltzmann-Konstante)}\hspace{0.05cm}.</math>
+
(Boltzmann constant)}\hspace{0.05cm}.</math>
*Bei echt weißem Rauschen würde sich eine unendliche große Leistung ergeben. Deshalb ist stets eine Bandbegrenzung auf &nbsp;$B$&nbsp; zu berücksichtigen, und es gilt für die wirksame Rauschleistung:
+
*True white noise would result in infinitely large power. Therefore, a band limit on &nbsp;$B$&nbsp; must always be considered, and the following applies to the effective noise power:
 
::<math>N = \sigma_n^2 = {N_0} \cdot B \hspace{0.05cm}.</math>
 
::<math>N = \sigma_n^2 = {N_0} \cdot B \hspace{0.05cm}.</math>
*Das Rauschsignal &nbsp;$n(t)$&nbsp; besitzt eine &nbsp;[[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Gaußsche Wahrscheinlichkeitsdichtefunktion]]&nbsp; (kurz: &nbsp; WDF), was durch den Buchstaben "G" zum Ausdruck gebracht wird:
+
*The noise signal &nbsp;$n(t)$&nbsp; has a &nbsp;[[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.E2.80.93_Cumulative_density_function|Gaussian probability density function]]&nbsp; (PDF for short), which is expressed by the letter "G":
 
::<math>f_n(n) = \frac{1}{\sqrt{2\pi}\cdot\sigma_n}\cdot {\rm e}^{-{\it
 
::<math>f_n(n) = \frac{1}{\sqrt{2\pi}\cdot\sigma_n}\cdot {\rm e}^{-{\it
 
n^{\rm 2}}/{(2\sigma_n^2)}}.</math>
 
n^{\rm 2}}/{(2\sigma_n^2)}}.</math>
Wir möchten Sie hier gerne auf das dreiteilige Lernvideo &nbsp;[[Der_AWGN-Kanal_(Lernvideo)|Der AWGN-Kanal]]&nbsp; hinweisen, in dem die AWGN&ndash;Eigenschaften nochmals verdeutlicht werden.
+
We would like to refer you here to the three-part tutorial video &nbsp;[[Der_AWGN-Kanal_(Lernvideo)|The AWGN Channel]],&nbsp; in which the AWGN properties are again clarified.
  
  
== Empfangsfilter und Schwellenwertentscheider==
+
== Reception filter and threshold deciderr==
 
<br>
 
<br>
[[File:P_ID1253__Dig_T_1_1_S5a_v1.png|right|frame|Empfänger eines binären Basisbandübertragungssystems]]
+
[[File:P_ID1253__Dig_T_1_1_S5a_v1.png|right|frame|Receiver of a binary baseband transmission system '''KORREKTUR''': reception filter, decider]]
Der einfachste Empfänger bei Binärübertragung über den AWGN&ndash;Kanal besteht aus
+
The simplest receiver for binary transmission via the AWGN channel consists of
*einem Empfangsfilter mit dem Frequenzgang &nbsp;$H_{\rm E}(f)$&nbsp; und
+
*a reception filter with the frequency response &nbsp;$H_{\rm E}(f)$&nbsp; and
*einem Schwellenwertentscheider zur Gewinnung des Binärsignals.
+
*a threshold decider for obtaining the binary signal.
  
  
Diese Empfängerstruktur ist wie folgt zu begründen:
+
This receiver structure can be justified as follows:
*Das Signal &nbsp;$d(t)$&nbsp; nach dem Empfangsfilter &nbsp; &rArr; &nbsp; ''Detektionssignal''&nbsp; kann zumindest gedanklich wie folgt aufgeteilt werden: &nbsp; Der Anteil &nbsp;$d_{\rm S}(t)$&nbsp; ist auf das Nutzsignal &nbsp;$s(t)$&nbsp; zurückzuführen, der Anteil &nbsp;$d_{\rm N}(t)$&nbsp; auf das Rauschen &nbsp;$n(t)$. Die beiden Indizes "S" und "N" stehen hierbei für ''Signal''&nbsp; und ''Noise''.  
+
*The signal &nbsp;$d(t)$&nbsp; after the reception filter &nbsp; &rArr; &nbsp; ''detection signal''&nbsp; can be divided at least mentally as follows: &nbsp; The part &nbsp;$d_{\rm S}(t)$&nbsp; is due to the useful signal &nbsp;$s(t)$,&nbsp; the part &nbsp;$d_{\rm N}(t)$&nbsp; is due to the noise &nbsp;$n(t)$. The two indices "S" and "N" stand here for ''signal''&nbsp; and ''noise''.  
  
