Difference between revisions of "Digital Signal Transmission/Linear Nyquist Equalization"

From LNTwww
 
(52 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Impulsinterferenzen und Entzerrungsverfahren
+
|Untermenü=Intersymbol Interfering and Equalization Methods
 
|Vorherige Seite=Impulsinterferenzen bei mehrstufiger Übertragung
 
|Vorherige Seite=Impulsinterferenzen bei mehrstufiger Übertragung
 
|Nächste Seite=Entscheidungsrückkopplung
 
|Nächste Seite=Entscheidungsrückkopplung
 
}}
 
}}
  
== Struktur des optimalen Nyquistentzerrers ==
+
== Structure of the optimal Nyquist equalizer ==
 
<br>
 
<br>
In diesem Abschnitt gehen wir von folgendem Blockschaltbild eines Binärsystems aus.<br>
+
In this section we assume the following block diagram of a binary system.&nbsp; In this regard,&nbsp; it should be noted:
 +
[[File:EN_Dig_T_3_5_S1.png|right|frame|Block diagram of the optimal Nyquist equalizer|class=fit]]
  
[[File:P ID1423 Dig T 3 5 S1 version1.png|Blockschaltbild des optimalen Nyquistentzerrers|class=fit]]<br>
+
*The&nbsp; "Dirac source"&nbsp; provides the message to be transmitted in binary bipolar form  &nbsp; &rArr; &nbsp; amplitude coefficients &nbsp;$a_\nu \in \{ -1, \hspace{0.05cm}+1\}$.&nbsp; The source is assumed to be redundancy-free.
  
Hierzu ist anzumerken:
+
*The&nbsp; "transmission pulse shape" &nbsp;$g_s(t)$&nbsp; is taken into account by the transmitter frequency response &nbsp;$H_{\rm S}(f)$.&nbsp; Mostly, &nbsp;$H_{\rm S}(f) = {\rm sinc}(f T)$&nbsp; is based &nbsp; &rArr; &nbsp; NRZ rectangular transmission pulses.
*Die Diracquelle liefert die zu übertragende Nachricht (Amplitudenkoeffizienten <i>a<sub>&nu;</sub></i>) in binärer bipolarer Form. Sie wird als redundanzfrei vorausgesetzt.<br>
 
  
*Die Sendeimpulsform <i>g<sub>s</sub></i>(<i>t</i>) wird durch den Senderfrequenzgang <i>H</i><sub>S</sub>(<i>f</i>) berücksichtigt. Bei allen Beispielen ist <i>H</i><sub>S</sub>(<i>f</i>) = si(&pi; <i>f</i> <i>T</i>) zugrunde gelegt.<br>
+
*In some derivations,&nbsp; transmitter and channel are combined by the&nbsp; "common frequency response" &nbsp;$H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$.&nbsp; <br>
  
*Bei manchen Herleitungen werden Sender und Kanal &ndash; hierfür wird meist ein Koaxialkabel angenommen &ndash; durch den gemeinsamen Frequenzgang <i>H</i><sub>SK</sub>(<i>f</i>) = <i>H</i><sub>S</sub>(<i>f</i>) &middot; <i>H</i><sub>K</sub>(<i>f</i>) zusammengefasst.<br>
+
*The receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is multiplicatively composed of the &nbsp;[[Theory_of_Stochastic_Signals/Matched_Filter|matched filter]]&nbsp; $H_{\rm MF}(f) = H_{\rm SK}^\star(f)$&nbsp; and the &nbsp;[[Digital_Signal_Transmission/Linear_Nyquist_Equalization#Operating_principle_of_the_transversal_filter|transversal filter]]&nbsp; $H_{\rm TF}(f)$,&nbsp; at least it can be split up mentally in this way.
  
*Das Empfangsfilter <i>H</i><sub>E</sub>(<i>f</i>) setzt sich multiplikativ aus dem Matched&ndash;Filter <i>H</i><sub>MF</sub>(<i>f</i>) = <i>H</i><sub>SK</sub><sup>&#8727;</sup>(<i>f</i>) und dem Transversalfilter <i>H</i><sub>TF</sub>(<i>f</i>) zusammen, zumindest kann es gedanklich so aufgespalten werden.
+
*The overall frequency response between Dirac source and threshold decision should satisfy the &nbsp;[[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_frequency_domain| "first Nyquist condition"]].&nbsp; Thus, it must hold:
 
+
:$$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm MF}(f) \cdot H_{\rm TF}(f)
*Der Gesamtfrequenzgang zwischen der Diracquelle und dem Schwellenwertentscheider soll die [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich erste Nyquistbedingung] erfüllen. Es muss also gelten:
 
 
 
::<math>H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm MF}(f) \cdot H_{\rm TF}(f)
 
 
  = H_{\rm Nyq}(f)
 
  = H_{\rm Nyq}(f)
  \hspace{0.05cm}.</math>
+
  \hspace{0.05cm}.$$
  
*Mit dieser Bedingung ergibt sich die maximale Augenöffnung (keine Impulsinterferenzen). Deshalb gelten für das Detektions&ndash;SNR und den Systemwirkungsgrad bei binärer Signalisierung:
+
*With this condition, there is no&nbsp;                                          [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|"intersymbol interference"]]&nbsp; $\rm (ISI)$ and the maximum eye opening is obtained.&nbsp;  
  
::<math>\rho_d = \frac{2 \cdot s_0^2 \cdot T}{\sigma_d^2} =  \frac{2 \cdot s_0^2 \cdot T}{N_0}\cdot \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2}
+
*Therefore, the &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Matched_Filter.22_realization|"detection SNR"]]&nbsp; and &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_peak_limitation|"system efficiency"]]&nbsp; for binary signaling are:
 +
:$$\rho_d = \frac{2 \cdot s_0^2 \cdot T}{\sigma_d^2} =  \frac{2 \cdot s_0^2 \cdot T}{N_0}\cdot \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2}
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \eta = \frac{\rho_d }{\rho_{d,\hspace{0.05cm} {\rm max}}}
 
  \eta = \frac{\rho_d }{\rho_{d,\hspace{0.05cm} {\rm max}}}
 
= \frac{\rho_d }{2 \cdot s_0^2 \cdot T/N_0}
 
= \frac{\rho_d }{2 \cdot s_0^2 \cdot T/N_0}
 
= \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2}
 
= \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2}
\hspace{0.05cm}.</math>
+
\hspace{0.05cm}.$$
  
*Die Optimierungsaufgabe beschränkt sich also darauf, das Empfangsfilter <i>H</i><sub>E</sub>(<i>f</i>) so zu bestimmen, dass die normierte Rauschleistung vor dem Entscheider den kleinstmöglichen Wert annimmt:
+
*The optimization task is therefore limited to determining the receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; such <br>'''that the normalized noise power before the decision takes the smallest possible value''':
  
 
::<math>\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/
 
::<math>\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/
 
T} =T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2
 
T} =T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2
\,{\rm d} f \stackrel {!}{=} {\rm Minimum}\hspace{0.05cm}.</math>
+
\,{\rm d} f \stackrel {!}{=} {\rm minimum}\hspace{0.05cm}.</math>
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; We refer to the configuration described here as  &nbsp;'''Optimal Nyquist Equalization'''&nbsp; $\rm (ONE)$.}}
 +
 
  
*Wir bezeichnen die Konfiguration als  Optimale Nyquistentzerrung (ONE). Obwohl diese auch &ndash; und besonders effektiv &ndash; bei Mehrstufensystemen anwendbar ist, setzen wir zunächst <i>M</i> = 2.<br><br>
+
Although this can also &ndash; and especially effectively &ndash; be applied to multi-level systems, we initially set &nbsp;$M = 2$.
  
