Difference between revisions of "Signal Representation/Differences and Similarities of Low-Pass and Band-Pass Signals"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Bandpassartige Signale |Vorherige Seite=Faltungssatz und Faltungsoperation |Nächste Seite=Analytisches Signal und zugehörige Spektralf…“)
 
 
(101 intermediate revisions by 10 users not shown)
Line 1: Line 1:
+
 
 
{{Header
 
{{Header
|Untermenü=Bandpassartige Signale
+
|Untermenü=Band-Pass Signals
|Vorherige Seite=Faltungssatz und Faltungsoperation
+
|Vorherige Seite=The Convolution Theorem and Operation
|Nächste Seite=Analytisches Signal und zugehörige Spektralfunktion
+
|Nächste Seite=Analytical Signal and Its Spectral Function
 
}}
 
}}
  
==Bedeutung der BP-Signale für die Nachrichentechnik==
+
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 +
<br>
 +
In the third main chapter &nbsp; &rArr; &nbsp; [[Signal_Representation|&raquo;Aperiodic Signals &ndash; Pulses&laquo;]]&nbsp; mostly&nbsp; "low-pass signals"&nbsp; were assumed &nbsp; &rArr; &nbsp; those signals whose spectral functions lie in the range around the frequency&nbsp; $f = 0$.&nbsp; Particularly in optical transmission and in radio transmission systems - but not only in these - the transmitted signals are in the range around a carrier frequency&nbsp; $f_{\rm T}$.&nbsp; Such signals are called&nbsp; &raquo;'''band-pass signals'''&laquo;.
 +
 
 +
All principles of the Fourier transform and the inverse Fourier transform described in the last chapter apply to band-pass signals in the same way.&nbsp; Besides there are some special features of band-pass signals,&nbsp; whose observance can lead to a simpler description.
 +
 
 +
This chapter contains in detail:
 +
#The enumeration of&nbsp; &raquo;differences&nbsp; and&nbsp; similarities&laquo;&nbsp; of low-pass and band-pass signals,
 +
#the&nbsp; &raquo;synthesis&nbsp; of band-pass signals&laquo;&nbsp; from the&nbsp; &raquo;equivalent low-pass signal&laquo;,
 +
#the&nbsp; equivalent low-pass signal&nbsp;&nbsp; in the time and frequency domain,&nbsp; and finally
 +
#the representation of the&nbsp; &raquo;analytical signal&laquo;&nbsp;&nbsp; and of the&nbsp; &raquo;equivalent low-pass signal&laquo;&nbsp; in the complex plane.
  
In den Kapiteln 2 und 3 dieses Buches wurden bisher fast nur '''tiefpassartige Signale''' betrachtet, deren Spektralfunktionen in einem engen Bereich um die Frequenz $f$ = 0 liegen. Beispiele hierfür sind analoge Sprach–, Musik– und Bildsignale, die man alle – trotz ihrer unterschiedlichen Bandbreiten – als Tiefpass-Signale bezeichnen kann.
 
Will man ein solches Tiefpass-Signal zu einer räumlich entfernten Sinke übertragen, so muss das Signal unter Umständen in eine andere Frequenzlage umgesetzt werden. Dafür kann es mehrere Gründe geben:
 
*Häufig ist der Übertragungskanal für die direkte Übertragung des Quellensignals im originalen Frequenzband ungeeignet, da dieses für ihn ungünstige Frequenzen beinhaltet. Erst durch eine Frequenzverschiebung mittels einer so genannten '''Modulation''' wird eine Übertragung ermöglicht.
 
*Man kann einen einzigen Übertragungskanal auch zur gleichzeitigen Übertragung mehrerer Signale nutzen, wenn diese sendeseitig mit verschiedenen Trägerfrequenzen moduliert werden. Man nennt dieses Verfahren '''Frequenzmultiplex''' (englisch: Frequency Division Multiple Access, FDMA).
 
*Die Übertragungsqualität kann meist auf Kosten einer größeren Bandbreite gegenüber dem einfachsten analogen Verfahren (Amplitudenmodulation) verbessert und somit ein größeres '''Signal-zu-Rauschverhältnis''' erzielt werden. Beispiele hierfür sind die Frequenzmodulation (FM) als analoges Verfahren und die digitale Pulscodemodulation (PCM).
 
Festzuhalten ist: Die Sendesignale vieler Übertragungsverfahren sind '''Bandpass-Signale'''.
 
  
Hinweis: Den Autoren ist durchaus bewusst, dass es nach der letzten Rechtschreibreform „Tiefpasssignal” und „Bandpasssignal” heißen müsste. Um diese unschönen Konstrukte zu vermeiden, verwenden wir im Folgenden meist die Schreibweisen „TP–Signal” und „BP–Signal”.
 
  
{{Beispiel}}
 
''Sprache und Musik'' sind TP–Signale mit einer Bandbreite von 20 kHz (bei sehr guter Qualität). Da eine Funkübertragung aber erst ab ca. 100 kHz möglich ist, erfolgt vor der Übertragung eine Umsetzung auf Trägerfrequenzen zwischen
 
*0.525 ... 1.61 MHz (Mittelwellenrundfunk, Amplitudenmodulation, Kanalabstand 9 kHz),
 
*87.5 ... 108 MHz (Rundfunk auf UKW, Frequenzmodulation, Kanalabstand 300 kHz).
 
''TV-Bildsignale'' weisen eine größere Bandbreite auf (z.B. 5 MHz). Auch hier erfolgt vor der Ton– und Bildübertragung eine Frequenzbandverschiebung durch Trägerfrequenzen zwischen
 
*41 ... 68 / 174 ... 230 MHz (Fernsehen, VHF-Band, Kanalabstand 7 MHz),
 
*470 ... 850 MHz (Fernsehen, UHF-Band, Kanalabstand 8 MHz).
 
Beim GSM-Mobilfunk liegen die Trägerfrequenzen bei 900 MHz (D-Band) bzw. 1800 MHz (E-Band). Bei ''optischer Übertragung'' werden die elektrischen Signale in Licht gewandelt, also auf Frequenzen zwischen ca. 200 und 350 THz (entsprechend 1.55 ... 0.85 μm Wellenlänge).
 
  
{{end}}
+
==Motivation of band-pass signals for Communications Engineering==
 +
<br>
 +
In the previous chapters of this book,&nbsp; only signals have been considered whose spectra lie in a narrow range around the frequency&nbsp; $f = 0$.&nbsp;  Examples are analog speech,&nbsp; music and image signals,&nbsp; which all &ndash; despite their different bandwidths &ndash; can be described as&nbsp; &raquo;low-pass signals&laquo;.
  