*Mit der Impulsantwort &nbsp;$h_{\rm E}(t)$&nbsp; als die Fourierrücktransformierte des Frequenzgangs &nbsp;$H_{\rm E}(f)$&nbsp; gilt:
+
*With the impulse response &nbsp;$h_{\rm E}(t)$&nbsp; as the Fourier retransform of the frequency response &nbsp;$H_{\rm E}(f)$&nbsp; applies:
 
:$$d_{\rm S}(t) = s(t) \star h_{\rm E} (t)\hspace{0.05cm},\hspace{0.5cm}d_{\rm N}(t) = n(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$
 
:$$d_{\rm S}(t) = s(t) \star h_{\rm E} (t)\hspace{0.05cm},\hspace{0.5cm}d_{\rm N}(t) = n(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$
*Das weiße Rauschen &nbsp;$n(t)$&nbsp; am Empfängereingang besitzt theoretisch eine unendliche große Leistung (praktisch: &nbsp; eine unnötig große Leistung). Durch den Tiefpass mit dem Frequenzgang &nbsp;$H_{\rm E}(f)$&nbsp; wird diese auf den quadratischen Erwartungswert des Detektionsstörsignals ("Varianz") begrenzt:
+
*The white noise &nbsp;$n(t)$&nbsp; at the receiver input has theoretically an infinitely large power (practically: an unnecessarily large power). The low-pass filter with frequency response &nbsp;$H_{\rm E}(f)$&nbsp; limits this to the squared expected value of the detection noise signal ("variance"):
 
::<math>\sigma_d^2 = {\rm E}\big[d_{\rm N}(t)^2\big] \hspace{0.05cm}.</math>
 
::<math>\sigma_d^2 = {\rm E}\big[d_{\rm N}(t)^2\big] \hspace{0.05cm}.</math>
*Allerdings ist zu beachten, dass der Tiefpass &nbsp;$H_{\rm E}(f)$&nbsp; nicht nur das Störsignal &nbsp;$n(t)$, sondern auch das Nutzsignal &nbsp;$s(t)$&nbsp; verändert. Dadurch werden die einzelnen Sendeimpulse verbreitert und in ihrer Amplitude vermindert. Nach den Voraussetzungen für dieses Kapitel muss sichergestellt werden, dass es nicht zu &nbsp;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]]&nbsp; kommt.
+
*However, it should be noted that the low-pass &nbsp;$H_{\rm E}(f)$&nbsp; alters not only the interference signal &nbsp;$n(t)$, but also the useful signal &nbsp;$s(t)$.&nbsp; As a result, the individual transmission pulses are broadened and reduced in amplitude. According to the prerequisites for this chapter, it must be ensured that &nbsp;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|intersymbol interference]]&nbsp; does not occur.
*Aufgabe des Entscheiders ist es, aus dem wert&ndash; und zeitkontinuierlichen Detektionssignal &nbsp;$d(t)$&nbsp; das wert&ndash; und zeitdiskrete Sinkensignal &nbsp;$v(t)$&nbsp; zu erzeugen, das die Nachricht des Sendesignals &nbsp;$s(t)$&nbsp; "möglichst gut" wiedergeben sollte.  
+
*The task of the decider is to generate the discrete&ndash;value and discrete&ndash;time sink signal &nbsp;$v(t)$&nbsp; from the continuous&ndash;value and continuous&ndash;time detection signal &nbsp;$d(t)$,&nbsp; which should reproduce the message of the transmission signal &nbsp;$s(t)$&nbsp; "as well as possible".
 
 
  
Die Funktionsweise des (binären) Schwellenwertentscheiders wird im folgenden $\text{Beispiel 3}$ beschrieben.
+
The operation of the (binary) threshold decider is described in $\text{Example 3}$ below.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Die obere Grafik zeigt rot das rechteckförmige, auf &nbsp;$\pm 1$&nbsp; normierte Sendesignal &nbsp;$s(t)$, das von additivem Rauschen &nbsp;$n(t)$&nbsp; überlagert ist. Blau dargestellt ist das Empfangssignal &nbsp;$r(t) = s(t) + n(t)$.
+
$\text{Example 3:}$&nbsp; The upper graphic shows in red the rectangular transmission signal &nbsp;$s(t)$ normalized to &nbsp;$\pm 1$&nbsp;, which is superimposed by additive noise &nbsp;$n(t)$.&nbsp; Shown in blue is the reception signal &nbsp;$r(t) = s(t) + n(t)$.
  