== Wirkungsweise des Transversalfilters (1) ==
+
== Operating principle of the transversal filter==
<br>
 
Verdeutlichen wir uns zunächst die Aufgabe des symmetrischen Transversalfilters
 
  
:<math>H_{\rm TF}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
+
[[File:P ID1424 Dig T 3 5 S2 version2.png|right|frame|Second order transversal filter  as part of the optimal Nyquist equalizer|class=fit]]
 +
<br>Let us first clarify the task of the symmetric transversal filter with frequency response
 +
:$$H_{\rm TF}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
 
  \hspace{0.4cm}  
 
  \hspace{0.4cm}  
 
h_{\rm TF}(t) = \sum_{\lambda = -N}^{+N} k_\lambda \cdot \delta(t - \lambda \cdot T)
 
h_{\rm TF}(t) = \sum_{\lambda = -N}^{+N} k_\lambda \cdot \delta(t - \lambda \cdot T)
  \hspace{0.05cm}.</math>
+
$$
 +
 
 +
and the following properties:
 +
*$N$&nbsp; indicates the&nbsp; "order"&nbsp; of the filter &nbsp; &rArr; &nbsp; the graph shows a second order filter &nbsp;$(N=2)$.
 +
 +
*For the filter coefficients &nbsp;$k_{-\lambda} = k_{\lambda}$ &nbsp; &rArr; &nbsp; symmetric structure &nbsp; &rArr; &nbsp; $H_{\rm TF}(f)$ is real.
  
<i>N</i> gibt die Ordnung des Filters an. Für die Filterkoeffizienten gilt <i>k</i><sub>&ndash;&lambda;</sub> = <i>k</i><sub>&lambda;</sub>. Dieses Filter ist somit durch die Koeffizienten <i>k</i><sub>0</sub>, ... , <i>k<sub>N</sub></i> vollständig bestimmt. Die Grafik zeigt ein Filter zweiter Ordnung (<i>N</i> = 2).<br>
+
*$H_{\rm TF}(f)$&nbsp; is thus completely determined by the coefficients &nbsp;$k_0$, ... , $k_N$.
  
[[File:P ID1424 Dig T 3 5 S2 version2.png|Transversalfilter als Teil des optimalen Nyquistentzerrers|class=fit]]<br>
 
  
Für den Eingangsimpuls <i>g<sub>m</sub></i>(<i>t</i>) setzen wir ohne Einschränkung der Allgemeingültigkeit voraus, dass dieser
+
For the input pulse &nbsp;$g_m(t)$&nbsp; we assume without restriction of generality that it
  
*symmetrisch um <i>t</i> = 0 ist (Ausgang des Matched&ndash;Filters),<br>
+
*is symmetric about &nbsp;$t=0$&nbsp; (output of the matched filter),<br>
*zu den Zeiten <i>&nu;</i><i>T</i> und &ndash;<i>&nu;</i><i>T</i> den Wert <i>g<sub>m</sub></i>(<i>&nu;</i>) besitzt.<br><br>
+
*has the value &nbsp;$g_m(\nu)$&nbsp; at times &nbsp;$\nu \cdot T$&nbsp; and &nbsp;$-\nu \cdot T$,&nbsp; respectively.<br>
  
Damit sind die Eingangsimpulswerte:
 
  
:<math>...\hspace{0.2cm} , g_m(3),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(1),\hspace{0.15cm}\hspace
+
Thus,&nbsp; the input pulse values are:
 +
:$$\text{...}\hspace{0.2cm} , g_m(3),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(1),\hspace{0.15cm}\hspace
 
{0.15cm}g_m(0),\hspace{0.15cm}g_m(1),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(3),\hspace{0.1cm}
 
{0.15cm}g_m(0),\hspace{0.15cm}g_m(1),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(3),\hspace{0.1cm}
... \hspace{0.05cm}.</math>
+
\text{...}\hspace{0.05cm}.$$
 
 
Für den Detektionsgrundimpuls <i>g<sub>d</sub></i>(<i>t</i>) am Filterausgang ergeben sich demzufolge zu den Zeitpunkten <i>&nu;</i><i>T</i> mit den Abkürzungen <i>g</i><sub>0</sub> = <i>g<sub>d</sub></i>(<i>t</i> = 0), <i>g</i><sub>1</sub> = <i>g<sub>d</sub></i>(<i>t</i> = &plusmn;<i>T</i>), <i>g</i><sub>2</sub> = <i>g<sub>d</sub></i>(<i>t</i> = &plusmn;2<i>T</i>) folgende Werte:
 
 
 
:<math> t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0  =  k_0 \cdot g_m(0) + k_1 \cdot 2
 
\cdot g_m(1) \hspace{1.23cm}+k_2 \cdot 2 \cdot g_m(2),\hspace{0.05cm} </math>
 
:<math> t = \pm T\hspace{-0.1cm}:\hspace{0.2cm}g_1  =  k_0 \cdot g_m(1) + k_1
 
\cdot [g_m(0)+g_m(2)]+ k_2 \cdot [g_m(1)+g_m(3)], </math>
 
:<math> t = \pm 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2  =  k_0 \cdot g_m(2) + k_1
 
\cdot [g_m(1)+g_m(3)]+ k_2  \cdot [g_m(2)+g_m(4)]
 
\hspace{0.05cm}. </math>
 
  
Aus diesem System mit drei linear unabhängigen Gleichungen kann man nun die Filterkoeffizienten <i>k</i><sub>0</sub>, <i>k</i><sub>1</sub> und <i>k</i><sub>2</sub> so bestimmen, dass der Detektionsgrundimpuls <i>g<sub>d</sub></i>(<i>t</i>) durch die normierten Stützstellen
+
Consequently,&nbsp; for the basic detection pulse &nbsp;$g_d(t)$&nbsp; at the filter output, the following values result at the time instants &nbsp;$\nu \cdot T$&nbsp; with the abbreviations &nbsp;$g_0 =g_d(t= 0)$, &nbsp; $g_1 =g_d(t= \pm T)$, &nbsp; $g_2 =g_d(t= \pm 2T)$:&nbsp;
 +
:$$ t = 0\hspace{-0.1cm}:\hspace{0.9cm}g_0  =  k_0 \cdot g_m(0) + k_1 \cdot 2
 +
\cdot g_m(1) \hspace{1.23cm}+k_2 \cdot 2 \cdot g_m(2),\hspace{0.05cm} $$
 +
:$$ t = \pm T\hspace{-0.1cm}:\hspace{0.45cm}g_1  =  k_0 \cdot g_m(1) + k_1
 +
\cdot \big [g_m(0)+g_m(2)]+ k_2 \cdot [g_m(1)+g_m(3) \big ], $$
 +
:$$ t = \pm 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2  =  k_0 \cdot g_m(2) + k_1
 +
\cdot \big [g_m(1)+g_m(3)\big ]+ k_2  \cdot \big [g_m(2)+g_m(4)\big ]
 +
\hspace{0.05cm}. $$
  