 +
If you want to transmit such a low-pass signal to a spatially distant sink,&nbsp; the signal may have to be converted to another frequency position.&nbsp;
  
==Eigenschaften von BP-Signalen==
+
There can be several reasons for this:
 +
*Often the transmission channel is unsuitable for the direct transmission of the source signal in the original frequency band,&nbsp; because this band contains frequencies that are unfavorable for it.&nbsp; Only by a frequency shift by means of a so-called&nbsp; &raquo;modulator&laquo;&nbsp; a transmission is made possible.
  
Auf dieser Seite werden – ohne Anspruch auf Vollständigkeit – einige Eigenschaften von BP–Signalen zusammengestellt und den TP–Signalen vergleichend gegenübergestellt. Dabei gehen wir von den Spektralfunktionen $X_{TP}(f)$ und $X_{BP}(f)$ gemäß der folgenden Skizze aus.
+
*A single transmission channel can be used for the simultaneous transmission of several signals,&nbsp; if they are modulated with different carrier frequencies at the transmitting end.&nbsp; This method is called&nbsp; &nbsp; [[Modulation_Methods/Objectives_of_Modulation_and_Demodulation#Channel_bundling_.E2.80.93_Frequency_Division_Multiplexing|&raquo;Frequency Division Multiple Access&raquo;]]&nbsp; $\text{(FDMA)}$.
  
Zu dieser Grafik ist anzumerken:
+
*The transmission quality can be improved compared to the simplest analog method&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|&raquo;Amplitude Modulation&laquo;]]&nbsp; $\text{(AM)}$&nbsp; at the expense of a larger bandwidth and thus a higher&nbsp; &raquo;signal-to-noise ratio&raquo;&nbsp; $\text{(SNR)}$&nbsp; can be achieved.&nbsp; Examples are the analog&nbsp;  [[Modulation_Methods/Frequenzmodulation_(FM)|&raquo;Frequency Modulation&laquo;]]&nbsp; $\text{(FM)}$&nbsp; and the digital &nbsp; [[Modulation_Methods/Pulse_Code_Modulation|&raquo;Pulse Code Modulation&laquo;]]&nbsp; $\text{(PCM)}$.
*Die Dreiecksform der dargestellten Spektren ist rein schematisch zu verstehen und soll nur das belegte Frequenzband kennzeichnen.
 
*Daraus sollte nicht geschlossen werden, dass alle Frequenzen innerhalb des Bandes tatsächlich belegt sind und dass alle Spektralfunktionen linear mit der Frequenz zunehmen.
 
*Die zugehörigen Zeitfunktionen $x_{TP}(t)$ und $x_{BP}(t)$ seien vorerst reell. Das bedeutet, dass nach dem Zuordnungssatz die Spektralfunktionen $X_{TP}(f)$ und $X_{BP}{f}$ – bezogen auf die Frequenz $f$ = 0 – jeweils einen geraden Realteil und einen ungeraden Imaginärteil besitzen.
 
*Als Bandbreite $B_{TP}$ bzw. $B_{BP}$ bezeichnen wir für Tiefpass und Bandpass gleichermaßen das belegte Frequenzband bei den positiven Frequenzen (durchgezogene Kurvenverläufe).
 
  
Auf der nächsten Seite folgt ein weiteres Beispiel mit diskreten Spektrallinien.
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Remember:}$&nbsp; The transmitted signals of many transmission methods are&nbsp; &raquo;band-pass signals&laquo;.}}
  
{{Bespiel}}
+
 
Die linke Grafik zeigt das Spektrum $Q(f)$ des Nachrichtensignals
+
{{GraueBox|TEXT= 
 +
$\text{Example 1 : To classify signals with respect to&nbsp; &raquo;low-pass&laquo;&nbsp; and&nbsp; &raquo;band-pass&laquo;}$
 +
 
 +
'''(a)''' &nbsp; &nbsp; Speech and music are low-pass signals with a bandwidth of&nbsp; $\text{20 kHz}$&nbsp; $($at very good quality$)$.&nbsp; Since a radio transmission is only possible from&nbsp; $\approx \text{100 kHz}$,&nbsp; a conversion is needed to carrier frequencies between
 +
*$\text{0.525 ... 1.61 MHz}$&nbsp; $($medium wave broadcasting,&nbsp; amplitude modulation,&nbsp; channel spacing&nbsp; $\text{9 kHz})$,
 +
 
 +
*$\text{87.5 ... 108 MHz}$&nbsp; $($radio on FM,&nbsp; frequency modulation,&nbsp; channel spacing&nbsp; $\text{300 kHz})$.
 +
 
 +
 
 +
'''(b)''' &nbsp; &nbsp; TV image signals&nbsp; have a larger bandwidth,&nbsp; e.g.&nbsp; $\text{5 MHz}$.&nbsp; Here,&nbsp;  as well,&nbsp;  a frequency band shift occurs before the sound and image transmission due to carrier frequencies between
 +
*$\text{41 ... 68 / 174 ... 230 MHz}$&nbsp; $($television,&nbsp; VHF band,&nbsp; channel spacing&nbsp; $\text{7 MHz})$,
 +
 
 +
*$\text{470 ... 850 MHz}$&nbsp; $($television,&nbsp; UHF band,&nbsp; channel spacing&nbsp; $\text{8 MHz})$.
 +
 
 +
 
 +
'''(c)'''&nbsp; &nbsp; With&nbsp; &raquo;GSM mobile radio&laquo;&nbsp; the carrier frequencies in the D-band are&nbsp; $\text{900 MHz}$&nbsp; and in the E-band &nbsp; $\text{1800 MHz}$. 
 +
 
 +
'''(d)''' &nbsp; &nbsp; With&nbsp; &raquo;optical communication&laquo;&nbsp; the electrical signals are converted into light,&nbsp; i.e. to frequencies &nbsp; $\text{200 THz ... 350 THz}$&nbsp; &rArr; &nbsp; wavelengths:&nbsp; $\text{1.55 &micro;m ... 0.85 &micro;m}$.}}
 +
 
 +
 
 +
==Properties of band-pass signals==
 +
<br>
 +
In this section &ndash; without claiming to be complete &ndash; some characteristics of band-pass signals&nbsp; $x_{\rm BP}(t)$&nbsp; are compiled and compared to low-pass signals&nbsp;  $x_{\rm TP}(t)$,&nbsp; because of&nbsp; "low-pass" &nbsp; &rArr; &nbsp; German:&nbsp; "Tiefpass" &nbsp; &rArr; &nbsp; "$\rm TP$".&nbsp; We start from the spectral functions&nbsp; $X_{\rm TP}(f)$&nbsp; and&nbsp; $X_{\rm BP}(f)$&nbsp; according to the following sketch.
 +
 