[[File:P_ID1254__Dig_T_1_1_S5b_v2.png|right|frame|Signale bei einem optimalen Binärsystem|class=fit]]
+
[[File:P_ID1254__Dig_T_1_1_S5b_v2.png|right|frame|Signals in an optimal binary system|class=fit]]
Zu dieser Grafik ist weiter anzumerken:
+
To this graphic it is to be noted further:
*Nach dem Empfangsfilter mit rechteckförmiger Impulsantwort der Dauer &nbsp;$T$&nbsp; ergibt sich das im mittleren Bild dargestellte Signal &nbsp;$d(t)$. Der Anteil &nbsp;$d_{\rm S}(t)$, der ausschließlich auf das Sendesignal &nbsp;$s(t)$&nbsp; zurückgeht, hat in diesem Sonderfall &nbsp;("Matched&ndash;Filter")&nbsp; den in der mittleren Grafik rot gepunktet dargestellten, abschnittsweise linearen Verlauf. Die Differenz &nbsp;$d(t) - d_{\rm S}(t)$&nbsp; ist der Rauschanteil &nbsp;$d_{\rm N}(t)$, der vom AWGN&ndash;Term &nbsp;$n(t)$&nbsp; herrührt.
+
*After the reception filter with a rectangular impulse response of duration &nbsp;$T$,&nbsp; the signal &nbsp;$d(t)$ shown in the middle figure is obtained. In this special case ("matched filter"), the part &nbsp;$d_{\rm S}(t)$, which is exclusively due to the transmission signal &nbsp;$s(t)$,&nbsp; has the section-wise linear course shown in red dots in the middle graphic. The difference &nbsp;$d(t) - d_{\rm S}(t)$&nbsp; is the noise component &nbsp;$d_{\rm N}(t)$, which originates from the AWGN term &nbsp;$n(t)$.&nbsp;  
  
  
*Der anschließende Schwellenwertentscheider wertet das Detektionssignal &nbsp;$d(t)$&nbsp; aus. Dazu vergleicht er dessen Abtastwerte zu den äquidistanten Detektionszeitpunkten &ndash; in der Grafik durch gelbe Pfeile markiert &ndash; mit dem Schwellenwert &nbsp;$E  = 0$&nbsp; und setzt entsprechend das Sinkensignal &nbsp;$v(t)$&nbsp; im Bereich &nbsp;$\nu \cdot T$ ... $(\nu + 1) \cdot T$&nbsp; auf &nbsp;$+1$&nbsp; oder &nbsp;$-1$, je nachdem, ob der Detektionsabtastwert &nbsp;$d(t)$&nbsp; größer oder kleiner ist als die Entscheiderschwelle &nbsp;$E$.
+
*The subsequent threshold decider evaluates the detection signal &nbsp;$d(t)$.&nbsp; For this purpose, it compares its samples at the equidistant detection times &ndash; marked by yellow arrows in the graphic &ndash; with the threshold value &nbsp;$E  = 0$&nbsp; and accordingly sets the sink signal &nbsp;$v(t)$&nbsp; in the range &nbsp;$\nu \cdot T$ ... $(\nu + 1) \cdot T$&nbsp; to &nbsp;$+1$&nbsp; or &nbsp;$-1$, depending on whether the detection sample &nbsp;$d(t)$&nbsp; is larger or smaller than the decision threshold &nbsp;$E$.
  
  
*Trifft wie im dargestellten Beispiel der Entscheider stets die richtige Entscheidung, so ist sein Ausgangssignal &nbsp;$v(t) = s(t-T/2)$. Die Laufzeit von einer halben Symboldauer &nbsp;$(T/2)$ ist&nbsp; darauf zurückzuführen, dass das Detektionssignal &nbsp;$d(t)$&nbsp; sinnvollerweise in Symbolmitte entschieden wird, die Bereitstellung des Sinkensignals &nbsp;$v(t)$&nbsp; aber aus Kausalitätsgründen erst danach erfolgen kann.}}
+
*If the decider always makes the correct decision, as in the example shown, its output signal is &nbsp;$v(t) = s(t-T/2)$. The running time of half a symbol duration &nbsp;$(T/2)$ is&nbsp; due to the fact that the detection signal &nbsp;$d(t)$&nbsp; is sensibly decided in the middle of the symbol, but the provision of the sink signal &nbsp;$v(t)$&nbsp; can only take place afterwards for reasons of causality.}}
  
  
== Ersatzschaltbild und Voraussetzungen für das erste Hauptkapitel==
+
== Equivalent circuit and prerequisites for the first main chapter==
 