:<math>...\hspace{0.15cm} , g_3,\hspace{0.25cm}g_2 = 0 ,\hspace{0.15cm}g_1 = 0
+
From this system with three linearly independent equations,&nbsp; one can determine the filter coefficients &nbsp;$k_0$, &nbsp;$k_1$&nbsp; and&nbsp; $k_2$&nbsp; in such a way that the basic detection pulse &nbsp;$g_d(t)$&nbsp; has the following interpolation points:
 +
:$$\text{...}\hspace{0.15cm} , g_3,\hspace{0.25cm}g_2 = 0 ,\hspace{0.15cm}g_1 = 0
 
,\hspace{0.15cm}g_0 = 1,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_2
 
,\hspace{0.15cm}g_0 = 1,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_2
= 0 ,\hspace{0.25cm}g_3 ,\hspace{0.15cm} ...</math>
+
= 0 ,\hspace{0.25cm}g_3 ,\hspace{0.15cm} \text{...}$$
 
 
vollständig gegeben ist. Auf der nächsten Seite wird die Optimierung der Filterkoeffizienten an einem einfachen Beispiel verdeutlicht.<br>
 
 
 
== Wirkungsweise des Transversalfilters (2) ==
 
<br>
 
{{Beispiel}}''':''' Wir gehen von dem symmetrischen Eingangssignal entsprechend dem oberen Diagramm aus. Mit der Abkürzung <i>g<sub>m</sub></i>(<i>&nu;</i>) = <i>g<sub>m</sub></i>(&plusmn; <i>&nu;</i> &middot; <i>T</i>) gibt es folgende Abtastwerte im Abstand der Symboldauer <i>T</i>:
 
 
 
:<math>g_m(t) = {\rm exp }\left ( - \sqrt{2 \cdot |t|/T}\right )</math>
 
 
 
:<math>\Rightarrow \hspace{0.3cm} g_m(0) = 1 ,\hspace{0.15cm}g_m(1)=
 
0.243,\hspace{0.15cm}g_m(2)= 0.135,\hspace{0.15cm}g_m(3)= 0.086,
 
\hspace{0.15cm}g_m(4)= 0.059 \hspace{0.05cm}.</math>
 
  
Für den Ausgangsimpuls soll <i>g<sub>d</sub></i>(0) = 1 und <i>g<sub>d</sub></i>(&plusmn;<i>T</i>) = 0 gelten. Hierzu eignet sich ein Laufzeitfilter erster Ordnung mit den Koeffizienten <i>k</i><sub>0</sub> und <i>k</i><sub>1</sub>, die folgende Bedingungen erfüllen müssen:
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; We assume the symmetrical input signal according to the upper diagram in the graph. With the abbreviation &nbsp;$g_m(\nu)= g_m(\pm \nu \cdot T)$&nbsp; there are the following samples at the distance of the symbol duration &nbsp;$T$:
 +
:$$g_m(t) = {\rm e}^{  - \sqrt{2 \hspace{0.05cm} \cdot \hspace{0.05cm}\vert\hspace{0.05cm} t \hspace{0.05cm} \vert /T} }\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} g_m(0) = 1 ,\hspace{0.35cm}g_m(1)=
 +
0.243,\hspace{0.35cm}g_m(2)= 0.135,\hspace{0.35cm}g_m(3)= 0.086,
 +
\hspace{0.35cm}g_m(4)= 0.059 \hspace{0.05cm}.$$
  
:<math>t = \pm T\hspace{-0.1cm}  :  \hspace{0.2cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot
+
&rArr; &nbsp; For the output pulse &nbsp;$g_d(t =0) = 1$&nbsp; and&nbsp;  $g_d(t =\pm T) = 0$&nbsp; should be valid.&nbsp; For this purpose,&nbsp; a first-order delay filter with coefficients &nbsp;$k_0$&nbsp; and&nbsp;  $k_1$ is suitable,&nbsp; which must satisfy the following conditions:
[1.000 +0.135] = 0\hspace{0.3cm}\Rightarrow
+
[[File:P ID1425 Dig T 3 5 S2b version1.png|right|frame|Input and output pulse of the <br>optimal Nyquist equalizer]]
 +
:$$t = \pm T\hspace{-0.1cm}  :  \hspace{0.2cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot
 +
\big [1.000 +0.135 \big  ] = 0\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}{k_1} =
 
\hspace{0.3cm}{k_1} =
-0.214 \cdot {k_0}\hspace{0.05cm},</math>
+
-0.214 \cdot {k_0}\hspace{0.05cm},$$
:<math> t = 0 \hspace{-0.1cm}  :  \hspace{0.2cm}g_0 = k_0 \cdot 1.000 + k_1 \cdot 2 \cdot
+
:$$ t = 0 \hspace{-0.1cm}  :  \hspace{0.6cm}g_0 = k_0 \cdot 1.000 + k_1 \cdot 2 \cdot
 
0.243= 1\hspace{0.3cm}\Rightarrow \hspace{0.3cm}0.896 \cdot {k_0}
 
0.243= 1\hspace{0.3cm}\Rightarrow \hspace{0.3cm}0.896 \cdot {k_0}
= 1 \hspace{0.05cm}.</math>
+
= 1 \hspace{0.05cm}.$$
 
 
[[File:P ID1425 Dig T 3 5 S2b version1.png|rechts|Eingangs- und Ausgangsimpuls des optimalen Nyquistentzerrers]]<br>
 
 
 
Daraus erhält man die optimalen Filterkoeffizienten <i>k</i><sub>0</sub> = 1.116 und <i>k</i><sub>1</sub> = 0.239. Das mittlere Diagramm zeigt, dass damit der erste Vorläufer und der erste Nachläufer kompensiert werden können und zugleich <i>g<sub>d</sub></i>(0) = 1 gilt (gelbe Hinterlegung). Die weiteren Detektionsgrundimpulswerte (blaue Kreise) sind aber von 0 verschieden und bewirken Impulsinterferenzen.<br><br>
 
  
Das untere Diagramm zeigt, dass mit einem Filter zweiter Ordnung (<i>N</i> = 2) Nulldurchgänge bei &plusmn;<i>T</i> und bei &plusmn;2<i>T</i> erzwungen werden, wenn die Koeffizienten <i>k</i><sub>0</sub> = 1.127, <i>k</i><sub>1</sub> = 0.219 und <i>k</i><sub>2</sub> = 0.075 geeignet gewählt sind. Das Gleichungssystem zur Bestimmung der optimalen Koeffizienten lautet dabei:
+
From this,&nbsp; the optimal filter coefficients &nbsp;$k_0 = 1.116$&nbsp; and&nbsp; $k_1 = 0.239$ are obtained.
 +
*The middle diagram shows that thus the first precursor and the first trailer can be compensated and at the same time &nbsp;$g_d(0) =1$&nbsp; is valid&nbsp; (yellow background).
  
