Difference between revisions of "Signal Representation/Signal classification"

From LNTwww
 
(52 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Grundbegriffe der Nachrichtentechnik
+
|Untermenü=Basic Terms of Communications Engineering
|Vorherige Seite=Prinzip der Nachrichtenübertragung
+
|Vorherige Seite=Principles of Communication
|Nächste Seite=Zum Rechnen mit komplexen Zahlen
+
|Nächste Seite=Calculating With Complex Numbers
 
}}
 
}}
  
==Deterministic and Stochastic Signals==
+
==Deterministic and stochastic signals==
 
<br>
 
<br>
In every communication system both deterministic and stochastic signals occur.
+
In every transmission system,&nbsp; both&nbsp; deterministic signals&nbsp; and&nbsp; stochastic signal&nbsp; occur.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
A&nbsp; '''deterministic signal'''&nbsp; exists, if its time functions&nbsp; $x(t)$&nbsp; can be described completely in analytical form.
+
A&nbsp; &raquo;'''deterministic signal'''&laquo;&nbsp; exists,&nbsp; if its time function&nbsp; $x(t)$&nbsp; can be described completely in analytical form.
 
}}
 
}}
  
  
Since the time function&nbsp;$x(t)$&nbsp; for all times &nbsp;$t$&nbsp;is known and can be specified unambiguously, a spectral function $X(f)$&nbsp; which can be calculated using the&nbsp; [[Signal_Representation/Fourierreihe#Fourierreihe|Fourier series]]&nbsp; or&nbsp; [[Signal_Representation/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fourier transform]]&nbsp;.
+
Since the time function&nbsp; $x(t)$&nbsp; for all times &nbsp;$t$&nbsp; is known and can be specified unambiguously,&nbsp; there always exists a spectral function&nbsp; $X(f)$&nbsp; which can be calculated using the&nbsp; [[Signal_Representation/Fourier_Series#Fourierreihe|&raquo;$\text{Fourier series}$&laquo;]]&nbsp; or the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse|&raquo;$\text{Fourier transform}$&laquo;]]&nbsp;.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
One refers to a&nbsp; '''stochastic signal'' &nbsp; or to a&nbsp; ''random signal'', if the signal course&nbsp; $x(t)$&nbsp; is not - or at least not completely &ndash; describable in mathematical form. Such a signal cannot be predicted exactly for the future.}}
+
One refers to a&nbsp; &raquo;'''stochastic signal'''&laquo;&nbsp; or to a&nbsp; &raquo;'''random signal'''&laquo;,&nbsp; if the signal course&nbsp; $x(t)$&nbsp; is not &ndash; or at least not completely &ndash; describable in mathematical form.&nbsp; Such a signal cannot be predicted exactly for the future.}}
  
  
Line 25: Line 25:
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
The graph shows time histories of a deterministic and a stochastic signal:
+
The graph shows the time courses of a deterministic and a stochastic signal:
*At the top a periodic square wave signal&nbsp; $x_1(t)$&nbsp; with period duration&nbsp; $T_0$ &nbsp; &rArr; &nbsp; deterministic signal,
+
*At the top a periodic rectangular signal&nbsp; $x_1(t)$&nbsp; with period duration&nbsp; $T_0$ &nbsp; &rArr; &nbsp; deterministic signal,
 +
 
 
*below a Gaussian noise signal&nbsp; $x_2(t)$&nbsp; with the mean value&nbsp; $2\ \rm V $ &nbsp; &rArr; &nbsp; stochastic signal.
 
*below a Gaussian noise signal&nbsp; $x_2(t)$&nbsp; with the mean value&nbsp; $2\ \rm V $ &nbsp; &rArr; &nbsp; stochastic signal.
  
  
For such a non-deterministic signal&nbsp; $x_2(t)$&nbsp; no spectral function&nbsp; $X_2(f)$&nbsp; can be specified, since Fourier series/Fourier transform requires the exact knowledge of the time function for all times&nbsp; $t$&nbsp; }}
+
For such a non&ndash;deterministic signal&nbsp; $x_2(t)$&nbsp; no spectral function&nbsp; $X_2(f)$&nbsp; can be specified, since Fourier series and Fourier transform requires the exact knowledge of the time function for all times&nbsp; $t$. }}
 +
 
 +
 
 +
Information-carrying signals are always of stochastic nature.&nbsp; Their description and the definition of suitable parameters is given in the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
  
 +
However,&nbsp;  deterministic signals are also of great importance for Communications Engineering.&nbsp; Examples of these are:
 +
*Test signals for the design of communication systems,
  
Information-carrying signals are always of stochastic nature. Their description as well as the definition of suitable parameters is given in the book&nbsp; [[Theory of Stochastic Signals]].
+
*carrier signals for frequency multiplex systems,&nbsp; and
  
However, the deterministic signals are also of great importance for communications engineering. Examples of this are:
+
*a&nbsp;  &raquo;Dirac delta comb&laquo;&nbsp; for sampling an analog signal or for time regeneration of a digital signal.
*test signals for the design of communication systems,
 
*carrier signals for frequency multiplex systems, and
 
*a pulse for sampling an analog signal or for time regeneration of a digital signal.
 
  
  
==Causal and Non-Causal Signals==
+
==Causal and non-causal signals==
 
<br>
 
<br>
In communications engineering one often reckons with temporally unlimited signals; the definition range of the signal then extends from&nbsp; $t = -\infty$&nbsp; to&nbsp; $t=+\infty$.  
+
In&nbsp; Communications Engineering&nbsp; one often reckons with temporally unlimited signals;&nbsp; the definition range of the signal then extends from&nbsp; $t = -\infty$ &nbsp; to&nbsp; $t=+\infty$.  
  