<br>
 
<br>
Für die weiteren Abschnitte dieses ersten Hauptkapitels wird das folgende Ersatzschaltbild zugrunde gelegt:
+
The following equivalent circuit is used as a basis for the further sections of this first main chapter:
[[File:P_ID1255__Dig_T_1_1_S6_v1.png|center|frame|Ersatzschaltbild zur Untersuchung binärer Basisbandübertragungssysteme]]
+
[[File:P_ID1255__Dig_T_1_1_S6_v1.png|center|frame|Equivalent circuit diagram for the investigation of binary baseband transmission systems]]
Wenn nicht explizit etwas anderes angegeben ist, gelten die nachfolgend aufgeführten Voraussetzungen:
+
Unless explicitly stated otherwise, the following prerequisites apply:
*Die Übertragung erfolgt binär, bipolar und redundanzfrei mit der Bitrate &nbsp;$R = 1/T$. Die codierte und/oder  mehrstufige Übertragung wird im  &nbsp;[[Digital_Signal_Transmission|Hauptkapitel 2]]&nbsp; behandelt.
+
*The transmission is binary, bipolar and redundancy-free with bit rate &nbsp;$R = 1/T$. Coded and/or multistage transmission is dealt with in the &nbsp;[[Digital_Signal_Transmission|main chapter 2]].&nbsp;  
*Das Sendesignal &nbsp;$s(t)$&nbsp; ist zu allen Zeiten &nbsp;$t$&nbsp; gleich &nbsp;$ \pm s_0$, das heißt: &nbsp; Der Sendegrundimpuls $g_s(t)$ ist NRZ&ndash;rechteckförmig mit Amplitude &nbsp;$s_0$&nbsp; und Impulsdauer &nbsp;$T$. Die Spektralfunktion lautet:
+
*The transmission signal &nbsp;$s(t)$&nbsp; is equal to &nbsp;$ \pm s_0$ at all times&nbsp;$t$,&nbsp; i.e.: &nbsp; The basic transmission pulse $g_s(t)$ is NRZ&ndash;rectangular with amplitude &nbsp;$s_0$&nbsp; and pulse duration &nbsp;$T$. The spectral function is:
 
:$$G_s(f)= s_0 \cdot T \cdot {\rm si}(\pi f \hspace{0.05cm}T)\hspace{0.2cm} {\rm mit}\hspace{0.2cm}{\rm si}(x) = \sin(x)/x
 
:$$G_s(f)= s_0 \cdot T \cdot {\rm si}(\pi f \hspace{0.05cm}T)\hspace{0.2cm} {\rm mit}\hspace{0.2cm}{\rm si}(x) = \sin(x)/x
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Für das Empfangssignal gelte &nbsp;$r(t) = s(t) + n(t)$, wobei der AWGN&ndash;Term &nbsp;$n(t)$&nbsp; durch die konstante einseitige (physikalische) Rauschleistungsdichte &nbsp;$N_0$&nbsp; gekennzeichnet ist. Der Kanalfrequenzgang ist somit stets &nbsp;$H_{\rm K}(f) =1$&nbsp; und muss nicht weiter berücksichtigt werden.
+
*For the reception signal, let &nbsp;$r(t) = s(t) + n(t)$, where the AWGN term &nbsp;$n(t)$&nbsp; is characterized by the constant one-sided (physical) noise power density &nbsp;$N_0$.&nbsp; Thus, the channel frequency response is always &nbsp;$H_{\rm K}(f) =1$&nbsp; and need not be considered further.
*Das Empfangsfilter mit dem Frequenzgang &nbsp;$H_{\rm E}(f)$&nbsp; und der Impulsantwort &nbsp;$h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big]$&nbsp; ist optimal an den Sendegrundimpuls  &nbsp;$g_s(t)$&nbsp; angepasst, so dass Impulsinterferenzen keine Rolle spielen. Impulsinterferenzbehaftete Systeme und die Entzerrungsverfahren werden im dritten Hauptkapitel &nbsp;[[Digital_Signal_Transmission|dieses Buches]]&nbsp; behandelt.
+
*The reception filter with frequency response &nbsp;$H_{\rm E}(f)$&nbsp; and impulse response &nbsp;$h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big]$&nbsp; is optimally matched to the basic transmission pulse &nbsp;$g_s(t)$,&nbsp; so that intersymbol interference does not play a roleSystems subject to intersymbol interference and the equalization methods are discussed in the third main chapter of &nbsp;[[Digital_Signal_Transmission|this book]].&nbsp;
*Die Parameter des (binären) Schwellenwertentscheiders sind optimal gewählt. Aufgrund der bipolaren Signalisierung ist die optimale Entscheiderschwelle &nbsp;$E = 0$&nbsp; und wegen der symmetrischen Impulsform liegen die optimalen Detektionszeitpunkte bei &nbsp;$\nu \cdot T$.
+
*The parameters of the (binary) threshold decider are optimally chosen. Because of the bipolar signaling, the optimal decision threshold is &nbsp;$E = 0$,&nbsp; and because of the symmetric pulse shape, the optimal detection times are &nbsp;$\nu \cdot T$.
  
  
== Aufgaben zum Kapitel==
+
== Exercises for the chapter==
 
<br>
 
<br>
 
[[Aufgaben:1.1 Sendegrundimpulse|Aufgabe 1.1: Sendegrundimpulse]]
 
[[Aufgaben:1.1 Sendegrundimpulse|Aufgabe 1.1: Sendegrundimpulse]]
Line 230: Line 230:
 
[[Aufgaben:1.1Z_Redundanzfreie_Bin%C3%A4rquelle|Aufgabe 1.1Z: Redundanzfreie Binärquelle]]
 
[[Aufgaben:1.1Z_Redundanzfreie_Bin%C3%A4rquelle|Aufgabe 1.1Z: Redundanzfreie Binärquelle]]
  
== Quellenverzeichnis==
+
== List of sources==
 
{{Display}}
 
{{Display}}

Revision as of 18:39, 1 February 2022

  • [[Digital Signal Transmission/{{{Vorherige Seite}}} | Previous page]]
  • Next page
  • [[Digital Signal Transmission/{{{Vorherige Seite}}} | Previous page]]
  • Next page

# OVERVIEW OF THE FIRST MAIN CHAPTER #


The first main chapter introduces the broad field of digital signal transmission, with some simplifying assumptions:  a redundancy-free binary transmitted signal, no intersymbol interference. Although the description is mainly in baseband, most of the results can be applied to the digital carrier frequency systems as well.