:<math>t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0  =  k_0 \cdot 1.000 + k_1 \cdot 2
+
*However,&nbsp; the further basic detection pulse values (blue circles) are different from zero and cause intersymbol interference.<br><br>
\cdot  0.243 + k_2 \cdot 2 \cdot 0.135 = 1\hspace{0.05cm},\\
 
t= \pm T\hspace{-0.1cm}:\hspace{0.2cm}g_1  =  k_0 \cdot 0.243 + k_1 \cdot
 
[1.000+0.135]+ k_2  \cdot [0.243+0.086] = 0\hspace{0.05cm},
 
\\
 
t = \pm 2 T\hspace{-0.1cm}:\hspace{0.2cm}g_2  =  k_0 \cdot 0.135 + k_1 \cdot
 
[0.243+0.086]+ k_2 \cdot [1.000 + 0.059]= 0 \hspace{0.05cm}.</math>{{end}}<br>
 
  
Die Ergebnisse können wie folgt verallgemeinert werden:
+
&rArr; &nbsp; The lower diagram shows that with a second order filter &nbsp;$(N = 2)$&nbsp; zero crossings are forced at &nbsp;$\pm T$&nbsp; and at &nbsp;$\pm 2T$&nbsp; if the coefficients &nbsp;$k_0 = 1.127$, &nbsp;$k_1 = 0.219$&nbsp; and&nbsp; $k_2 =  0.075$&nbsp; are suitably chosen. The system of equations for determining the optimal coefficients is thereby:
*Mit einem Laufzeitfilter <i>N</i>&ndash;ter Ordnung können der Hauptwert <i>g<sub>d</sub></i>(0) zu 1 (normiert) sowie die ersten <i>N</i> Nachläufer und die ersten <i>N</i> Vorläufer zu Null gemacht werden.<br>
+
:$$t = 0\hspace{-0.1cm}:\hspace{0.85cm}g_0  =  k_0 \cdot 1.000 + k_1 \cdot 2
 +
\cdot  0.243 + k_2 \cdot 2 \cdot 0.135 = 1\hspace{0.05cm},$$
 +
:$$t= \pm T\hspace{-0.1cm}:\hspace{0.45cm}g_1  =  k_0 \cdot 0.243 + k_1 \cdot
 +
\big [1.000+0.135 \big ]+ k_2  \cdot \big [0.243+0.086 \big ] = 0\hspace{0.05cm},$$
 +
:$$t = \pm 2 T\hspace{-0.1cm}:\hspace{0.2cm}g_2  =  k_0 \cdot 0.135 + k_1 \cdot
 +
\big [0.243+0.086\big ]+ k_2 \cdot \big [1.000 + 0.059 \big ]= 0 \hspace{0.05cm}.$$}}<br>
  
*Weitere Vor&ndash; und Nachläufer (|<i>&nu;</i>| > <i>N</i>) lassen sich so nicht kompensieren. Es ist auch möglich, dass diese außerhalb des Kompensationsbereichs vergrößert werden oder sogar neu entstehen.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; The results can be generalized as follows:
 +
#With an &nbsp;$N$&ndash;th order delay filter,&nbsp; the main value  can be made to &nbsp;$g_d(0)=1$&nbsp; (normalized).
 +
#The first $N$&nbsp; trailers &nbsp;$g_{\nu}$&nbsp; and the first $N$&nbsp;  precursors &nbsp;$g_{-\nu}$&nbsp; can be made to zero.<br>
 +
#Further precursors and trailers &nbsp;$(\nu \gt N)$&nbsp; cannot be compensated in this way.&nbsp; 
 +
#It is even possible that the precursors and trailers outside the compensation range are enlarged or even new ones are created.<br>
 +
#In the limit &nbsp;$N \to \infty$&nbsp; (in practice this means: &nbsp; a filter with very many coefficients)&nbsp;  a complete Nyquist equalization and thus an ISI-free transmission is possible.}}
  
*Im Grenzübergang <i>N</i> &#8594; &#8734; (in der Praxis heißt das: ein Filter mit sehr vielen Koeffizienten) ist eine vollständige Nyquistentzerrung und damit eine impulsinterferenzfreie Übertragung möglich.<br>
 
  
== Beschreibung im Frequenzbereich (1) ==
+
== Description in the frequency domain ==
 
<br>
 
<br>
Die Tatsache, dass sich der optimale Nyquistentzerrer multiplikativ aus
+
The fact that the optimal Nyquist equalizer is multiplicatively derived from
*dem Matched&ndash;Filter <i>H</i><sub>MF</sub>(<i>f</i>) = <i>H</i><sub>S</sub><sup>&#8727;</sup>(<i>f</i>) &middot; <i>H</i><sub>K</sub><sup>&#8727;</sup>(<i>f</i>) &ndash; also angepasst an den Empfangsgrundimpuls &ndash;<br>
+
*the matched filter &nbsp;$H_{\rm MF}(f) = H_{\rm S}^\star (f)\cdot H_{\rm K}^\star(f)$&nbsp; &ndash; i.e. matched to the basic receiver pulse &nbsp;$g_r(t)$&nbsp; &ndash; and<br>
 +
*a transversal filter &nbsp;$H_{\rm MF}(f)$&nbsp; with infinitely many filter coefficients<br><br>
  
*und einem Transversalfilter <i>H</i><sub>TF</sub>(<i>f</i>) mit unendlich vielen Filterkoeffizienten<br><br>
+
follows from the first Nyquist criterion.&nbsp; By applying the &nbsp;[https://en.wikipedia.org/wiki/Calculus_of_variations&nbsp; "Calculus of Variations"],&nbsp; the frequency response of the transversal filter is obtained &nbsp; &ndash; see [TS87]<ref name='TS87'>Tröndle, K.; Söder, G.:&nbsp; Optimization of Digital Transmission Systems.&nbsp; Boston London: Artech House, 1987,&nbsp; ISBN:&nbsp; 0-89006-225-0.</ref>:
 
+
[[File:Dig_T_3_5_S3b_version2.png|right|frame|Magnitude frequency response of the transversal filter&nbsp; (left) and the entire optimal Nyquist equalizer&nbsp; (right)|class=fit]]
zusammensetzt, folgt aus dem ersten Nyquistkriterium. Durch Anwendung der <i>Variationsrechnung</i> erhält man den Frequenzgang des Transversalfilters (siehe [ST85]<ref>Söder, G.; Tröndle, K.: ''Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme.'' Berlin Heidelberg: Springer, 1985.</ref>):
+
$$H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
 
:<math>H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
 
  \frac{\kappa}{T})
 