In reality, however, there are no such signals, because every signal had to be switched on at some point. If one chooses - arbitrarily, but nevertheless meaningfully - the switch-on time&nbsp; $t = 0$, then one comes to the following classification:
+
In reality,&nbsp; however,&nbsp; there are no such signals,&nbsp; because every signal had to be switched on at some point.&nbsp; If one chooses &ndash; arbitrarily but nevertheless meaningfully &ndash; the switch-on time&nbsp; $t = 0$,&nbsp; then one comes to the following classification:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
A signal $x(t)$ is called&nbsp; '''causal''', if it does not exist for all times&nbsp; $t < 0$&nbsp; or is identical zero. If this condition is not fulfilled, a&nbsp; ‘’non-causal''&nbsp; signal (or system) exists.}}
+
*A signal&nbsp; $x(t)$&nbsp; is called&nbsp; &raquo;'''causal'''&laquo;,&nbsp; if it does not exist for all times&nbsp; $t < 0$&nbsp; or is identical zero.  
  
 +
*If this condition is not fulfilled,&nbsp; then one speaks of a&nbsp; &raquo;'''non-causal'''&laquo;&nbsp; signal&nbsp; $($or system$)$.}}
  
In this book &bdquo;Signal representation&rdquo; mostly causal signals and systems are considered. This has the following reasons:
 
*Non-causal signals (and systems) are mathematically easier to handle than causal ones. For example, the spectral function can be determined here by means of Fourier transformations and one does not need extensive knowledge of function theory as in the Laplace transformation.
 
*Non-causal signals and systems describe the situation completely and correctly, if one ignores the problem of the switch-on process and is therefore only interested in the&nbsp; ''steady state''&nbsp;.
 
  
 +
In this book&nbsp; &raquo;Signal representation&laquo;&nbsp; mostly causal signals and systems are considered.&nbsp; This has the following reasons:
 +
*Non-causal signals&nbsp; $($and systems$)$&nbsp; are mathematically easier to handle than causal ones.&nbsp; For example,&nbsp; the spectral function can be determined here by means of Fourier transform and one does not need extensive knowledge of function theory as in the Laplace transform.
  
The description of causal signals and systems using the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace Transform]]&nbsp; is shown in the book &nbsp; [[Lineare_zeitinvariante_Systeme|Linear Time-Invariant Systems]].
+
*Non-causal signals and systems describe the situation completely and correctly,&nbsp; if one ignores the problem of the switch-on process and is therefore only interested in the&nbsp; &raquo;steady state&laquo;.
  
 +
*The description of causal signals and systems using the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|&raquo;Laplace Transform&laquo;]]&nbsp; is shown in the book &nbsp; [[Lineare_zeitinvariante_Systeme|&raquo;Linear Time-Invariant Systems&laquo;]].
  
[[File:EN_Sig_T_1_2_S2.png|right|frame|Causal and non-causal system]]
+
 
{{GraueBox|TEXT=  
+
 
 +
{{GraueBox|TEXT=
 +
[[File:EN_Sig_T_1_2_S2_v2.png|right|frame|Causal system&nbsp; $($top$)$&nbsp; and non-causal system&nbsp; $($bottom$)$]]   
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
You can see a causal transmission system in the upper graphic:
+
You can see a causal system in the upper graphic:
*If a unit step function&nbsp; $x(t)$&nbsp; is applied to its input, then the output signal&nbsp; $y(t)$&nbsp; can only increase from zero to its maximum value after time&nbsp; $t = 0$&nbsp;.  
+
*If a unit step function&nbsp; $x(t)$&nbsp; is applied to its input, then the output signal&nbsp; $y(t)$&nbsp; can only increase from zero to its maximum value after time&nbsp; $t = 0$.  
 +
 
 
*Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.
 
*Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.
 +
 +
*In the lower graph the causality is no longer given.&nbsp;
  
  
The causality In the lower pictureis no longer given. As you can easily see in this example, an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.}}
+
As you can easily see in this example,&nbsp; an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.}}
  
  
==Energy Limited and Power Limited Signals==
+
==Energy&ndash;limited and power&ndash;limited signals==
 
<br>
 
<br>
At this place first two important signal description quantities must be introduced, namely the&nbsp; '''energy'''&nbsp; and the&nbsp; '''power'''.  
+
At this place first two important signal description quantities must be introduced, namely&nbsp; &raquo;'''energy'''&laquo;&nbsp; and&nbsp; &raquo;'''power'''&laquo;.  
*In terms of physics, energy corresponds to work and has, for example, the unit "Ws".  
+
*In terms of physics,&nbsp; energy corresponds to work and has,&nbsp; for example,&nbsp; the unit&nbsp; "Ws".
*The power is defined as "work per time" and therefore has the unit "W".
+
 +
*The power is defined as&nbsp; "work per time"&nbsp; and therefore has the unit&nbsp; "W".
  
  
According to the elementary laws of electrical engineering, both values are dependent on the resistance&nbsp; $R$&nbsp;. In order to eliminate this dependency, the resistance&nbsp; $R=1 \,\Omega$&nbsp; is often used as a basis in communications engineering. Then the following definitions apply:
+
According to the elementary laws of Electrical Engineering,&nbsp; both values are dependent on the resistance&nbsp; $R$.&nbsp; In order to eliminate this dependency in Communications Engineering,&nbsp; the resistance&nbsp; $R=1 \,\Omega$&nbsp; is often used as a basis.&nbsp; Then the following definitions apply:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''energy'''&laquo;&nbsp; of the signal&nbsp; $x(t)$&nbsp; is to calculate as follows:
The&nbsp; '''energy'''&nbsp; of the signal&nbsp; $x(t)$&nbsp; is to calculate as follows:
 
  
 