In particular, the following are dealt with:

  • the basic structure and components of a baseband transmission system,
  • the definitions of bit error probability and bit error frequency (BER),
  • the characteristics of Nyquist systems that allow intersymbol interference-free transmission,
  • the optimization of the binary baseband systems under power and peak constraints,
  • the generalization of the results to carrier frequency systems,  and
  • the largely common description of ASK, BPSK, and 4-QAM.


Simplified system model


Throughout the first chapter, the following block diagram is assumed for the digital system as described in [ST85][1]:

Simplified system model of a digital transmission system KORREKTUR: source, sender...

In comparison to an  analog transmission system  according to the book "Modulation Methods", the following similarities and differences can be recognized in this simplified system model:

  • The block diagram is constructed in exactly the same way in both cases - consisting of source, transmitter, channel, receiver and sink - and the signals are also designated in the same way.
  • In the digital transmission system, the received signal  $r(t)$  is also continuous in time and value due to the interference. The transmitted signal  $s(t)$  can be discrete in time and value, but does not have to be.
  • In contrast to the book "Modulation Methods", however, the source signal  $q(t)$  and the sink signal  $v(t)$  are always digital signals. Accordingly, they are both time and value discrete.
  • All information about  $q(t)$  and  $v(t)$  can thus also be expressed by the source symbol sequence  $〈q_ν〉$  and the sink symbol sequence  $〈v_ν〉$  together with the symbol duration  $T$. 
  • A digital receiver differs fundamentally from the receiver of an analog system in that it must also include a  decision component  for obtaining the digital sink signal  $v(t)$  from the analog received signal  $r(t)$. 
  • In the first three chapters of this book, we consider  digital baseband transmission, which means that the message signal  $q(t)$  is transmitted without prior frequency conversion (modulation with a carrier wave).
  • Therefore,  $s(t)$  and  $r(t)$  are low-pass signals here, and the channel (including the interference) must always be assumed to have low-pass characteristics as well.


In the following, the characteristics of the individual system components are described in detail, suitably considering the idealizing assumptions for this chapter.

Descriptive variables of the digital source


The  digital source  generates the source symbol sequence  $〈q_ν〉$, which is to be transmitted to the sink as error-free as possible. In general, each symbol of the temporal sequence  $〈q_ν〉$  with  $\nu = 1, 2,$ ...  from a symbol set  $\{q_\mu\}$  with  $\mu = 1$, ... , $M$, where  $M$  is called the source symbol range  or also the number of stages

For the first chapter of this book, the following assumptions are made:

  • The source is binary  $(\hspace{-0.05cm}M= 2)$  and the two possible symbols are  $\rm L$ ("Low") and  $\rm H$ ("High"). We have chosen this somewhat unusual nomenclature in order to be able to describe both unipolar and bipolar signaling in the same way. Please see the note before  $\text{Example 1}$.
  • The source symbols are statistically independent,  that is, the probability  ${\rm Pr}(q_\nu = q_\mu)$, that the  $\nu$–th symbol of the sequence  $〈q_ν〉$  is equal to the  $\mu$–th symbol of the symbol set  $\{q_\mu\}$  does not depend on  $\nu$. 
  • Given these two assumptions, the digital source is completely described by the symbol probabilities  $p_{\rm L} = {\rm Pr}(q_\nu = {\rm L}) $  and  $p_{\rm H} = {\rm Pr}(q_\nu = {\rm H}) = 1- p_{\rm L}$. 
  • If  $p_{\rm L} =p_{\rm H}= 0.5$ is still valid, the source is redundancy-free. Mostly – but not always – such a redundancy-free binary source is assumed in the present first chapter.
  • Let the time interval between two symbols be  $T$. This quantity is called the symbol duration  and the reciprocal value the symbol rate  $R = 1/T$. For binary sources  $(\hspace{-0.05cm}M= 2)$  these quantities are also called bit duration  and bit rate, respectively.
  • In a systems theory approach to digital baseband transmission, the source signal is best described by a sequence of weighted and shifted Dirac delta impulses:
\[q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.05cm}. \]
  • Here, we refer to  $a_\nu$  as the  amplitude coefficients. In the case of binary unipolar  digital signal transmission:
\[a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}\]
  • Correspondingly, in the case of a bipolar  (or antipolar) system:
\[a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}\]
The following description is mostly for this second case.