  \frac{\kappa}{T})
  |^2} \hspace{0.3cm}{\rm{mit}}\hspace{0.3cm}H_{\rm SK}(f) = H_{\rm S}(f)\cdot H_{\rm K}(f)
+
  |^2},$$
\hspace{0.05cm}.</math>
+
$$\text{where }H_{\rm SK}(f) = H_{\rm S}(f)\cdot H_{\rm K}(f).$$
 
 
Die Grafik zeigt diesen Verlauf in logarithmierter Form für rechteckförmige NRZ&ndash;Sendeimpulse und ein Koaxialkabel mit der charakteristischen Kabeldämpfung
 
*<i>a</i><sub>&#8727;</sub> = 0 dB &nbsp;&#8658;&nbsp; grüne Null&ndash;Linie,<br>
 
*<i>a</i><sub>&#8727;</sub> = 40 dB &nbsp;&#8658;&nbsp; blauer Funktionsverlauf,<br>
 
*<i>a</i><sub>&#8727;</sub> = 80 dB &nbsp;&#8658;&nbsp; roter Funktionsverlauf.<br><br>
 
  
[[File:P ID1426 Dig T 3 5 S3 version1.png|Logarithmierter Frequenzgang des Transversalfilters|class=fit]]<br>
+
The left graph shows &nbsp;$20 \cdot \lg \ H_{\rm TF}(f)$&nbsp; in the range &nbsp;$| f | \le 1/T$. This assumes rectangular NRZ transmission pulses and a coaxial cable with the characteristic cable attenuation &nbsp;$a_\star$.  
  
Man erkennt aus obiger Gleichung und dieser Skizze:
+
One can see from the equation and the left graph:
*<i>H</i><sub>TF</sub>(<i>f</i>) ist reell, woraus sich die symmetrische Struktur des Transversalfilters ergibt: <i>k</i><sub>&ndash;&lambda;</sub> = <i>k</i><sub>&lambda;</sub>.<br>
+
*$H_{\rm TF}(f)$&nbsp; is&nbsp; "real",&nbsp; which results in the symmetrical structure of the transversal filter: &nbsp; $k_{-\lambda} =k_{+\lambda} $.<br>
  
*<i>H</i><sub>TF</sub>(<i>f</i>) ist eine mit der Frequenz 1/<i>T</i> periodische Funktion.<br>
+
*$H_{\rm TF}(f)$&nbsp; is at the same time &nbsp; "periodic"&nbsp;  with frequency &nbsp;$1/T$.
  
*Die Koeffizienten ergeben sich somit aus der Fourierreihe (angewandt auf die Spektralfunktion):
+
*The coefficients are thus obtained from the &nbsp;[[Signal_Representation/Fourier_Series|"Fourier series"]]&nbsp; (applied to the spectral function):
  
::<math>k_\lambda =T \cdot \int_{-1/(2T)}^{+1/(2T)}\frac{\cos(2 \pi f \lambda T)}  {\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
+
:$$k_\lambda =T \cdot \int_{-1/(2T)}^{+1/(2T)}\frac{\cos(2 \pi f \lambda T)}  {\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  {\kappa}/{T})
 
  {\kappa}/{T})
  |^2} \hspace{0.2cm} {\rm d} f \hspace{0.25cm}\Rightarrow \hspace{0.25cm}H_{\rm TF}(f) =
+
  |^2} \hspace{0.2cm} {\rm d} f$$
 +
:$$ \hspace{0.25cm}\Rightarrow \hspace{0.25cm}H_{\rm TF}(f) =
 
  \sum\limits_{\lambda = -\infty}^{+\infty} k_\lambda \cdot {\rm
 
  \sum\limits_{\lambda = -\infty}^{+\infty} k_\lambda \cdot {\rm
  e}^{-{\rm  j}2 \pi f \lambda T}\hspace{0.05cm}.</math>
+
  e}^{-{\rm  j}2 \pi f \lambda T}\hspace{0.05cm}.$$
 
 
Die Bildbeschreibung wird auf der nächsten Seite fortgesetzt.<br>
 
  
== Beschreibung im Frequenzbereich (2) ==
+
The right graph shows the frequency response &nbsp;$20 \cdot \lg \ |H_{\rm E}(f)|$&nbsp; of the entire receiver filter including the matched filter.&nbsp; It holds:
<br>
 
Die linke Grafik zeigt den Verlauf 20 &middot; lg <i>H</i><sub>TF</sub>(<i>f</i>) im Bereich | <i>f</i> | &#8804; 1/<i>T</i>. Rechts ist der Frequenzgang 20 &middot; lg |<i>H</i><sub>E</sub>(<i>f</i>)| des gesamten Empfangsfilters einschließlich Matched&ndash;Filter dargestellt. Es gilt:
 
  
:<math>H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f) = \frac{H_{\rm SK}^{^\star}(f)}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
+
:$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f) = \frac{H_{\rm SK}^{\star}(f)}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  {\kappa}/{T})
 
  {\kappa}/{T})
  |^2}.</math>
+
  |^2}.$$
 
 
[[File:P ID1427 Dig T 3 5 S3b version1.png|Frequenzgang des optimalen Nyquistentzerrers|class=fit]]<br>
 
  
Zu diesen Darstellungen ist anzumerken:
+
To these representations it is to be noted:
*Der Transversalfilter&ndash;Frequenzgang <i>H</i><sub>TF</sub>(<i>f</i>) ist  symmetrisch zur Nyquistfrequenz <i>f</i><sub>Nyq</sub> = 1/(2<i>T</i>). Diese Symmetrie ist beim Empfangsfilter&ndash;Gesamtfrequenzgang <i>H</i><sub>E</sub>(<i>f</i>) nicht mehr gegeben.<br>
+
*For &nbsp;$a_\star = 0 \ \rm dB$&nbsp;  (ideal channel, green zero line)&nbsp; the transversal filter&nbsp; $H_{\rm TF}(f)$&nbsp; can be omitted and it is valid for NRZ rectangular pulses as already derived in the section&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Matched_Filter.22_realization|"Optimal binary receiver – "Matched Filter" realization"]]:&nbsp;
*Die Maxima der Frequenzgänge <i>H</i><sub>TF</sub>(<i>f</i>) und |<i>H</i><sub>E</sub>(<i>f</i>)| hängen signifikant von der charakteristischen Kabeldämpfung ab. Es gilt:
+
:$$H_{\rm E}(f) =H_{\rm S}(f) = {\rm sinc} (f T).$$
::<math>a_{\star} = 40\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}[H_{\rm
+
*While the transversal filter frequency response &nbsp;$H_{\rm TF}(f)$&nbsp; is symmetrical to the Nyquist frequency &nbsp;$f_{\rm Nyq} = 1/(2T)$&nbsp; at &nbsp;$a_\star \ne 0 \ \rm dB$,&nbsp; this symmetry is no longer given for the receiver filter overall frequency response &nbsp;$H_{\rm E}(f)$.&nbsp; <br>
TF}(f)]\hspace{0.1cm} \approx 80\,{\rm dB}, \hspace{0.2cm}{\rm
 