:$$E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$}}
 
:$$E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$}}
Line 88: Line 97:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;To calculate the (mean)&nbsp; '''power'''&nbsp;,&nbsp; $T_{\rm M}$&nbsp; must be divided by the timebefore the limit crossing:
+
$\text{Definition:}$&nbsp;To calculate the&nbsp; $($mean$)$&nbsp; &raquo;'''power'''&laquo;&nbsp; still has to be divided  by the time&nbsp; $T_{\rm M}$&nbsp; before the boundary crossing:
  
 
:$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$
 
:$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$
  
Where&nbsp; $T_{\rm M}$&nbsp; is the assumed measurement duration during which the signal is observed, symmetrically with respect to the time origin&nbsp; $(t = 0)$&nbsp;. In general, this time interval must be chosen very large;&nbsp; ideally&nbsp; $T_{\rm M}$&nbsp; should be towards infinity.}}
+
*$T_{\rm M}$&nbsp; is the assumed measurement duration during which the signal is observed,&nbsp; symmetrically with respect to the time origin&nbsp; $(t = 0)$.&nbsp;  
  
 +
*In general,&nbsp; this time interval must be chosen very large;&nbsp; ideally&nbsp; $T_{\rm M}$&nbsp; should be towards infinity.}}
  
If &nbsp; $x(t)$&nbsp; denotes a stress curve with the unit&nbsp; $\text{V}$, according to the above equations is for
+
 
*the signal energy the unit&nbsp; $\text{V}^2\text{s}$,
+
If&nbsp; $x(t)$&nbsp; denotes an electrical voltage curve&nbsp; $($unit:&nbsp; $\text{V)}$,&nbsp; then according to the above equations:
*the signal power the unit&nbsp; $\text{V}^2$.
+
#The signal energy has the unit&nbsp; "$\text{V}^2\text{s}$".
 +
#The signal power has the unit&nbsp; "$\text{V}^2$".
  
  
 
This statement also means: &nbsp; In the above definitions the reference resistance&nbsp; $R=1\,\Omega$&nbsp; is already implicit.
 
This statement also means: &nbsp; In the above definitions the reference resistance&nbsp; $R=1\,\Omega$&nbsp; is already implicit.
  
 
[[File:P_ID590__Sig_T_1_2_S3.png|right|frame|Energy limited and power limited signal]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 3:}$&nbsp;
 
$\text{Example 3:}$&nbsp;
 
Now the energy and power of two exemplary signals are calculated.  
 
Now the energy and power of two exemplary signals are calculated.  
 +
[[File:P_ID590__Sig_T_1_2_S3.png|right|frame|Energy-limited and power-limited signals]]
  
The upper graphic shows a rectangular pulse&nbsp; $x_1(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$.
+
&rArr; &nbsp; The upper graph shows a rectangular pulse&nbsp; $x_1(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$:
  
*The signal energy of this pulse is&nbsp; $E_1 = A^2 \cdot T$.
+
#The signal energy of this pulse is&nbsp; $E_1 = A^2 \cdot T$.
*For the signal power, division by&nbsp; $T_{\rm M}$&nbsp; and limit formation&nbsp; $(T_{\rm M} \to \infty)$&nbsp; the value&nbsp; $P_1 = 0$.
+
#For the signal power,&nbsp; division by&nbsp; $T_{\rm M}$&nbsp; and limit formation&nbsp; $(T_{\rm M} \to \infty)$&nbsp; results in the value&nbsp; $P_1 = 0$.
  
  
For the cosine signal&nbsp; $x_2(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; applies according to the sketch below:
 
  
*The signal power is equal to&nbsp regardless of the frequency; $P_2 = A^2/2$.
 
*The signal energy&nbsp; $E_2$&nbsp; (integral over power for all times) is infinite.
 
  
 +
&rArr; &nbsp; For the cosine signal&nbsp; $x_2(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; applies according to the sketch below:
  
With&nbsp; $A = 4 \ {\rm V}$&nbsp; results for the power&nbsp; $P_2 = 8 \ {\rm V}^2$. With the resistance of&nbsp; $R = 50 \,\,\Omega$&nbsp; this corresponds to the physical power&nbsp; ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.}}
+
#The signal power is&nbsp; $P_2 = A^2/2$,&nbsp; regardless of the frequency.
 +
#The signal energy&nbsp; $E_2$&nbsp; $($integral over power for all times$)$&nbsp; is infinite.
 +
#With&nbsp; $A = 4 \ {\rm V}$&nbsp; results for the power&nbsp; $P_2 = 8 \ {\rm V}^2$. &nbsp;
 +
#With the resistance of&nbsp; $R = 50 \,\,\Omega$&nbsp; this corresponds to the physical power&nbsp; ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.}}
  
  
Line 127: Line 138:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
A signal&nbsp; $x(t)$&nbsp; with finite energy&nbsp; $E_x$&nbsp; and infinitely small power&nbsp; $(P_x = 0)$&nbsp; is called&nbsp; '''energy limited'''. }}
+
A signal&nbsp; $x(t)$&nbsp; with finite energy&nbsp; $E_x$&nbsp; and infinitely small power&nbsp; $(P_x = 0)$&nbsp; is called&nbsp; &raquo;'''energy&ndash;limited'''&laquo;. }}
 +
*With pulse-shaped signals like the signal&nbsp; $x_1(t)$&nbsp; in the above example,&nbsp; the energy is always limited.&nbsp; Mostly, the signal values here are different from zero only for a finite time period. &nbsp; In other words:&nbsp; Such signals are often time-limited,&nbsp; too.
  
 
+
*But even signals that are unlimited in time can have a finite energy.&nbsp; In later chapters&nbsp;you will find more information about energy&ndash;limited and therefore aperiodic signals, for example the &nbsp;&nbsp;[[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|&raquo;Gaussian pulse&laquo;]]&nbsp; and the&nbsp; [[Aufgaben:Exercise_3.1:_Spectrum_of_the_Exponential_Pulse|&raquo;exponential pulse&laquo;]].
*Pulse-shaped signals like the signal&nbsp; $x_1(t)$&nbsp; in the above example, energy is always limited. Mostly, the signal values here are different from zero only for a finite period of time. In other words:&nbsp; Such signals are often also time-limited.
 