Note on nomenclature:   In the literature, our symbol  $\rm H$  is often denoted by $\mathbf{0}$. In unipolar signaling, the symbol  $\mathbf{0}$  is then represented by the amplitude coefficient  $a_\nu =1$  and the symbol  $\rm L$  by the numerical value  $a_\nu =0$.  To avoid this unattractive situation, in $\rm LNTwww$ the symbol  $\mathbf{0}$  is denoted by  $\rm H$,  where "High" expresses the situation correctly.

$\text{Example 1:}$  The graphic shows four binary Dirac-shaped source signals in the range from  $-4 \ \rm µ s$  to  $+4 \ \rm µ s$, each based on the source symbol sequence

$$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm} \mathbf{L},\mathbf{L}, \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle \hspace{0.05cm} $$

The middle symbol  (marked in the equation by larger character spacing)  refers in each case to the time  $t = 0$.

Description of digital source signals
  • The two upper signals are suitable for describing unipolar systems, the lower ones for bipolar (antipodal) digital signal transmission.
  • For the diagrams on the left,  $T = 1\ \rm µ s$  s assumed. For the two right ones, however,  $T = 2\ \rm µ s$  and thus half the symbol rate applies.

Characteristics of the digital transmitter


The  transmitter  of a digital transmission system has the task of generating a suitable transmission signal  $s(t)$  from the (Dirac-shaped) source signal, which contains the message of the source completely and is adapted to the characteristics of transmission channel, interference as well as all technical receiving equipment. In addition, the transmitter ensures the provision of a sufficiently large transmission power.

As a descriptive quantity for the transmitter, we use the basic transmission pulse  $g_s(t)$. Due to the definition of the source signal  $q(t)$  as a sum of weighted and shifted Dirac delta functions, the transmitted signal can be represented with the amplitude coefficients  $a_\nu$  in the following way:

\[s(t) = q(t) \star g_s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.05cm}.\]

Often the basic transmission pulse  $g_s(t)$  is assumed to be rectangular with

  • the pulse height  $s_0 = g_s(t = 0)$  and
  • the (absolute) pulse duration  $T_{\rm S}$.


$\text{Definition:}$  If  $T_{\rm S} < T$ applies, this is referred to as an  RZ pulse  ("return–to–zero"), and if  $T_{\rm S} = T$,  this is referred to as an  NRZ pulse  ("non–return–to–zero").


With a different basic transmission pulse, for example


the equivalent pulse duration defined by the equal-area rectangle is usually used as description parameter instead of the absolute pulse duration  $T_{\rm S}$: 

$$\Delta t_{\rm S} = \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \le T_{\rm S} \hspace{0.05cm}.$$

Only in case of rectangular basic transmission pulse  $\Delta t_{\rm S} = T_{\rm S}$ is valid.

If the amplitude of the basic transmission pulse  $g_s(t)$  differs from the maximum value  $s_0$  of the transmission signal  $s(t)$, we denote the pulse amplitude by  $A_{\rm S}$. This is true for the Gaussian pulse, for example.

The interaction module  Pulses and Spectra  shows some common basic pulses and the corresponding spectra.

$\text{Example 2:}$  The following graphic is always based on the source symbol sequence $\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm}\mathbf{L},\mathbf{L}, \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle $ zugrunde. This shows three transmission signals,

Binary transmission signals with different pulse shapes
  • a bipolar transmission signal  $s_{\rm A}(t)$  with NRZ rectangular pulses,
  • a bipolar transmission signal  $s_{\rm B}(t)$  with RZ rectangular pulses, and
  • a unipolar transmission signal  $s_{\rm C}(t)$  with Gaussian pulses.


In the following descriptions, the bipolar NRZ square-wave signal  $s_{\rm A}(t)$  is usually assumed. The duration  $T_{\rm S}$  of the basic transmission pulse  $g_s(t)$  shown in red in the diagram is equal to the distance  $T$  between two successive pulses.

From the further diagrams one recognizes:

  • For the RZ transmission signal  $s_{\rm B}(t)$,  the pulse duration  $T_{\rm S}$  differs from the pulse spacing  $T$. The diagram applies to the duty cycle  $T_{\rm S}/T = 0.5$. Although  $s_{\rm B}(t)$ is also a binary signal, there are three possible signal values here, namely  $+s_0$,  $-s_0$  and  $0$.
  • An advantage is that even with a long  $\rm H$ or  $\rm L$ sequence there is no DC signal, which makes clock synchronization easier. A disadvantage of RZ signaling is the wider spectrum as well as the lower energy per symbol, which leads to a higher bit error rate.
  • The signal  $s_{\rm C}(t)$  is unipolar and uses a Gaussian basic pulse  $g_s(t)$. Such a signal is found, for example, in optical systems with intensity modulation, since a laser or an LED  (Light Emitting Diode)  cannot in principle generate negative pulses and a square pulse is technologically more difficult to achieve than the Gaussian form.
  • In case of a "real Gaussian pulse" the absolute pulse duration is always  $T_{\rm S} \to \infty$. The (normalized) equivalent pulse duration is chosen here with  $\Delta t_{\rm S} /T = 0.3$  relatively small, so that the maximum value  $s_0$  of the transmission signal is approximately equal to the pulse amplitude  $A_{\rm S}$. 
  • For wider Gaussian pulses these overlap; the approximation  $s_0 \approx A_{\rm S}$  no longer applies in this case.