 +
Regarding the graphic is to be remarked:
 +
[[File:P_ID679__Sig_T_4_1_S2a_neu.png|right|frame|Low-pass and band-pass spectrum]]
 +
 
 +
#The triangular shape of the displayed spectra is to be understood schematically and is only to mark the occupied frequency band.&nbsp;
 +
#So it should not be concluded that all frequencies within the band are actually occupied and that all spectral functions increase linearly with frequency $f$.
 +
#The corresponding time functions&nbsp; $x_{\rm TP}(t)$&nbsp; and&nbsp; $x_{\rm BP}(t)$&nbsp; are real.&nbsp; This means that according to the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;Assignment Theorem&laquo;]]&nbsp; the spectral functions&nbsp; $X_{\rm TP}(f)$&nbsp; and&nbsp; $X_{\rm BP}(f)$&nbsp;  each have an even real part and an odd imaginary part&nbsp; $($related to the frequency&nbsp; $f = 0)$.
 +
#As bandwidth&nbsp; $B_{\rm TP}$&nbsp; or&nbsp; $B_{\rm BP}$&nbsp; for both low-pass and band-pass we refer to the occupied frequency band at positive frequencies&nbsp; $($in the graph: &nbsp; solid lines$)$.
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; An example with discrete spectral lines follows.
 +
[[File:P_ID698__Sig_T_4_1_S2b_neu.png|right|frame|Example of a low-pass  spectrum (left) and of a band-pass spectrum  (right)]]
 +
 
 +
The left graph shows the spectrum&nbsp; $Q(f)$&nbsp; of the source signal
 
   
 
   
$q(t) = 3\hspace{0.05cm}{\rm V} + 4\hspace{0.05cm}{\rm V} \cdot \cos (2 \pi \cdot 3\hspace{0.05cm}{\rm kHz} \cdot t) + 2\hspace{0.05cm}{\rm V} \cdot \sin (2 \pi \cdot 4\hspace{0.05cm}{\rm kHz} \cdot t). $
+
:$$q(t) = 3\hspace{0.05cm}{\rm V} + 4\hspace{0.05cm}{\rm V} \cdot \cos (2 \pi \hspace{-0.05cm} \cdot\hspace{-0.05cm} 3\hspace{0.05cm}{\rm kHz} \cdot t) + 2\hspace{0.05cm}{\rm V} \cdot \sin (2 \pi\hspace{-0.05cm} \cdot\hspace{-0.05cm} 4\hspace{0.05cm}{\rm kHz} \cdot t). $$
  
Die diskreten Spektrallinien des Realteils  Re[$Q(f)$] sind blau dargestellt und diejenigen des Imaginärteils  Im[$Q(f)$] rot.
+
The discrete spectral lines of the real part &nbsp; &nbsp; ${\rm Re}\big[Q(f)\big]$&nbsp; are shown in blue and those of the imaginary part &nbsp; &nbsp; ${\rm Im}\big[Q(f)\big]$&nbsp; in red.
  
Rechts dargestellt ist das Spektrum $S(f)$ nach Einseitenband–Amplitudenmodulation (ESB–AM) mit der Trägerfrequenz $f_T$ = 100 kHz. Eine Beschreibung dieses Übertragungssystems finden Sie im Kapitel 2.3 des Buches „Modulationsverfahren”.
 
*Entsprechend dieser Systembeschreibung ist $q(t)$ eindeutig ein TP–Signal, während $s(t)$ ein BP–Signal darstellt. Die Bandbreiten sind jeweils $B_{TP}$ = $B_{BP}$ = 4 kHz.
 
*Die Signale $q(t)$ und $s(t)$ sind zudem reell, da sowohl $Q(f)$ als auch $S(f)$ einen geraden Real- und einen ungeraden Imaginärteil aufweisen.
 
*Würde beim Quellensignal der Gleichanteil (3 V) fehlen, so würde man sinnvollerweise $q(t)$ noch immer als tiefpassartig bezeichnen.
 
*Ohne Kenntnis der Aufgabenstellung könnte man $q(t)$ dann aber auch als BP–Signal mit der Bandbreite $B_{BP}$ = 1 kHz auffassen.
 
Dieses Beispiel soll zeigen, dass es kein eindeutiges mathematisches Unterscheidungsmerkmal zwischen Tiefpass– und Bandpass–Signalen gibt.
 
  
{{end}}
+
&rArr; &nbsp; On the right you see the spectrum&nbsp; $S(f)$&nbsp; after&nbsp; &raquo;Single&ndash;sideband Amplitude Modulation&laquo;&nbsp; $\text{(SSB-AM)}$&nbsp; with carrier frequency $f_{\rm T} = 100 \,\text{kHz}$.&nbsp;
  
 +
A description of this special transmission system can be found in chapter&nbsp; [[Modulation_Methods/Hüllkurvendemodulation|&raquo;Envelope Demodulation&raquo;]]&nbsp; of the book&nbsp; &raquo;Modulation Methods&laquo;.
 +
*According to this description,&nbsp; $q(t)$&nbsp; is uniquely a low-pass signal and&nbsp; $s(t)$&nbsp; is a band-pass signal.&nbsp; The bandwidths are&nbsp; $B_{\rm TP} = B_{\rm BP} = 4 \,\text{kHz}$.
 +
*The signals&nbsp; $q(t)$&nbsp; and&nbsp; $s(t)$&nbsp; are real,&nbsp; since both&nbsp; $Q(f)$&nbsp; and&nbsp; $S(f)$&nbsp; have an even real and an odd imaginary part.
 +
*If the DC component&nbsp; $(3 \,\text{V})$&nbsp; would be missing in the source signal,&nbsp; one would sensibly&nbsp; $q(t)$&nbsp; still call it&nbsp; "low-pass"&nbsp; with bandwidth&nbsp; $B_{\rm TP} = 4 \,\text{kHz}$.
 +
*But without knowledge of the task,&nbsp; one could interpret&nbsp; $q(t)$&nbsp; then also as a&nbsp; "band-pass signal"&nbsp; with bandwidth&nbsp; $B_{\rm BP} = 1 \,\text{kHz}$.
  