*But even signals that are unlimited in time can have a finite energy. In later&nbsp; [[Signal_Representation/Fouriertransformation_und_-rücktransformation|chapters]]&nbsp;you will find more information about energy limited and therefore aperiodic signals, for example the &nbsp; &nbsp; [[Signal_Representation/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Gau.C3.9Fimpuls|Gaussian pulse]]&nbsp; and the &nbsp; [[Aufgaben:3.1_Spektrum_des_Exponentialimpulses|Exponential pulse]]&nbsp;.
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Ein Signal&nbsp; $x(t)$&nbsp; mit endlicher Leistung&nbsp; $P_x$&nbsp; und dementsprechend unendlich großer Energie&nbsp; $(E_x \to \infty)$&nbsp; bezeichnet man als&nbsp; '''leistungsbegrenzt'''.}}
+
A signal&nbsp; $x(t)$&nbsp; with finite power&nbsp; $P_x$&nbsp; and accordingly infinite energy&nbsp; $(E_x \to \infty)$&nbsp; is called&nbsp; &raquo;'''power&ndash;limited'''&laquo;.}}
  
 +
*All power&ndash;limited signals are also infinitely extended in time.&nbsp; Examples are the&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|&raquo;DC signal&raquo;]]&nbsp; and&nbsp; [[Signal_Representation/Harmonic_Oscillation|&raquo;harmonic oscillations&laquo;]]&nbsp; such as the cosine signal&nbsp; $x_2(t)$&nbsp; in&nbsp; $\text{Example 3}$,&nbsp; which are described in detail in chapter&nbsp; [[Signal_Representation/General_Description|&raquo;Periodic Signals&laquo;]].
  
*Alle leistungsbegrenzten Signale sind auch zeitlich unendlich weit ausgedehnt.
+
*Even most of the stochastic signals are power&ndash;limited &nbsp; &rArr; &nbsp; see the book&nbsp; [[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
*Beispiele hierfür sind das&nbsp; [[Signal_Representation/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|Gleichsignal]]&nbsp; und&nbsp; [[Signal_Representation/Harmonische_Schwingung|Harmonische Schwingungen]]&nbsp; wie das Cosinussignal&nbsp; $x_2(t)$&nbsp; im&nbsp; $\text{Beispiel 3}$, die im Kapitel&nbsp; [[Signal_Representation/Allgemeine_Beschreibung|Periodische Signale]] ausführlich beschrieben werden.
 
*Auch die meisten stochastischen Signale sind leistungsbegrenzt – siehe Buch&nbsp; [[Stochastische Signaltheorie]].
 
  
  
==Wertkontinuierliche und wertdiskrete Signale==
+
==Continuous-valued and discrete-valued signals==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;
+
$\text{Definitions:}$&nbsp;
Ein Signal bezeichnet man als&nbsp; '''wertkontinuierlich''', wenn der entscheidende Signalparameter – zum Beispiel der Augenblickswert – alle Werte eines Kontinuums&nbsp; (beispielsweise eines Intervalls)&nbsp; annehmen kann. Sind für den Signalparameter dagegen nur abzählbar viele verschiedene Werte möglich, so ist das Signal&nbsp; ''wertdiskret''. Die Anzahl der möglichen Werte bezeichnet man als die&nbsp; '''Stufenzahl'''&nbsp; $M$ oder als den Werteumfang.}}
+
*A signal is&nbsp; &raquo;'''continuous in value'''&laquo; or&nbsp; &raquo;'''continuous-valued'''&laquo;,&nbsp; if the decisive signal parameter &ndash; for example the instantaneous value &ndash; can take all values of a continuum&nbsp; $($e.g. of an interval$)$.
 +
 +
*In contrast,&nbsp; if only countable many different values are possible for the signal parameter,&nbsp; then the signal is&nbsp; &raquo;'''discrete in value'''&laquo; or&nbsp; &raquo;'''discrete-valued'''&laquo;.&nbsp; The number&nbsp; $M$&nbsp; of possible values is called the&nbsp; &raquo;level number&laquo;&nbsp; or the&nbsp; &raquo;symbol set size&laquo;.}}
  
  
*Bei den analogen Übertragungssystemen wird stets mit wertkontinuierlichen Signalen gearbeitet.  
+
*Analog transmission systems always work with continuous-valued signals.
*Bei Digitalsystemen sind dagegen die meisten Signale – aber nicht alle – wertdiskret.
+
 +
*For digital systems, on the other hand, most but not all signals are discrete-valued.
  
  
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|right|frame|Wertkontinuierliches und wertdiskretes Signal]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp;
+
$\text{Example 4:}$&nbsp;
Das obere Bild zeigt in blau einen Ausschnitt eines wertkontinuierlichen Signals&nbsp; $x(t)$, das Werte zwischen&nbsp; $\pm 8\ \rm V$&nbsp; annehmen kann.  
+
The upper diagram shows in blue a section of a continuous-valued signal&nbsp; $x(t)$, which can take values between&nbsp; $\pm 8\ \rm V$&nbsp;.
*In roter Farbe erkennt man das auf&nbsp; $M = 8$&nbsp; Quantisierungsstufen diskretisierte Signal&nbsp; $x_{\rm Q}(t)$&nbsp; mit den möglichen Signalwerten&nbsp; $\pm 1\ \rm V$,&nbsp; $\pm 3\ \rm V$,&nbsp; $\pm 5\ \rm V$&nbsp; und&nbsp; $\pm 7\ \rm V$.  
+
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|right|frame|Continuous-valued and discrete-valued signal]]
*Bei diesem Signal&nbsp; $x_{\rm Q}(t)$&nbsp; wurde der Augenblickswert als der entscheidende Signalparameter betrachtet.
+
*In red you can see the signal&nbsp; $x_{\rm Q}(t)$&nbsp; discretized on &nbsp; $M = 8$&nbsp; quantization levels  with the possible signal values&nbsp; $\pm 1\ \rm V$,&nbsp; $\pm 3\ \rm V$,&nbsp; $\pm 5\ \rm V$&nbsp; and&nbsp; $\pm 7\ \rm V$.
 +
 +
*For this signal&nbsp; $x_{\rm Q}(t)$&nbsp; the&nbsp; <u>instantaneous value</u>&nbsp; was considered the decisive signal parameter.
  