Transmission channel and interference


The  transmission channel  includes all the equipment located between the transmitter and the receiver. The main component of the channel is the transmission medium, which can be, for example, a symmetrical double line, a coaxial cable, an optical fiber (a glass fiber) or a radio field. In addition, the transmission channel includes various equipment necessary for operational reasons, such as power supply, lightning protection and fault location.

In the most general case, the following physical effects must be taken into account:

  • The transmission characteristics may be time-dependent, especially in the case of a moving transmitter and/or receiver, as described in detail in the first main chapter "Time-Variant Transmission Channels" of the book  Mobile Communications.  In this book, "Digital Signal Transmission," the channel is always assumed to be linear and time-invariant  (LTI).
  • The characteristics of the LTI channel can be frequency dependent, characterized by the frequency response  $H_{\rm K}(f)$. In conducted transmission,  $H_{\rm K}(f) \ne \rm const.$  always holds and distortion occurs, as discussed on the  Definition of the term "Intersymbol Interference"  page.
  • Stochastic interference  $n(t)$ is superimposed on the useful signal, for example the unavoidable thermal noise, pulse interference, and crosstalk interference from other subscribers.


For this first main chapter,  $H_{\rm K}(f) =1$  is always assumed, which means that the first two points mentioned are excluded for the time being.

AWGN channel model: PSD (left) and PDF (right)

Thus, in the following, for the signal at the channel output always holds:

$$r(t) = s(t) + n(t).$$

The simplest realistic assumption for the transmission channel of a message transmission system is  Additive White Gaussian Noise  (AWGN), as already stated in other $\rm LNTwww$ books,


The  AWGN model  can be summarized as follows:

  • The letter "N" indicates that only noise is considered by the AWGN model. Distortion is not accounted for by this simple model.
  • Although noise is generally caused by a variety of noise sources along the entire transmission path, for linear systems it can be accounted for by a single additive noise term at the channel output (letter "A").
  • The noise includes all frequencies equally;  it has a constant white  ("W")  power-spectral density  (PSD) and a Dirac-shaped  auto-correlation function  (ACF):
$${\it \Phi}_n(f) = {N_0}/{2}\hspace{0.15cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm} \varphi_n(\tau) = {N_0}/{2} \cdot \delta (\tau)\hspace{0.05cm}.$$
The factor $1/2$ on both sides of this Fourier transform equation accounts for the two-sided spectral representation.
  • For example, in the case of thermal noise, for the physical noise power density  (that is:   one-sided view)  with noise figure  $F \ge 1$  and absolute temperature  $\theta$:
\[{N_0}= F \cdot k_{\rm B} \cdot \theta , \hspace{0.3cm}k_{\rm B} = 1.38 \cdot 10^{-23} \hspace{0.2cm}{ \rm Ws}/{\rm K}\hspace{0.2cm}{\rm (Boltzmann constant)}\hspace{0.05cm}.\]
  • True white noise would result in infinitely large power. Therefore, a band limit on  $B$  must always be considered, and the following applies to the effective noise power:
\[N = \sigma_n^2 = {N_0} \cdot B \hspace{0.05cm}.\]
\[f_n(n) = \frac{1}{\sqrt{2\pi}\cdot\sigma_n}\cdot {\rm e}^{-{\it n^{\rm 2}}/{(2\sigma_n^2)}}.\]

We would like to refer you here to the three-part tutorial video  The AWGN Channel,  in which the AWGN properties are again clarified.


Reception filter and threshold deciderr


Receiver of a binary baseband transmission system KORREKTUR: reception filter, decider

The simplest receiver for binary transmission via the AWGN channel consists of

  • a reception filter with the frequency response  $H_{\rm E}(f)$  and
  • a threshold decider for obtaining the binary signal.