Max}[|H_{\rm E}(f)|] \approx 40\,{\rm dB}\hspace{0.05cm},</math>
 
::<math>a_{\star} = 80\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}[H_{\rm TF}(f)]
 
\approx 160\,{\rm dB}, \hspace{0.2cm}{\rm Max}[|H_{\rm E}(f)|]
 
\approx 80\,{\rm dB}\hspace{0.05cm}.</math>
 
  
Für <i>a</i><sub>&#8727;</sub> = 0 dB (idealer Kanal) kann auf das Transversalfilter verzichtet werden und es gilt, wie bereits im [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung#Optimaler_Bin.C3.A4rempf.C3.A4nger_-_Realisierung_mit_Matched-Filter_.281.29 Kapitel 1.2] hergeleitet:
+
*The maxima of the frequency responses &nbsp;$H_{\rm TF}(f)$&nbsp; and &nbsp;$|H_{\rm E}(f)|$&nbsp; depend significantly on the characteristic cable attenuation &nbsp;$a_\star$.&nbsp; From the blue and red function curves, respectively,&nbsp; can be read:
 +
:$$a_{\star} = 40\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}\big[H_{\rm
 +
TF}(f)\big]\hspace{0.1cm} \approx 80\,{\rm dB}, \hspace{0.2cm}{\rm
 +
Max}\big[\ |H_{\rm E}(f)| \  \big] \approx 40\,{\rm dB}\hspace{0.05cm},$$
 +
:$$a_{\star} = 80\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}\big[H_{\rm TF}(f)\big]
 +
\approx 160\,{\rm dB}, \hspace{0.2cm}{\rm Max}\big[\ |H_{\rm E}(f)|\ \big]
 +
\approx 80\,{\rm dB}\hspace{0.05cm}.$$
  
:<math>H_{\rm E}(f) =H_{\rm S}(f) = {\rm si} (\pi f T)\hspace{0.05cm}.</math>
 
  
== Approximation des optimalen Nyquistentzerrers ==
+
== Approximation of the optimal Nyquist equalizer ==
 
<br>
 
<br>
Betrachten wir nun den Gesamtfrequenzgang zwischen der Diracquelle und dem Entscheider. Dieser setzt sich multiplikativ aus den Frequenzgängen von Sender, Kanal und Empfänger zusammen. Entsprechend der Herleitung muss der Gesamtfrequenzgang die Nyquistbedingung erfüllen:
+
We now consider the overall frequency response between the Dirac source and the decision.  
 +
*This is made up multiplicatively of the frequency responses of the transmitter, channel and receiver.
 +
*According to the derivation, the overall frequency response must satisfy the Nyquist condition:
 +
[[File:P ID1428 Dig T 3 5 S3c version1.png|right|frame|Optimum overall Nyquist frequency response for a coaxial cable system|class=fit]]
  
:<math>H_{\rm Nyq}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f) =
+
:$$H_{\rm Nyq}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f) =
 
  \frac{|H_{\rm SK}(f)|^2}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  \frac{|H_{\rm SK}(f)|^2}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  {\kappa}/{T})
 
  {\kappa}/{T})
  |^2}\hspace{0.05cm}.</math>
+
  |^2}\hspace{0.05cm}.$$
 +
 
 +
 
 +
The graph shows the following properties of the&nbsp; '''optimal Nyquist equalizer'''&nbsp; $\rm (ONE)$:
 +
*If the cable attenuation is sufficiently large &nbsp;$(a_\star \ge 10 \ \rm dB)$,&nbsp; the overall frequency response can be described with good approximation by the &nbsp;[[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#1.2FT_Nyquist_spectra| "cosine rolloff low-pass"]].&nbsp; <br>
  
Die Grafik zeigt folgende Eigenschaften des optimalen Nyquistfilters:
+
*The larger &nbsp;$a_\star$&nbsp; is,&nbsp; the smaller is the rolloff factor &nbsp;$r$&nbsp; and the steeper is the edge drop.&nbsp; For the characteristic cable attenuation &nbsp;$a_\star = 40 \ \rm dB$&nbsp; (blue curve)&nbsp; we get &nbsp;$r \approx 0.4$, for &nbsp;$a_\star = 80 \ \rm dB$&nbsp; (red curve)  $r \approx 0.18$.<br>
*Ist die Kabeldämpfung hinreichend groß (<i>a</i><sub>&#8727;</sub> > 10 dB), so kann der Gesamtfrequenzgang mit sehr guter Näherung durch einen [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Eigenschaften_von_Nyquistsystemen#1.2FT.E2.80.93Nyquistspektren_.281.29 Cosinus&ndash;Rolloff&ndash;Tiefpass] beschrieben werden.<br>
 
  
*Je größer <i>a</i><sub>&#8727;</sub> ist, desto kleiner ist der Rolloff&ndash;Faktor und um so steiler verläuft der Flankenabfall. Für die charakteristische Kabeldämpfung <i>a</i><sub>&#8727;</sub> = 40 dB ergibt sich <i>r</i> &asymp; 0.4, für 80 dB ist <i>r</i> &asymp; 0.18.<br>
+
*Above the frequency &nbsp;$f_{\rm Nyq} \cdot (1 + r)$,&nbsp; &nbsp;$H_{\rm Nyq}(f)$&nbsp; has no components.&nbsp; However,&nbsp; with ideal channel &nbsp; &rArr; &nbsp;  &nbsp;$a_\star = 0 \ \rm dB$&nbsp; (green curve), &nbsp;$H_{\rm Nyq}(f)= {\rm sinc}^2(f T)$&nbsp; theoretically extends to infinity.
  
*Oberhalb der Frequenz <i>f</i><sub>Nyq</sub> &middot; (1 + <i>r</i>) besitzt <i>H</i><sub>Nyq</sub>(<i>f</i>) keine Anteile. Bei idealem Kanal &ndash; also für <i>a</i><sub>&#8727;</sub> = 0 dB &ndash;  reicht <i>H</i><sub>Nyq</sub>(<i>f</i>) = si<sup>2</sup>(&pi;<i>f</i><i>T</i>) allerdings theoretisch bis ins Unendliche (grüne Kurve).
 
  
:[[File:P ID1428 Dig T 3 5 S3c version1.png|Optimaler Nyquistfrequenzgang|class=fit]]<br>
+
The interactive applet&nbsp; [[Applets:Frequency_%26_Impulse_Responses|"Frequency & Impulse Responses"]]&nbsp; illustrates,&nbsp; among other things,&nbsp; the properties of the&nbsp; "cosine rolloff low&ndash;pass".
  