  
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|left|frame|FSK-Signal - wertkontuierlich und trotzdem binär]]
+
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|left|frame|FSK signal &nbsp; &rArr; &nbsp; continuous&ndash;valued,&nbsp;  binary&ndash;in&ndash;frequency]]
  
  
Line 170: Line 183:
  
  
 +
In an FSK system&nbsp; $($"Frequency Shift Keying"$)$&nbsp; on the other hand,&nbsp; the&nbsp; <u>instantaneous frequency</u>&nbsp; is the essential signal parameter.
  
  
  
Bei einem FSK-System&nbsp; (''Frequency Shift Keying'')&nbsp; ist dagegen die Augenblicksfrequenz der wesentliche Signalparameter.
+
Therefore the signal&nbsp; $s_{\rm FSK}(t)$&nbsp; shown below is also called&nbsp; <u>discrete-valued</u>&nbsp; with level number&nbsp; $M = 2$&nbsp; and  possible frequencies&nbsp; $1 \ \ \rm kHz$&nbsp; and&nbsp; $5 \ \ \rm kHz$, although the instantaneous value is continuous.}}
  
Deshalb bezeichnet man auch das unten dargestellte Signal&nbsp; $s_{\rm FSK}(t)$&nbsp; als wertdiskret mit der Stufenzahl&nbsp; $M = 2$&nbsp; und den möglichen Frequenzen&nbsp; $1 \ \rm kHz$&nbsp; und&nbsp; $5 \ \rm kHz$, obwohl der Augenblickswert wertkontinuierlich ist.}}
 
  
 
+
==Continuous-time and discrete-time signals==
==Zeitkontinuierliche und zeitdiskrete Signale==
 
 
<br>
 
<br>
Bei den bisher betrachteten Signalen war der Signalparameter zu jedem beliebigen Zeitpunkt definiert. Man spricht dann von einem&nbsp; ''zeitkontinuierlichen Signal''.
+
For the signals considered so far,&nbsp; the signal parameter was defined at any given time.&nbsp; Such a signal is called&nbsp; "continuous in time".
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Bei einem&nbsp; '''zeitdiskreten Signal'''&nbsp; ist im Gegensatz dazu der Signalparameter nur zu den diskreten Zeitpunkten&nbsp; $t_\nu$&nbsp; definiert, wobei man diese Zeitpunkte meist äquidistant wählt: &nbsp; $t_\nu = \nu \cdot T_{\rm A}$.
 
  
Da ein solches Signal beispielsweise durch Abtastung eines zeitkontinuierlichen Signals entsteht, bezeichnen wir&nbsp; $T_{\rm A}$&nbsp; als den&nbsp; ''Abtastzeitabstand''&nbsp; und dessen Kehrwert&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; als die&nbsp; ''Abtastfrequenz''.}}
+
With a&nbsp; &raquo;'''discrete-time signal'''&laquo;&nbsp; on the contrary,&nbsp; the signal parameter is defined only at the discrete points&nbsp; $t_\nu$.&nbsp; These time points are usually chosen equidistant: &nbsp;
 +
:$$t_\nu = \nu \cdot T_{\rm A}.$$
 +
*We refer&nbsp; $T_{\rm A}$&nbsp; as&nbsp; &raquo;sampling time interval&laquo;&nbsp; and its reciprocal&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; as&nbsp; &raquo;sampling frequency&laquo;.&nbsp;
  
 +
*Such a signal may be created by sampling a &raquo;'''continuous-time signal'''&laquo;. }}
  
Weiter gilt:
 
*Ein zeitdiskretes Signal&nbsp; $x(t)$&nbsp; ist durch die&nbsp; ''zeitliche Folge''&nbsp; $\left \langle x_\nu \right \rangle$&nbsp; ''seiner Abtastwerte''&nbsp; vollständig bestimmt.
 
*Diese Abtastwerte können dabei sowohl wertkontinuierlich als auch wertdiskret sein.
 
*Die mathematische Beschreibung zeitdiskreter Signale erfolgt im Kapitel&nbsp; [[Signal_Representation/Zeitdiskrete_Signaldarstellung|Zeitdiskrete Signaldarstellung]].
 
  
  
[[File:P_ID355_Sig_T_1_2_S5_neu.png|right|frame|Zeitkontinuierliches und zeitdiskretes Signal]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT=  
+
[[File:P_ID355_Sig_T_1_2_S5_neu.png|right|frame|Continuous-time and discrete-time signal]]   
$\text{Beispiel 5:}$&nbsp;
+
$\text{Example 5:}$&nbsp;
Das zeitdiskrete Signal&nbsp; $x_{\rm A}(t)$&nbsp; erhält man nach Abtastung des oben dargestellten zeit- und wertkontinuierlichen Nachrichtensignals&nbsp; $x(t)$&nbsp; im Abstand&nbsp; $T_{\rm A}$.
 