This receiver structure can be justified as follows:

  • The signal  $d(t)$  after the reception filter   ⇒   detection signal  can be divided at least mentally as follows:   The part  $d_{\rm S}(t)$  is due to the useful signal  $s(t)$,  the part  $d_{\rm N}(t)$  is due to the noise  $n(t)$. The two indices "S" and "N" stand here for signal  and noise.
  • With the impulse response  $h_{\rm E}(t)$  as the Fourier retransform of the frequency response  $H_{\rm E}(f)$  applies:
$$d_{\rm S}(t) = s(t) \star h_{\rm E} (t)\hspace{0.05cm},\hspace{0.5cm}d_{\rm N}(t) = n(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$
  • The white noise  $n(t)$  at the receiver input has theoretically an infinitely large power (practically: an unnecessarily large power). The low-pass filter with frequency response  $H_{\rm E}(f)$  limits this to the squared expected value of the detection noise signal ("variance"):
\[\sigma_d^2 = {\rm E}\big[d_{\rm N}(t)^2\big] \hspace{0.05cm}.\]
  • However, it should be noted that the low-pass  $H_{\rm E}(f)$  alters not only the interference signal  $n(t)$, but also the useful signal  $s(t)$.  As a result, the individual transmission pulses are broadened and reduced in amplitude. According to the prerequisites for this chapter, it must be ensured that  intersymbol interference  does not occur.
  • The task of the decider is to generate the discrete–value and discrete–time sink signal  $v(t)$  from the continuous–value and continuous–time detection signal  $d(t)$,  which should reproduce the message of the transmission signal  $s(t)$  "as well as possible".

The operation of the (binary) threshold decider is described in $\text{Example 3}$ below.

$\text{Example 3:}$  The upper graphic shows in red the rectangular transmission signal  $s(t)$ normalized to  $\pm 1$ , which is superimposed by additive noise  $n(t)$.  Shown in blue is the reception signal  $r(t) = s(t) + n(t)$.

Signals in an optimal binary system

To this graphic it is to be noted further:

  • After the reception filter with a rectangular impulse response of duration  $T$,  the signal  $d(t)$ shown in the middle figure is obtained. In this special case ("matched filter"), the part  $d_{\rm S}(t)$, which is exclusively due to the transmission signal  $s(t)$,  has the section-wise linear course shown in red dots in the middle graphic. The difference  $d(t) - d_{\rm S}(t)$  is the noise component  $d_{\rm N}(t)$, which originates from the AWGN term  $n(t)$. 


  • The subsequent threshold decider evaluates the detection signal  $d(t)$.  For this purpose, it compares its samples at the equidistant detection times – marked by yellow arrows in the graphic – with the threshold value  $E = 0$  and accordingly sets the sink signal  $v(t)$  in the range  $\nu \cdot T$ ... $(\nu + 1) \cdot T$  to  $+1$  or  $-1$, depending on whether the detection sample  $d(t)$  is larger or smaller than the decision threshold  $E$.


  • If the decider always makes the correct decision, as in the example shown, its output signal is  $v(t) = s(t-T/2)$. The running time of half a symbol duration  $(T/2)$ is  due to the fact that the detection signal  $d(t)$  is sensibly decided in the middle of the symbol, but the provision of the sink signal  $v(t)$  can only take place afterwards for reasons of causality.


Equivalent circuit and prerequisites for the first main chapter


The following equivalent circuit is used as a basis for the further sections of this first main chapter:

Equivalent circuit diagram for the investigation of binary baseband transmission systems

Unless explicitly stated otherwise, the following prerequisites apply:

  • The transmission is binary, bipolar and redundancy-free with bit rate  $R = 1/T$. Coded and/or multistage transmission is dealt with in the  main chapter 2
  • The transmission signal  $s(t)$  is equal to  $ \pm s_0$ at all times $t$,  i.e.:   The basic transmission pulse $g_s(t)$ is NRZ–rectangular with amplitude  $s_0$  and pulse duration  $T$. The spectral function is:
$$G_s(f)= s_0 \cdot T \cdot {\rm si}(\pi f \hspace{0.05cm}T)\hspace{0.2cm} {\rm mit}\hspace{0.2cm}{\rm si}(x) = \sin(x)/x \hspace{0.05cm}.$$
  • For the reception signal, let  $r(t) = s(t) + n(t)$, where the AWGN term  $n(t)$  is characterized by the constant one-sided (physical) noise power density  $N_0$.  Thus, the channel frequency response is always  $H_{\rm K}(f) =1$  and need not be considered further.
  • The reception filter with frequency response  $H_{\rm E}(f)$  and impulse response  $h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big]$  is optimally matched to the basic transmission pulse  $g_s(t)$,  so that intersymbol interference does not play a role. Systems subject to intersymbol interference and the equalization methods are discussed in the third main chapter of  this book
  • The parameters of the (binary) threshold decider are optimally chosen. Because of the bipolar signaling, the optimal decision threshold is  $E = 0$,  and because of the symmetric pulse shape, the optimal detection times are  $\nu \cdot T$.


Exercises for the chapter


Aufgabe 1.1: Sendegrundimpulse

Aufgabe 1.1Z: Redundanzfreie Binärquelle

List of sources

  1. Söder, G.; Tröndle, K: Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme. Berlin – Heidelberg: Springer, 1985.