Mit dem folgenden Interaktionsmodul können Sie sich den Cosinus&ndash;Rolloff&ndash;Tiefpass im Frequenz&ndash; und Zeitbereich verdeutlichen:<br>
 
[[:File:tiefpass.swf|Tiefpässe im Frequenz- und Zeitbereich]]<br>
 
  
== Berechnung der normierten Störleistung ==
+
== Calculation of the normalized noise power ==
 
<br>
 
<br>
Betrachten wir nun noch die (normierte) Störleistung am Entscheider. Für diese gilt:
+
We now consider the (normalized) noise power at the decision. For this holds:
  
:<math>\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/
+
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/
 
(2T)} =T \cdot \int_{-1/(2T)}^{+1/(2T)} |H_{\rm E}(f)|^2
 
(2T)} =T \cdot \int_{-1/(2T)}^{+1/(2T)} |H_{\rm E}(f)|^2
\,{\rm d} f .</math>
+
\,{\rm d} f .$$
  
Das linke Bild zeigt |<i>H</i><sub>E</sub>(<i>f</i>)|<sup>2</sup> im linearen Maßstab für die charakteristische Kabeldämpfung <i>a</i><sub>&#8727;</sub> = 80 dB.
+
[[File:P ID1429 Dig T 3 5 S5 version1.png|right|frame|To calculate the normalized noise power at the optimal Nyquist equalizer&nbsp; $\rm (ONE)$|class=fit]]
 +
*The left plot shows &nbsp;$|H_{\rm E}(f)|^2$&nbsp; in linear scale for the characteristic cable attenuation &nbsp;$a_\star = 80 \ \rm dB$.&nbsp; Note that &nbsp;$|H_{\rm E}(f = 0)|^2 = 1$.&nbsp;
  
[[File:P ID1429 Dig T 3 5 S5 version1.png|Zur Berechnung der normierten Störleistung beim ONE|class=fit]]<br>
+
*Since the frequency has been normalized to &nbsp;$1/T$&nbsp; in this plot,&nbsp; the normalized noise power corresponds exactly to the area&nbsp; (highlighted in red)&nbsp; under this curve.&nbsp; The numerical evaluation results in:
  
Beachten Sie, dass |<i>H</i><sub>E</sub>(<i>f</i> = 0)| = 1 ist. Da die Frequenz auf 1/<i>T</i> normiert wurde, entspricht die normierte Störleistung genau der (rot hinterlegten) Fläche unter dieser Kurve. Die numerische Auswertung ergibt:<br>
+
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = 1.68 \cdot 10^7\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm
 
 
:<math>\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = 1.68 \cdot 10^7
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm
 
 
lg}\hspace{0.1cm}\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 \approx
 
lg}\hspace{0.1cm}\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 \approx
72.25\,{\rm dB}
+
72.25\,{\rm dB} \hspace{0.05cm}.$$
\hspace{0.05cm}.</math>
 
  
Es kann gezeigt werden, dass die normierte Störleistung auch mit dem  Transversalfilter&ndash;Frequenzgang <i>H</i><sub>TF</sub>(<i>f</i>) berechnet werden kann, wie in der rechten Grafik dargestellt:
+
*It can be shown that the normalized noise power can be calculated using the transversal filter frequency response &nbsp;$H_{\rm TF}(f)$&nbsp; alone, as shown in the right graph:
 +
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot
 +
\int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f
 +
\hspace{0.3cm}(= k_0)\hspace{0.05cm}.$$
  
:<math>\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot
+
*The red areas are exactly the same in both images.
\int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f
+
<br clear=all>
\hspace{0.3cm}(= k_0)\hspace{0.05cm}.</math>
+
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp; The normalized noise power of the optimal Nyquist equalizer is equal to the Fourier coefficient &nbsp;$k_0$ when the real, symmetric, and periodic transversal filter frequency response &nbsp;$H_{\rm TF}(f)$&nbsp; is represented as a Fourier series.
  
Die roten Flächen sind in beiden Bildern exakt gleich. Man erkennt auch, dass der mittlere Koeffizient <i>k</i><sub>0</sub> gleich der normierten Störleistung ist. In der zweiten Spalte der nachfolgenden Tabelle ist 10 &middot; lg (<i>k</i><sub>0</sub>) in Abhängigkeit der charakteristischen Kabeldämpfung angegeben. Aufgrund der gewählten Normierung gilt diese Tabelle auch für redundanzfreie Mehrstufensysteme; <i>M</i> bezeichnet hierbei die Stufenzahl.<br>
+
[[File:P ID1430 Dig T 3 5 S5b version3.png|right|frame|Coefficients of the optimal Nyquist equalizer&nbsp; $\rm (ONE)$|class=fit]]
 +
*In the second column of the table, &nbsp;$10 \cdot \lg \ (k_0)$&nbsp; is given depending on the characteristic cable attenuation &nbsp;$a_\star$&nbsp; of a coaxial cable.
  
[[File:P ID1430 Dig T 3 5 S5b version3.png|Koeffizienten des optimalen Nyquistentzerrers|class=fit]]<br>
+
*Due to the chosen normalization, the table is also valid for&nbsp; [[Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission#Eye_opening_for_redundancy-free_multi-level_systems|"redundancy-free multi-level systems"]];&nbsp;  here &nbsp;$M$&nbsp; denotes the level number.<br>
  
Die Koeffizienten <i>k</i><sub>1</sub>, <i>k</i><sub>2</sub>, <i>k</i><sub>3</sub>, ... des Transversalfilters weisen für <i>a</i><sub>&#8727;</sub> &ne; 0 alternierende Vorzeichen auf. Für <i>a</i><sub>&#8727;</sub> = 40 dB sind vier Koeffizienten betragsmäßig größer als <i>k</i><sub>0</sub>/10, für <i>a</i><sub>&#8727;</sub> = 80 dB sogar sieben.<br>
+
*The coefficients &nbsp;$k_1$, &nbsp;$k_2$, &nbsp;$k_3$, ... of the transversal filter have alternating signs for &nbsp;$a_\star \ne 0 \ \rm dB$.&nbsp;
 +
 +
*For &nbsp;$a_\star = 40 \ \rm dB$,&nbsp; four coefficients are greater in magnitude than &nbsp;$k_0/10$,&nbsp; and for &nbsp;$a_\star = 80 \ \rm dB$&nbsp; even seven.}}
  
== Vergleich anhand des Systemwirkungsgrades ==
+
== Comparison based on the system efficiency ==
 
<br>
 
<br>
Für einen Systemvergleich eignet sich der [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Systemoptimierung_bei_Leistungsbegrenzung_.281.29 Systemwirkungsgrad], der das erreichbare Detektions&ndash;SNR <i>&rho;<sub>d</sub></i> in Bezug zum maximalen SNR <i>&rho;</i><sub><i>d</i>,&nbsp;max</sub> setzt, das allerdings nur bei idealem Kanal <i>H</i><sub>K</sub>(<i>f</i>) = 1 erreichbar ist. Für den Systemwirkungsgrad gilt bei <i>M</i>&ndash;stufiger Übertragung und optimaler Nyquistentzerrung:
+
For a system comparison, the &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_power_limitation|"system efficiency"]]&nbsp; is suitable,&nbsp; which relates the achievable detection SNR &nbsp;$\rho_d$&nbsp; to the maximum SNR &nbsp;$\rho_{d, \ {\rm max}}$,&nbsp; which,&nbsp; however,&nbsp; is only achievable for ideal channel &nbsp;$H_{\rm K}(f) \equiv 1$.&nbsp;
 +
 