  
*Der unten skizzierte Zeitverlauf&nbsp; $x_{\rm R}(t)$&nbsp; unterscheidet sich von der echten zeitdiskreten Darstellung&nbsp; $x_{\rm A}(t)$&nbsp; dadurch, dass die unendlich schmalen Abtastwerte&nbsp; (mathematisch mit Diracimpulsen beschreibbar)&nbsp; durch Rechteckimpulse der Dauer&nbsp; $T_{\rm A}$&nbsp; ersetzt sind.
+
*The discrete-time signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained after sampling the continuous-time and continuous-value signal&nbsp; $x(t)$&nbsp; with a uniform sampling period &nbsp; $(T_{\rm A})$.<br><br>
 +
*The time plot&nbsp; $x_{\rm R}(t)$&nbsp; outlined below differs from the real discrete-time representation&nbsp; $x_{\rm A}(t)$&nbsp; in that the infinitely narrow samples&nbsp; $($mathematically describable with Dirac deltas$)$&nbsp; are replaced by rectangular pulses of duration&nbsp; $T_{\rm A}$.<br><br>
 +
*Such a signal can also be called&nbsp; "discrete-time"&nbsp; according to the above definition.<br><br>
  
+
*Furthermore applies:
*Ein solches Signal kann nach obiger Definition ebenfalls als zeitdiskret bezeichnet werden.}}
+
#A discrete-time signal&nbsp;$x(t)$&nbsp; is completely determined by its series &nbsp;$\left \langle x_\nu \right \rangle$&nbsp; of sampled values.&nbsp;
 +
#These sampled values can either be continuous or discrete.
 +
#The mathematical description of discrete-time signals is given in the chapter&nbsp;<br> [[Signal_Representation/Time_Discrete_Signal_Representation|&raquo;Discrete-Time Signal Representation&laquo;]].}}
 
<br clear=all>
 
<br clear=all>
==Analogsignale und Digitalsignale==
+
==Analog and digital signals==
 
<br>
 
<br>
[[File:EN_Sig_T_1_2_S6.png|right|frame|Analog- und Digitalsignale]]
+
[[File:EN_Sig_T_1_2_S6.png|right|frame|Analog and digital signals]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 6:}$&nbsp;
+
$\text{Example 6:}$&nbsp;
In der Grafik sind an einem Beispiel die  folgenden Signaleigenschaften  verdeutlicht:
+
The signal properties
* „wertkontinuierlich” und „wertdiskret”, sowie
+
* "continuous-valued",
*„zeitkontinuierlich” und „zeitdiskret”.
+
* "discret-valued",
 +
* "continuous-time",
 +
* "discrete-time"
 +
 
 +
 
 +
are illustrated in the diagram on the right using an example.
 
<br clear=all>}}
 
<br clear=all>}}
  
<br>Daneben gelten noch folgende Festlegungen:
+
<br>In addition,&nbsp; the following specifications apply:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Ist ein Signal sowohl wert&ndash; als auch zeitkontinuierlich, so spricht man auch von einem&nbsp; '''Analogsignal'''. Solche Signale bilden einen kontinuierlichen Vorgang kontinuierlich ab. Beispiele hierfür sind Sprach&ndash;, Musik&ndash;, Bild&ndash; und Mess&nbsp;Signale.}}
+
If a signal is both continuous in value &nbsp; <u>and</u> &nbsp; continuous in time,&nbsp; it is called an&nbsp; &raquo;'''analog signal'''&laquo;.&nbsp;  
 +
 
 +
*Such signals represent a continuous process.
 +
 
 +
*Examples are speech signals,&nbsp; music signals and image signals.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Ein&nbsp; '''Digitalsignal'''&nbsp; ist dagegen stets wert&ndash; und zeitdiskret und die darin enthaltene Nachricht besteht aus den Symbolen eines Symbolvorrats. Es kann beispielsweise ein abgetastetes und quantisiertes (sowie in irgendeiner Form codiertes) Sprach&ndash;, Musik&ndash; oder Bildsignal sein, aber auch ein Datensignal, wenn im Internet eine Datei von einem Server heruntergeladen wird.}}
+
$\text{Definition:}$&nbsp;  
 +
A&nbsp; &raquo;'''digital signal'''&laquo;&nbsp; is discrete in value &nbsp; <u>and</u> &nbsp; discrete in time,&nbsp; and the message contained therein consists of symbols from a symbol set.
 +
 +
*For example,&nbsp; it can be a voice signal,&nbsp; music signal or image signal after sampling,&nbsp; quantization,&nbsp; and encoding in any form.
 +
 +
*But also a&nbsp; &raquo;data signal&laquo;&nbsp; when a file is downloaded from a server on the Internet.}}
 +
 
 +
 
 +
Depending on the number of levels,&nbsp; digital signals are also known by other names,&nbsp; for example
 +
* with $M = 2$:  &nbsp; binary digital signal or&nbsp; &raquo;'''binary signal'''&laquo;,
  
 +
* with $M = 3$: &nbsp; ternary digital signal or &nbsp; &raquo;'''ternary signal'''&laquo;,
  
Je nach Stufenzahl sind Digitalsignale auch noch unter anderen Namen bekannt, beispielsweise
+
* with $M = 4$: &nbsp; quaternary digital signal or&nbsp; &raquo;'''quaternary signal'''&laquo;.
* mit $M = 2$: &nbsp; binäres Digitalsignal oder&nbsp; '''Binärsignal''',
 
* mit $M = 3$: &nbsp; ternäres Digitalsignal oder&nbsp; '''Ternärsignal''',
 
* mit $M = 4$: &nbsp; quaternäres Digitalsignal oder&nbsp; '''Quaternärsignal'''.
 
  
  
Das Lernvideo&nbsp; [[Analoge_und_digitale_Signale_(Lernvideo)|Analoge und digitale Signale]]&nbsp; fasst die in diesem Kapitel behandelten Klassifizierungsmerkmale in kompakter Weise zusammen.
+
The following&nbsp;  $($German-language$)$&nbsp; learning video summarizes the classification features discussed in this chapter in a compact way:<br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Analoge_und_digitale_Signale_(Lernvideo)|&raquo;Analoge und digitale Signale&laquo;]] &nbsp; &rArr; &nbsp; "Analog and Digital Signals".
  