==Beschreibung eines BP-Signals mittels TP-Signalen==
 
  
Wir betrachten zwei verschiedene TP–Spektren $X_1(f)$ und $X_2(f)$ mit den Bandbreiten $B_1$ und $B_2$ entsprechend der linken Grafik. Aus dieser Darstellung ist zu erkennen:
+
This example shows that there is no clear mathematical distinction between low-pass and band-pass signals.}}
*Sind $X_1(f)$ und $X_2(f)$ bis zu einer Frequenz $f_{12}$ identisch, so beschreibt die Differenz ein Bandpass-Spektrum mit Bandbreite $B_{BP} = B_1 -f_{12}$ (rechte Grafik): $X_{BP}(f) = X_1(f) -X_2(f)$.
+
 
*Aufgrund der Linearität der Fouriertransformation gilt für die zum Bandpass-Spektrum $X_{BP}(f)$ zugehörige Zeitfunktion: $x_{BP}(t) = x_1(t) - x_2(t)$.
+
==Description of a band-pass signal with low-pass signals==
*Aus der Fouriertransformation folgt allgemein, dass das Integral über die Zeitfunktion gleich dem Spektralwert bei $f$ = 0 ist. Bei jedem BP–Signal ist dieses Integral gleich 0:
+
<br>
 +
We consider two low-pass spectra&nbsp; $X_1(f)$&nbsp; and&nbsp; $X_2(f)$&nbsp; with the bandwidths&nbsp; $B_1$&nbsp; and&nbsp; $B_2$&nbsp; corresponding to the left graph.  
 +
 
 +
[[File:P_ID684__Sig_T_4_1_S3a.png|right|frame|Generation of a band-pass spectrum from two low-pass spectra]]
 +
 
 +
You can see from this diagram:
 +
*If&nbsp; $X_1(f)$&nbsp; and&nbsp; $X_2(f)$&nbsp; are identical up to a frequency&nbsp; $f_{12}$,&nbsp; the difference describes a band-pass spectrum with bandwidth&nbsp; $B_{\rm BP} = B_1 - f_{12}$.&nbsp;
 +
 
 +
*According to the graph on the right, the following then applies:
 +
:$$X_{\rm BP}(f) = X_1(f) -X_2(f).$$
 +
*Due to the linearity of the Fourier transform,&nbsp; the time function associated with the band-pass spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; is valid:
 +
:$$x_{\rm BP}(t) = x_1(t) - x_2(t).$$
 +
*It generally follows from the Fourier transform that the integral over the time function is equal to the spectral value at&nbsp; $f = 0$.&nbsp;
 +
 
 +
* Consequently,&nbsp; this integral is always zero for every band-pass signal:
 +
:$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm
 +
d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;
 +
The red curves in the two graphs show the band-pass spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; and the corresponding time function
 
   
 
   
$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm
+
:$$x_{\rm BP}(t) = 10\hspace{0.05cm}{\rm
d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$
+
V} \cdot {\rm sinc} ( 10 \hspace{0.05cm}{\rm kHz} \cdot t)
 +
\cdot {\rm sinc} ( 2 \hspace{0.05cm}{\rm kHz} \cdot t) -
 +
2\hspace{0.05cm}{\rm V} \cdot {\rm sinc} ( 2
 +
\hspace{0.05cm}{\rm kHz} \cdot t).$$
 +
 
 +
[[File:EN_Sig_T_4_1_S3a.png|right|frame|Low-pass and band-pass spectrum and their signals]]
 +
 
 +
Also shown are two low-pass spectra and signals.&nbsp; You can see from these diagrams:
 +
*The blue-dotted curve in the left graph represents the trapezoidal spectrum&nbsp; $X_1(f)$&nbsp; where the equivalent bandwidth is&nbsp; $\Delta f_1= 10 \,\text{kHz}$&nbsp; and the rolloff factor&nbsp; $r_1 = 0.2$.
 +
 
 +
*The blue-dotted curve in the right graphic shows the corresponding low-pass signal&nbsp; $x_1(t)$.&nbsp; The signal value at&nbsp; $t = 0$&nbsp; corresponds to the blue trapezoidal area of the spectrum&nbsp; $X_1(f)$:
 +
:$$x_1(t = 0) = 10 \,\text{V}.$$
 +
*The green curve applies to the rectangular spectrum&nbsp; $X_2(f)$&nbsp; with the equivalent bandwidth&nbsp; $\Delta f_2= 2 \,\text{kHz}$.&nbsp; The corresponding time signal&nbsp; $x_2(t)$&nbsp; is&nbsp; $\rm sinc$-shaped.&nbsp; It holds:
 +
:$$x_2(t = 0) = 2 \,\text{V}.$$
 +
*The red curve for the band-pass signal is the difference between the blue and green curve,&nbsp; both on the left and the right.&nbsp; Accordingly:
 +
:$$x_{\rm BP}(t = 0)  = x_1(t = 0) - x_2(t = 0) = 8 \,\text{V},$$
 +
:$$\Rightarrow \ \int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm
 +
d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$}}
 +
 
 +
 
 +
==Band-pass signal synthesis  from  the equivalent low-pass signal==
 +
<br>
 +
We consider a low-pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; with spectrum&nbsp; $X_{\rm TP}(f)$&nbsp; according to the left sketch.
 +
 
 +
[[File:P_ID2724__Sig_T_4_1_S4a.png|center|frame|Band-pass spectrum is obtained by shifting a low-pass spectrum on both sides]]
  
{{Beispiel}}
+
*If this signal is multiplied by a&nbsp; $($dimensionless$)$&nbsp; &raquo;harmonic oscillation&laquo;
Die roten Kurven zeigen das BP-Spektrum $X_{BP}(f)$ und die zugehörige Zeitfunktion
+
 
 +
:$$z(t) =  {\cos} ( 2\pi \cdot f_{\rm T} \cdot
 +
t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} Z(f) = {1}/{2}\cdot
 +
\delta (f - f_{\rm T})+ {1}/{2}\cdot \delta (f + f_{\rm T}),$$
 +
 
 +
:the convolution theorem for the spectrum of the signal yields&nbsp; $x_{\rm BP}(t) = x_{\rm TP}(t) \cdot z(t)$:
 
   
 
   
$x_{\rm BP}(t) = 10\hspace{0.05cm}{\rm
+
:$$X_{\rm BP}(f) = X_{\rm TP}(f)\star Z(f) = {1}/{2}\cdot X_{\rm
V} \cdot {\rm si} ( \pi \cdot 10 \hspace{0.05cm}{\rm kHz} \cdot t)
+
TP} (f - f_{\rm T})+ {1}/{2}\cdot X_{\rm TP}(f + f_{\rm T}).$$
\cdot {\rm si} ( \pi \cdot 2 \hspace{0.05cm}{\rm kHz} \cdot t) -
 
2\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot 2
 
\hspace{0.05cm}{\rm kHz} \cdot t).$
 
  
Ebenfalls dargestellt sind die zwei TP–Spektren und –Signale. Man erkennt aus diesen Bildern:
+
*Here it is considered that the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|&raquo;convolution&laquo;]]&nbsp; of the spectral function&nbsp; $X_{\rm TP}(f)$&nbsp; with the frequency-shifted Dirac delta&nbsp; $\delta (f - f_\rm {T})$&nbsp; yields the same spectral function &nbsp; $X_{\rm TP}(f-f_\rm {T})$&nbsp; shifted to the right by $f_\rm {T}$&nbsp;.
*Die blau-gepunktete Kurve (links) stellt das trapezförmige Spektrum $X_1(f)$ dar, wobei die äquivalente Bandbreite $\Delta f_1$ = 10 kHz beträgt und der Rolloff-Faktor $r_1$ = 0.2 ist.
 
*Die blau-gepunktete Kurve (rechts) zeigt das dazugehörige Signal $x_1(t)$. Der Signalwert bei $t$ = 0 entspricht der blauen Trapezfläche des Spektrums $X_1(f)$: $x_1$($t$ = 0) = 10 V.
 
*Die grüne Kurve gilt für das Rechteckspektrum $X_2(f)$ mit der äquivalenten Bandbreite $\Delta f_2$ = 2 kHz. Das dazugehörige Zeitsignal verläuft si–förmig und es gilt: $x_2$($t$ = 0) = 2 V.
 
Die rote Kurve ergibt sich links wie rechts als Differenz zwischen blauer und grüner Kurve.
 
  
{{end}}
+
*From spectral function on the right you can clearly see that
 +
:$$x_{\rm BP}(t) = x_{\rm TP}(t) \cdot {\cos} ( 2\pi \cdot f_{\rm T}
 +
\cdot t)$$
  
 +
:is a band-pass signal:
 +
*The envelope of&nbsp; $x_{\rm BP}(t)$&nbsp;is  given by the magnitude of&nbsp; $|x_{\rm TP}(t)|$.
  
==Synthese von BP-Signalen aus dem äquivalenten TP-Signal==
+
*For example,&nbsp; this principle is applied to the&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|&raquo;amplitude modulation without carrier&laquo;]],&nbsp; which is discussed thoroughly in the book&raquo; &raquo;Modulation Methods&laquo;.
  
Wir betrachten ein Tiefpass-Signal $x_{TP}(t)$ mit dem Spektrum $X_{TP}(f)$. Multipliziert man dieses Signal mit einer (dimensionslosen) harmonischen Schwingung
 
 
$z(t) =  {\cos} ( 2\pi \cdot f_{\rm T} \cdot
 
t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,Z(f) = {1}/{2}\cdot
 
\delta (f - f_{\rm T})+ {1}/{2}\cdot \delta (f + f_{\rm T}),$
 
  
so ergibt sich nach dem Faltungssatz für das Spektrum des Signals $x_{BP}(t) = x_{TP}(t) \cdot z(t)$:
+
You can further see from the above graphic:
+
#The spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; has the same form in the range around the carrier frequency&nbsp; $f_{\rm T}$&nbsp; as&nbsp; $X_{\rm TP}(f)$&nbsp; in the range around&nbsp; $f = 0$,&nbsp; but the band-pass spectrum is attenuated with respect to the low-pass spectrum by the factor&nbsp; $2$.
$X_{\rm BP}(f) =  X_{\rm TP}(f)\star Z(f) = {1}/{2}\cdot X_{\rm
+
#Since&nbsp; $X_{\rm TP}(f)$&nbsp; relative to&nbsp; $f = 0$&nbsp; has an even real and an odd imaginary part, the band-pass spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; has the same symmetry properties &ndash; but now relative to the carrier frequency&nbsp; $f_{\rm T}$.
TP} (f - f_{\rm T})+ {1}/{2}\cdot X_{\rm TP}(f + f_{\rm T}).$
+
#$X_{\rm BP}(f)$&nbsp; also has parts at negative frequencies.&nbsp; Since the corresponding signal&nbsp; $x_{\rm BP}(t)$&nbsp; is real according to the above equation,&nbsp; $X_{\rm BP}(f)$&nbsp; must also have an even real and an odd imaginary part with respect to the frequency&nbsp; $f = 0$.
 +
#The bandwidth of the band-pass signal is twice that of the low-pass signal: &nbsp; $B_{\rm BP} = 2 \cdot B_{\rm TP}$.&nbsp; Prerequisite for the validity of this statement is that the carrier frequency&nbsp; $f_{\rm T}$&nbsp; is at least twice as large than the maximum frequency&nbsp;  $(B_{\rm TP})$&nbsp; of the signal&nbsp; $x_{\rm TP}(t)$.
 +
 
  
Hierbei ist berücksichtigt, dass die Faltung der Spektralfunktion $X_{TP}(f)$ mit der verschobenen Diracfunktion $\delta (f - f_T)$ die um $f_T$ nach rechts verschobene Funktion $X_{TP}(f-f_T)$ ergibt.
+
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; A low-pass signal has discrete spectral components at&nbsp; $f_1 = 1\,\text{ kHz}, \,f_2 = 2\,\text{ kHz}, \,f_3 = 3\,\text{ kHz}$&nbsp; and&nbsp; $f_4 = 4\,\text{ kHz}$:
  
Aus der Spektraldarstellung (rechte Skizze) erkennt man eindeutig, dass
+
[[File:P_ID687__Sig_T_4_1_S4b.png|right|frame|DSB-AM signal with two different carrier frequencies]]
 
$x_{\rm BP}(t) = x_{\rm TP}(t) \cdot {\cos} ( 2\pi \cdot f_{\rm T}
 
\cdot t)$
 
  
ein Bandpass-Signal ist. Die Einhüllende von $x_{BP}(t)$ ist durch den Betrag $|x_{TP}(t)|$ gegeben.
+
:$$x_{\rm TP}(t) = 0.26\cdot {\cos} ( \omega_1 \hspace{0.05cm} t + 20^{ \circ}) \hspace{0.18cm}+ 0.54\cdot {\cos} ( \omega_2 \hspace{0.05cm} t - 180^{ \circ}) $$
Anwendung findet dieses Prinzip zum Beispiel bei der ''Amplitudenmodulation ohne Träger'', die im Buch Modulationsverfahren – Kapitel 2.1 eingehend behandelt wird.
+
:$$\hspace{1.5cm}+ \  0.30\cdot {\cos} ( \omega_3 \hspace{0.05cm} t +
Aus obiger Grafik erkennt man:
+
120^{ \circ}) +0.14\cdot {\cos} ( \omega_4 \hspace{0.05cm} t -40^{
*Das Spektrum $X_{BP}(f)$ hat im Bereich um die Trägerfrequenz $f_T$ die gleiche Form wie $X_{TP}(f)$ im Bereich um $f$ = 0, ist aber gegenüber diesem um den Faktor 2 gedämpft.
+
\circ}).$$
*Da das TP-Spektrum $X_{TP}(f)$ bezogen auf $f$ = 0 einen geraden Real– und einen ungeraden Imaginärteil besitzt, weist das BP-Spektrum $X_{BP}(f)$ gleiche Symmetrieeigenschaften auf – allerdings bezogen auf die Trägerfrequenz $f_T$.
 