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.2 Signalklassifizierung|Aufgabe 1.2: Signalklassifizierung]]
+
[[Aufgaben:Exercise_1.2:_Signal_Classification|Exercise 1.2: Signal Classification]]
  
[[Aufgaben:1.2Z_Pulscodemodulation|Aufgabe 1.2Z: Pulscodemodulation]]
+
[[Aufgaben:Exercise_1.2Z:_Puls-Code-Modulation|Exercise 1.2Z: Puls Code Modulation]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:46, 22 June 2023

Deterministic and stochastic signals


In every transmission system,  both  deterministic signals  and  stochastic signal  occur.

$\text{Definition:}$  A  »deterministic signal«  exists,  if its time function  $x(t)$  can be described completely in analytical form.


Since the time function  $x(t)$  for all times  $t$  is known and can be specified unambiguously,  there always exists a spectral function  $X(f)$  which can be calculated using the  »$\text{Fourier series}$«  or the  »$\text{Fourier transform}$« .

$\text{Definition:}$  One refers to a  »stochastic signal«  or to a  »random signal«,  if the signal course  $x(t)$  is not – or at least not completely – describable in mathematical form.  Such a signal cannot be predicted exactly for the future.


Example of a deterministic signal (top) and
a stochastic signal (bottom)

$\text{Example 1:}$  The graph shows the time courses of a deterministic and a stochastic signal:

  • At the top a periodic rectangular signal  $x_1(t)$  with period duration  $T_0$   ⇒   deterministic signal,
  • below a Gaussian noise signal  $x_2(t)$  with the mean value  $2\ \rm V $   ⇒   stochastic signal.


For such a non–deterministic signal  $x_2(t)$  no spectral function  $X_2(f)$  can be specified, since Fourier series and Fourier transform requires the exact knowledge of the time function for all times  $t$.


Information-carrying signals are always of stochastic nature.  Their description and the definition of suitable parameters is given in the book  »Theory of Stochastic Signals«.

However,  deterministic signals are also of great importance for Communications Engineering.  Examples of these are:

  • Test signals for the design of communication systems,
  • carrier signals for frequency multiplex systems,  and
  • a  »Dirac delta comb«  for sampling an analog signal or for time regeneration of a digital signal.


Causal and non-causal signals


In  Communications Engineering  one often reckons with temporally unlimited signals;  the definition range of the signal then extends from  $t = -\infty$   to  $t=+\infty$.

In reality,  however,  there are no such signals,  because every signal had to be switched on at some point.  If one chooses – arbitrarily but nevertheless meaningfully – the switch-on time  $t = 0$,  then one comes to the following classification:

$\text{Definition:}$ 

  • A signal  $x(t)$  is called  »causal«,  if it does not exist for all times  $t < 0$  or is identical zero.
  • If this condition is not fulfilled,  then one speaks of a  »non-causal«  signal  $($or system$)$.


In this book  »Signal representation«  mostly causal signals and systems are considered.  This has the following reasons:

  • Non-causal signals  $($and systems$)$  are mathematically easier to handle than causal ones.  For example,  the spectral function can be determined here by means of Fourier transform and one does not need extensive knowledge of function theory as in the Laplace transform.
  • Non-causal signals and systems describe the situation completely and correctly,  if one ignores the problem of the switch-on process and is therefore only interested in the  »steady state«.


Causal system  $($top$)$  and non-causal system  $($bottom$)$

$\text{Example 2:}$  You can see a causal system in the upper graphic:

  • If a unit step function  $x(t)$  is applied to its input, then the output signal  $y(t)$  can only increase from zero to its maximum value after time  $t = 0$.
  • Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.
  • In the lower graph the causality is no longer given. 


As you can easily see in this example,  an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.


Energy–limited and power–limited signals


At this place first two important signal description quantities must be introduced, namely  »energy«  and  »power«.

  • In terms of physics,  energy corresponds to work and has,  for example,  the unit  "Ws".
  • The power is defined as  "work per time"  and therefore has the unit  "W".


According to the elementary laws of Electrical Engineering,  both values are dependent on the resistance  $R$.  In order to eliminate this dependency in Communications Engineering,  the resistance  $R=1 \,\Omega$  is often used as a basis.  Then the following definitions apply:

$\text{Definition:}$  The  »energy«  of the signal  $x(t)$  is to calculate as follows:

$$E_x=\lim_{T_{\rm M}\to\infty} \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$


$\text{Definition:}$ To calculate the  $($mean$)$  »power«  still has to be divided by the time  $T_{\rm M}$  before the boundary crossing:

$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.$$
  • $T_{\rm M}$  is the assumed measurement duration during which the signal is observed,  symmetrically with respect to the time origin  $(t = 0)$. 
  • In general,  this time interval must be chosen very large;  ideally  $T_{\rm M}$  should be towards infinity.


If  $x(t)$  denotes an electrical voltage curve  $($unit:  $\text{V)}$,  then according to the above equations:

  1. The signal energy has the unit  "$\text{V}^2\text{s}$".
  2. The signal power has the unit  "$\text{V}^2$".


This statement also means:   In the above definitions the reference resistance  $R=1\,\Omega$  is already implicit.

$\text{Example 3:}$  Now the energy and power of two exemplary signals are calculated.

Energy-limited and power-limited signals

⇒   The upper graph shows a rectangular pulse  $x_1(t)$  with amplitude  $A$  and duration  $T$:

  1. The signal energy of this pulse is  $E_1 = A^2 \cdot T$.
  2. For the signal power,  division by  $T_{\rm M}$  and limit formation  $(T_{\rm M} \to \infty)$  results in the value  $P_1 = 0$.