*Auch das BP-Spektrum $X_{BP}(f)$ besitzt Anteile bei negativen Frequenzen. Da das zugehörige Signal  $x_{BP}(t)$ gemäß obiger Gleichung ebenfalls reell ist, muss auch  $X_{BP}(f)$ bezüglich der Frequenz $f$ = 0 einen geraden Real– und einen ungeraden Imaginärteil besitzen.
 
*Die Bandbreite des BP-Signals ist doppelt so groß wie die des TP-Signals: $B_{BP} = 2 \cdot B_{TP}$. Voraussetzung für die Gültigkeit dieser Aussage ist, dass die Trägerfrequenz $f_T$ mindestens um den Faktor 2 größer ist als die maximale Frequenz ($B_{TP}$) des Signals  $x_{TP}(t)$.
 
''Hinweis'': Eigenschaften von Tiefpass– und Bandpass–Signalen (Lernvideo, Dauer 5:18)
 
  
 +
The corresponding spectrum&nbsp; $X_{\rm TP}(f)$&nbsp; is complex because of the non-zero phase positions.
  
{{Beispiel}}
+
*If one multiplies the&nbsp; $($blue$)$&nbsp signal&nbsp; $x_{\rm TP}(t)$&nbsp; with a cosine signal of amplitude&nbsp; $1$&nbsp; and frequency&nbsp; $f_{\rm T} = 20 \,\text{kHz}$,&nbsp; the (red) band-pass signal is obtained according to the upper graphic.
Ein TP-Signal besitze Anteile bei $f_1$ = 1 kHz, $f_2$ = 2 kHz, $f_3$ = 3 kHz und $f_4$ = 4 kHz:
 
 
   
 
   
Das dazugehörige Spektrum $X_{TP}(f)$ ist wegen der von 0 verschiedenen Phasenlagen komplex.
+
*The lower sketch applies to the band-pass signal with carrier frequency&nbsp; $f_{\rm T} = 100 \,\text{kHz}$.
 +
 +
*In both illustrations the time curves&nbsp; $\pm \vert x_{\rm TP}(t) \vert $&nbsp; can be recognized as the envelope of the band-pass signals&nbsp; $x_{\rm BP}(t)$.  
  
Multipliziert man $x_{TP}(t)$ mit einem Cosinussignal der Amplitude 1 und der Frequenz $f_T$ = 20 kHz, so ergibt sich das BP-Signal entsprechend dem oberen Bild. Das untere Bild gilt für das BP-Signal mit der Trägerfrequenz $f_T$ = 100 kHz. In beiden Bildern sind die Funktionsverläufe $\pm |x_{TP}(t)|$ als Einhüllende der BP-Signale zu erkennen.
 
  
{{end}}
+
The topic of this chapter is covered in the&nbsp; (German language) learning video&nbsp;  [[Eigenschaften_von_Tiefpass-_und_Bandpasssignalen_(Lernvideo)|&raquo;Eigenschaften von Tiefpass- und Bandpass-Signalen&laquo;]]&nbsp; &rArr; &nbsp;"Properties of low-pass and band-pass signals".}}  
  
  
==Aufgaben zu Kapitel 4.4==
 
  
  
 +
==Exercises for the Chapter==
 +
<br>
 +
[[Aufgaben:Exercise 4.1: Low-Pass and Band-Pass Signals|Exercise 4.1: Low-Pass and Band-Pass Signals]]
  
 +
[[Aufgaben:Exercise 4.1Z: High-Pass System|Exercise 4.1Z: High-Pass System]]
  
 +
[[Aufgaben:Exercise 4.2: Rectangular-Shaped Spectra|Exercise 4.2: Rectangular Spectra]]
  
 +
[[Aufgaben:Exercise 4.2Z: Multiplication with a  Sine Signal|Exercise 4.2Z: Multiplication with a  Sine Signal]]
  
 +
 +
 
{{Display}}
 
{{Display}}

Latest revision as of 16:37, 19 June 2023

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


In the third main chapter   ⇒   »Aperiodic Signals – Pulses«  mostly  "low-pass signals"  were assumed   ⇒   those signals whose spectral functions lie in the range around the frequency  $f = 0$.  Particularly in optical transmission and in radio transmission systems - but not only in these - the transmitted signals are in the range around a carrier frequency  $f_{\rm T}$.  Such signals are called  »band-pass signals«.

All principles of the Fourier transform and the inverse Fourier transform described in the last chapter apply to band-pass signals in the same way.  Besides there are some special features of band-pass signals,  whose observance can lead to a simpler description.

This chapter contains in detail:

  1. The enumeration of  »differences  and  similarities«  of low-pass and band-pass signals,
  2. the  »synthesis  of band-pass signals«  from the  »equivalent low-pass signal«,
  3. the  equivalent low-pass signal   in the time and frequency domain,  and finally
  4. the representation of the  »analytical signal«   and of the  »equivalent low-pass signal«  in the complex plane.



Motivation of band-pass signals for Communications Engineering


In the previous chapters of this book,  only signals have been considered whose spectra lie in a narrow range around the frequency  $f = 0$.  Examples are analog speech,  music and image signals,  which all – despite their different bandwidths – can be described as  »low-pass signals«.

If you want to transmit such a low-pass signal to a spatially distant sink,  the signal may have to be converted to another frequency position. 

There can be several reasons for this:

  • Often the transmission channel is unsuitable for the direct transmission of the source signal in the original frequency band,  because this band contains frequencies that are unfavorable for it.  Only by a frequency shift by means of a so-called  »modulator«  a transmission is made possible.
  • A single transmission channel can be used for the simultaneous transmission of several signals,  if they are modulated with different carrier frequencies at the transmitting end.  This method is called    »Frequency Division Multiple Access»  $\text{(FDMA)}$.
  • The transmission quality can be improved compared to the simplest analog method  »Amplitude Modulation«  $\text{(AM)}$  at the expense of a larger bandwidth and thus a higher  »signal-to-noise ratio»  $\text{(SNR)}$  can be achieved.  Examples are the analog  »Frequency Modulation«  $\text{(FM)}$  and the digital   »Pulse Code Modulation«  $\text{(PCM)}$.


$\text{Remember:}$  The transmitted signals of many transmission methods are  »band-pass signals«.


$\text{Example 1 : To classify signals with respect to  »low-pass«  and  »band-pass«}$

(a)     Speech and music are low-pass signals with a bandwidth of  $\text{20 kHz}$  $($at very good quality$)$.  Since a radio transmission is only possible from  $\approx \text{100 kHz}$,  a conversion is needed to carrier frequencies between

  • $\text{0.525 ... 1.61 MHz}$  $($medium wave broadcasting,  amplitude modulation,  channel spacing  $\text{9 kHz})$,
  • $\text{87.5 ... 108 MHz}$  $($radio on FM,  frequency modulation,  channel spacing  $\text{300 kHz})$.


(b)     TV image signals  have a larger bandwidth,  e.g.  $\text{5 MHz}$.  Here,  as well,  a frequency band shift occurs before the sound and image transmission due to carrier frequencies between

  • $\text{41 ... 68 / 174 ... 230 MHz}$  $($television,  VHF band,  channel spacing  $\text{7 MHz})$,
  • $\text{470 ... 850 MHz}$  $($television,  UHF band,  channel spacing  $\text{8 MHz})$.


(c)    With  »GSM mobile radio«  the carrier frequencies in the D-band are  $\text{900 MHz}$  and in the E-band   $\text{1800 MHz}$.

(d)     With  »optical communication«  the electrical signals are converted into light,  i.e. to frequencies   $\text{200 THz ... 350 THz}$  ⇒   wavelengths:  $\text{1.55 µm ... 0.85 µm}$.


Properties of band-pass signals


In this section – without claiming to be complete – some characteristics of band-pass signals  $x_{\rm BP}(t)$  are compiled and compared to low-pass signals  $x_{\rm TP}(t)$,  because of  "low-pass"   ⇒   German:  "Tiefpass"   ⇒   "$\rm TP$".  We start from the spectral functions  $X_{\rm TP}(f)$  and  $X_{\rm BP}(f)$  according to the following sketch.

Regarding the graphic is to be remarked:

Low-pass and band-pass spectrum
  1. The triangular shape of the displayed spectra is to be understood schematically and is only to mark the occupied frequency band. 
  2. So it should not be concluded that all frequencies within the band are actually occupied and that all spectral functions increase linearly with frequency $f$.
  3. The corresponding time functions  $x_{\rm TP}(t)$  and  $x_{\rm BP}(t)$  are real.  This means that according to the  »Assignment Theorem«  the spectral functions  $X_{\rm TP}(f)$  and  $X_{\rm BP}(f)$  each have an even real part and an odd imaginary part  $($related to the frequency  $f = 0)$.
  4. As bandwidth  $B_{\rm TP}$  or  $B_{\rm BP}$  for both low-pass and band-pass we refer to the occupied frequency band at positive frequencies  $($in the graph:   solid lines$)$.


$\text{Example 2:}$  An example with discrete spectral lines follows.

Example of a low-pass spectrum (left) and of a band-pass spectrum (right)

The left graph shows the spectrum  $Q(f)$  of the source signal

$$q(t) = 3\hspace{0.05cm}{\rm V} + 4\hspace{0.05cm}{\rm V} \cdot \cos (2 \pi \hspace{-0.05cm} \cdot\hspace{-0.05cm} 3\hspace{0.05cm}{\rm kHz} \cdot t) + 2\hspace{0.05cm}{\rm V} \cdot \sin (2 \pi\hspace{-0.05cm} \cdot\hspace{-0.05cm} 4\hspace{0.05cm}{\rm kHz} \cdot t). $$

The discrete spectral lines of the real part   ⇒   ${\rm Re}\big[Q(f)\big]$  are shown in blue and those of the imaginary part   ⇒   ${\rm Im}\big[Q(f)\big]$  in red.


⇒   On the right you see the spectrum  $S(f)$  after  »Single–sideband Amplitude Modulation«  $\text{(SSB-AM)}$  with carrier frequency $f_{\rm T} = 100 \,\text{kHz}$. 

A description of this special transmission system can be found in chapter  »Envelope Demodulation»  of the book  »Modulation Methods«.

  • According to this description,  $q(t)$  is uniquely a low-pass signal and  $s(t)$  is a band-pass signal.  The bandwidths are  $B_{\rm TP} = B_{\rm BP} = 4 \,\text{kHz}$.
  • The signals  $q(t)$  and  $s(t)$  are real,  since both  $Q(f)$  and  $S(f)$  have an even real and an odd imaginary part.
  • If the DC component  $(3 \,\text{V})$  would be missing in the source signal,  one would sensibly  $q(t)$  still call it  "low-pass"  with bandwidth  $B_{\rm TP} = 4 \,\text{kHz}$.
  • But without knowledge of the task,  one could interpret  $q(t)$  then also as a  "band-pass signal"  with bandwidth  $B_{\rm BP} = 1 \,\text{kHz}$.


This example shows that there is no clear mathematical distinction between low-pass and band-pass signals.

Description of a band-pass signal with low-pass signals


We consider two low-pass spectra  $X_1(f)$  and  $X_2(f)$  with the bandwidths  $B_1$  and  $B_2$  corresponding to the left graph.

Generation of a band-pass spectrum from two low-pass spectra

You can see from this diagram:

  • If  $X_1(f)$  and  $X_2(f)$  are identical up to a frequency  $f_{12}$,  the difference describes a band-pass spectrum with bandwidth  $B_{\rm BP} = B_1 - f_{12}$. 
  • According to the graph on the right, the following then applies:
$$X_{\rm BP}(f) = X_1(f) -X_2(f).$$
  • Due to the linearity of the Fourier transform,  the time function associated with the band-pass spectrum  $X_{\rm BP}(f)$  is valid:
$$x_{\rm BP}(t) = x_1(t) - x_2(t).$$
  • It generally follows from the Fourier transform that the integral over the time function is equal to the spectral value at  $f = 0$. 
  • Consequently,  this integral is always zero for every band-pass signal:
$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$