⇒   For the cosine signal  $x_2(t)$  with amplitude  $A$  applies according to the sketch below:

  1. The signal power is  $P_2 = A^2/2$,  regardless of the frequency.
  2. The signal energy  $E_2$  $($integral over power for all times$)$  is infinite.
  3. With  $A = 4 \ {\rm V}$  results for the power  $P_2 = 8 \ {\rm V}^2$.  
  4. With the resistance of  $R = 50 \,\,\Omega$  this corresponds to the physical power  ${8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}$.


According to this example there are the following classification characteristics:

$\text{Definition:}$  A signal  $x(t)$  with finite energy  $E_x$  and infinitely small power  $(P_x = 0)$  is called  »energy–limited«.

  • With pulse-shaped signals like the signal  $x_1(t)$  in the above example,  the energy is always limited.  Mostly, the signal values here are different from zero only for a finite time period.   In other words:  Such signals are often time-limited,  too.
  • But even signals that are unlimited in time can have a finite energy.  In later chapters you will find more information about energy–limited and therefore aperiodic signals, for example the   »Gaussian pulse«  and the  »exponential pulse«.


$\text{Definition:}$  A signal  $x(t)$  with finite power  $P_x$  and accordingly infinite energy  $(E_x \to \infty)$  is called  »power–limited«.


Continuous-valued and discrete-valued signals


$\text{Definitions:}$ 

  • A signal is  »continuous in value« or  »continuous-valued«,  if the decisive signal parameter – for example the instantaneous value – can take all values of a continuum  $($e.g. of an interval$)$.
  • In contrast,  if only countable many different values are possible for the signal parameter,  then the signal is  »discrete in value« or  »discrete-valued«.  The number  $M$  of possible values is called the  »level number«  or the  »symbol set size«.


  • Analog transmission systems always work with continuous-valued signals.
  • For digital systems, on the other hand, most but not all signals are discrete-valued.


$\text{Example 4:}$  The upper diagram shows in blue a section of a continuous-valued signal  $x(t)$, which can take values between  $\pm 8\ \rm V$ .

Continuous-valued and discrete-valued signal
  • In red you can see the signal  $x_{\rm Q}(t)$  discretized on   $M = 8$  quantization levels with the possible signal values  $\pm 1\ \rm V$,  $\pm 3\ \rm V$,  $\pm 5\ \rm V$  and  $\pm 7\ \rm V$.
  • For this signal  $x_{\rm Q}(t)$  the  instantaneous value  was considered the decisive signal parameter.


FSK signal   ⇒   continuous–valued,  binary–in–frequency




In an FSK system  $($"Frequency Shift Keying"$)$  on the other hand,  the  instantaneous frequency  is the essential signal parameter.


Therefore the signal  $s_{\rm FSK}(t)$  shown below is also called  discrete-valued  with level number  $M = 2$  and possible frequencies  $1 \ \ \rm kHz$  and  $5 \ \ \rm kHz$, although the instantaneous value is continuous.


Continuous-time and discrete-time signals


For the signals considered so far,  the signal parameter was defined at any given time.  Such a signal is called  "continuous in time".

$\text{Definition:}$ 

With a  »discrete-time signal«  on the contrary,  the signal parameter is defined only at the discrete points  $t_\nu$.  These time points are usually chosen equidistant:  

$$t_\nu = \nu \cdot T_{\rm A}.$$
  • We refer  $T_{\rm A}$  as  »sampling time interval«  and its reciprocal  $f_{\rm A} = 1/T_{\rm A}$  as  »sampling frequency«. 
  • Such a signal may be created by sampling a »continuous-time signal«.


Continuous-time and discrete-time signal

$\text{Example 5:}$ 

  • The discrete-time signal  $x_{\rm A}(t)$  is obtained after sampling the continuous-time and continuous-value signal  $x(t)$  with a uniform sampling period   $(T_{\rm A})$.

  • The time plot  $x_{\rm R}(t)$  outlined below differs from the real discrete-time representation  $x_{\rm A}(t)$  in that the infinitely narrow samples  $($mathematically describable with Dirac deltas$)$  are replaced by rectangular pulses of duration  $T_{\rm A}$.

  • Such a signal can also be called  "discrete-time"  according to the above definition.

  • Furthermore applies:
  1. A discrete-time signal $x(t)$  is completely determined by its series  $\left \langle x_\nu \right \rangle$  of sampled values. 
  2. These sampled values can either be continuous or discrete.
  3. The mathematical description of discrete-time signals is given in the chapter 
    »Discrete-Time Signal Representation«.


Analog and digital signals


Analog and digital signals

$\text{Example 6:}$  The signal properties

  • "continuous-valued",
  • "discret-valued",
  • "continuous-time",
  • "discrete-time"


are illustrated in the diagram on the right using an example.


In addition,  the following specifications apply:

$\text{Definition:}$  If a signal is both continuous in value   and   continuous in time,  it is called an  »analog signal«. 

  • Such signals represent a continuous process.
  • Examples are speech signals,  music signals and image signals.


$\text{Definition:}$  A  »digital signal«  is discrete in value   and   discrete in time,  and the message contained therein consists of symbols from a symbol set.

  • For example,  it can be a voice signal,  music signal or image signal after sampling,  quantization,  and encoding in any form.
  • But also a  »data signal«  when a file is downloaded from a server on the Internet.


Depending on the number of levels,  digital signals are also known by other names,  for example

  • with $M = 2$:   binary digital signal or  »binary signal«,
  • with $M = 3$:   ternary digital signal or   »ternary signal«,
  • with $M = 4$:   quaternary digital signal or  »quaternary signal«.


The following  $($German-language$)$  learning video summarizes the classification features discussed in this chapter in a compact way:
         »Analoge und digitale Signale«   ⇒   "Analog and Digital Signals".


Exercises for the chapter


Exercise 1.2: Signal Classification

Exercise 1.2Z: Puls Code Modulation