$\text{Example 3:}$  The red curves in the two graphs show the band-pass spectrum  $X_{\rm BP}(f)$  and the corresponding time function

$$x_{\rm BP}(t) = 10\hspace{0.05cm}{\rm V} \cdot {\rm sinc} ( 10 \hspace{0.05cm}{\rm kHz} \cdot t) \cdot {\rm sinc} ( 2 \hspace{0.05cm}{\rm kHz} \cdot t) - 2\hspace{0.05cm}{\rm V} \cdot {\rm sinc} ( 2 \hspace{0.05cm}{\rm kHz} \cdot t).$$
Low-pass and band-pass spectrum and their signals

Also shown are two low-pass spectra and signals.  You can see from these diagrams:

  • The blue-dotted curve in the left graph represents the trapezoidal spectrum  $X_1(f)$  where the equivalent bandwidth is  $\Delta f_1= 10 \,\text{kHz}$  and the rolloff factor  $r_1 = 0.2$.
  • The blue-dotted curve in the right graphic shows the corresponding low-pass signal  $x_1(t)$.  The signal value at  $t = 0$  corresponds to the blue trapezoidal area of the spectrum  $X_1(f)$:
$$x_1(t = 0) = 10 \,\text{V}.$$
  • The green curve applies to the rectangular spectrum  $X_2(f)$  with the equivalent bandwidth  $\Delta f_2= 2 \,\text{kHz}$.  The corresponding time signal  $x_2(t)$  is  $\rm sinc$-shaped.  It holds:
$$x_2(t = 0) = 2 \,\text{V}.$$
  • The red curve for the band-pass signal is the difference between the blue and green curve,  both on the left and the right.  Accordingly:
$$x_{\rm BP}(t = 0) = x_1(t = 0) - x_2(t = 0) = 8 \,\text{V},$$
$$\Rightarrow \ \int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$


Band-pass signal synthesis from the equivalent low-pass signal


We consider a low-pass signal  $x_{\rm TP}(t)$  with spectrum  $X_{\rm TP}(f)$  according to the left sketch.

Band-pass spectrum is obtained by shifting a low-pass spectrum on both sides
  • If this signal is multiplied by a  $($dimensionless$)$  »harmonic oscillation«
$$z(t) = {\cos} ( 2\pi \cdot f_{\rm T} \cdot t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} Z(f) = {1}/{2}\cdot \delta (f - f_{\rm T})+ {1}/{2}\cdot \delta (f + f_{\rm T}),$$
the convolution theorem for the spectrum of the signal yields  $x_{\rm BP}(t) = x_{\rm TP}(t) \cdot z(t)$:
$$X_{\rm BP}(f) = X_{\rm TP}(f)\star Z(f) = {1}/{2}\cdot X_{\rm TP} (f - f_{\rm T})+ {1}/{2}\cdot X_{\rm TP}(f + f_{\rm T}).$$
  • Here it is considered that the  »convolution«  of the spectral function  $X_{\rm TP}(f)$  with the frequency-shifted Dirac delta  $\delta (f - f_\rm {T})$  yields the same spectral function   $X_{\rm TP}(f-f_\rm {T})$  shifted to the right by $f_\rm {T}$ .
  • From spectral function on the right you can clearly see that
$$x_{\rm BP}(t) = x_{\rm TP}(t) \cdot {\cos} ( 2\pi \cdot f_{\rm T} \cdot t)$$
is a band-pass signal:
  • The envelope of  $x_{\rm BP}(t)$ is given by the magnitude of  $|x_{\rm TP}(t)|$.


You can further see from the above graphic:

  1. The spectrum  $X_{\rm BP}(f)$  has the same form in the range around the carrier frequency  $f_{\rm T}$  as  $X_{\rm TP}(f)$  in the range around  $f = 0$,  but the band-pass spectrum is attenuated with respect to the low-pass spectrum by the factor  $2$.
  2. Since  $X_{\rm TP}(f)$  relative to  $f = 0$  has an even real and an odd imaginary part, the band-pass spectrum  $X_{\rm BP}(f)$  has the same symmetry properties – but now relative to the carrier frequency  $f_{\rm T}$.
  3. $X_{\rm BP}(f)$  also has parts at negative frequencies.  Since the corresponding signal  $x_{\rm BP}(t)$  is real according to the above equation,  $X_{\rm BP}(f)$  must also have an even real and an odd imaginary part with respect to the frequency  $f = 0$.
  4. The bandwidth of the band-pass signal is twice that of the low-pass signal:   $B_{\rm BP} = 2 \cdot B_{\rm TP}$.  Prerequisite for the validity of this statement is that the carrier frequency  $f_{\rm T}$  is at least twice as large than the maximum frequency  $(B_{\rm TP})$  of the signal  $x_{\rm TP}(t)$.


$\text{Example 4:}$  A low-pass signal has discrete spectral components at  $f_1 = 1\,\text{ kHz}, \,f_2 = 2\,\text{ kHz}, \,f_3 = 3\,\text{ kHz}$  and  $f_4 = 4\,\text{ kHz}$:

DSB-AM signal with two different carrier frequencies
$$x_{\rm TP}(t) = 0.26\cdot {\cos} ( \omega_1 \hspace{0.05cm} t + 20^{ \circ}) \hspace{0.18cm}+ 0.54\cdot {\cos} ( \omega_2 \hspace{0.05cm} t - 180^{ \circ}) + $$
$$\hspace{1.5cm}+ \ 0.30\cdot {\cos} ( \omega_3 \hspace{0.05cm} t + 120^{ \circ}) +0.14\cdot {\cos} ( \omega_4 \hspace{0.05cm} t -40^{ \circ}).$$

The corresponding spectrum  $X_{\rm TP}(f)$  is complex because of the non-zero phase positions.

  • If one multiplies the  $($blue$)$&nbsp signal  $x_{\rm TP}(t)$  with a cosine signal of amplitude  $1$  and frequency  $f_{\rm T} = 20 \,\text{kHz}$,  the (red) band-pass signal is obtained according to the upper graphic.
  • The lower sketch applies to the band-pass signal with carrier frequency  $f_{\rm T} = 100 \,\text{kHz}$.
  • In both illustrations the time curves  $\pm \vert x_{\rm TP}(t) \vert $  can be recognized as the envelope of the band-pass signals  $x_{\rm BP}(t)$.


The topic of this chapter is covered in the  (German language) learning video  »Eigenschaften von Tiefpass- und Bandpass-Signalen«  ⇒  "Properties of low-pass and band-pass signals".



Exercises for the Chapter


Exercise 4.1: Low-Pass and Band-Pass Signals

Exercise 4.1Z: High-Pass System

Exercise 4.2: Rectangular Spectra

Exercise 4.2Z: Multiplication with a Sine Signal