 +
[[File:EN_Dig_T_3_5_S6_neu.png|right|frame|Comparison of binary and multi-level transmission systems according to &nbsp;$\text{GLP}$&nbsp; and &nbsp;$\text{ONE}$|class=fit]]
 +
For the system efficiency, with &nbsp;$M$&ndash;level transmission and optimal Nyquist equalization:
 +
:$$\eta = \frac{\rho_d}{s_0^2 \cdot T / N_0}=\frac{{\rm log_2}\hspace{0.1cm}M}{(M-1)^2 \cdot k_0}.$$
 +
 
 +
*The&nbsp; (normalized)&nbsp; noise power &nbsp;$k_0$&nbsp; can be read from the &nbsp;[[Digital_Signal_Transmission/Linear_Nyquist_Equalization#Calculation_of_the_normalized_noise_power|'''table''']]&nbsp; in the last section.
 +
 
 +
*Note the normalization of the characteristic cable attenuation &nbsp;$a_\star$&nbsp; in the first column.
 +
 
 +
*The table on the right from&nbsp; [TS87]<ref name='TS87'/>&nbsp; allows a system comparison for the characteristic cable attenuation &nbsp;$a_\star = 80 \ \rm dB$.
 +
 
  
:<math>\eta = \frac{\rho_d}{s_0^2 \cdot T / N_0}=\frac{{\rm log_2}\hspace{0.1cm}M}{(M-1)^2 \cdot k_0}.</math>
+
Compared are:  
  
Die (normierte) Störleistung <i>k</i><sub>0</sub> kann aus der [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Lineare_Nyquistentzerrung#Berechnung_der_normierten_St.C3.B6rleistung Tabelle] auf der letzten Seite abgelesen werden. Beachten Sie die Normierung der charakteristischen Kabeldämpfung <i>a</i><sub>&#8727;</sub> in der ersten Spalte.<br>
+
* the [[Digital_Signal_Transmission/Berücksichtigung_von_Kanalverzerrungen_und_Entzerrung|"Gaussian overall frequency response"]] &nbsp;$\text{(GLP)}$,&nbsp; which leads to an intersymbol interference system even when optimized, <br>
  
Die folgende Tabelle aus [ST85]<ref>Söder, G.; Tröndle, K.: ''Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme.'' Berlin – Heidelberg: Springer, 1985.</ref>. ermöglicht einen Systemvergleich für <i>a</i><sub>&#8727;</sub> = 80 dB. Verglichen werden
+
*the &nbsp;[[Digital_Signal_Transmission/Linear_Nyquist_Equalization#Structure_of_the_optimal_Nyquist_equalizer|"optimal Nyquist equalizer"]] &nbsp;$\text{(ONE)}$; here,&nbsp; intersymbol interference is excluded per se.
*der gaußförmige Gesamtfrequenzgang (GTP) entsprechend Kapitel 3.4,<br>
+
<br clear=all>
*der optimale Nyquistentzerrer (ONE) entsprechend Kapitel 3.5.<br><br>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; The results of this system comparison can be summarized as follows:
 +
#In the binary case &nbsp;$(M = 2)$,&nbsp; the intersymbol interference-free system &nbsp;$\text{(ONE)}$&nbsp; outperforms the intersymbol interference system &nbsp;$\text{(GLP)}$ by about &nbsp;$6 \ \rm dB$.&nbsp; <br>
 +
#If the optimal Nyquist equalization is applied to multi-level systems, a further, significant gain in signal-to-noise ratio is possible compared to &nbsp;$\text{GLP}$.&nbsp;
 +
#For &nbsp;$M =4$,&nbsp; this gain is about &nbsp;$18.2 \ \rm dB$.<br>
 +
#However, the narrowband &nbsp;$\text{GLP}$ system can be significantly improved by using a receiver with decision feedback. This will be discussed in the next chapter.}}<br>
  
[[File:P ID1431 Dig T 3 5 S6 version1.png|Vergleich binärer und mehrstufiger Systeme|class=fit]]<br>
+
&rArr; &nbsp; At this point we refer to the&nbsp; (German language)&nbsp; SWF applet&nbsp; [[Applets:Lineare_Nyquistentzerrung|"Lineare Nyquistentzerrung"]] &nbsp; &rArr; &nbsp; "Linear Nyquist Equalization".
  
Das Ergebnis dieses Vergleichs kann wie folgt zusammengefasst werden:
 
*Im binären Fall (<i>M</i> = 2) ist das impulsinterferenzfreie System (ONE) um etwa 6 dB besser als das impulsinterferenzbehaftete System (GTP).<br>
 
*Wendet man die optimale Nyquistentzerrung bei Mehrstufensystemen an, so ist gegenüber &bdquo;GTP&rdquo; ein weiterer, deutlicher  Störabstandsgewinn möglich. Für <i>M</i> = 4 ist dieser Gewinn etwa 18.2 dB.<br>
 
*Das schmalbandige GTP&ndash;System kann allerdings deutlich verbessert werden, wenn man einen Empfänger mit Entscheidungsrückkopplung verwendet. Dieser wird im Kapitel 3.6 behandelt.<br><br>
 
  
<b>Hinweis:</b> Alle Ergebnisse von Kapitel 3.5 lassen sich mit folgendem Interaktionsmodul nachvollziehen:<br>
 
[[:File:Lineare_Nyquistentzerrung.swf|Lineare Nyquistentzerrung]]<br>
 
  
==Aufgaben==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:3.6 ONE-Transversalfilter|A3.6 ONE-Transversalfilter]]
+
[[Aufgaben:Exercise_3.6:_Transversal_Filter_of_the_Optimal_Nyquist_Equalizer| Exercise 3.6: Transversal Filter of the Optimal Nyquist Equalizer]]
  
[[Zusatzaufgaben:3.6 Exponentialimpuls - ONE]]
+
[[Aufgaben:Exercise_3.6Z:Optimum_Nyquist_Equalizer_for_Exponential_Pulse| Exercise 3.6Z: Optimum Nyquist Equalizer for Exponential Pulse]]
  
[[Aufgaben:3.7 Optimale Nyquistentzerrung|A3.7 Optimale Nyquistentzerrung]]
+
[[Aufgaben:Exercise_3.7:_Optimal_Nyquist_Equalization_once_again|Exercise 3.7: Optimal Nyquist Equalization once again]]
  
[[Zusatzaufgaben:3.7 Regeneratorfeldlänge]]
+
[[Aufgaben:Exercise_3.7Z:_Regenerator_Field_Length|Exercise 3.7Z: Regenerator Field Length]]
  
==Quellenverzeichnis==
+
==References==
  
 
<references/>
 
<references/>

Latest revision as of 11:21, 13 July 2022

Structure of the optimal Nyquist equalizer


In this section we assume the following block diagram of a binary system.  In this regard,  it should be noted:

Block diagram of the optimal Nyquist equalizer
  • The  "Dirac source"  provides the message to be transmitted in binary bipolar form   ⇒   amplitude coefficients  $a_\nu \in \{ -1, \hspace{0.05cm}+1\}$.  The source is assumed to be redundancy-free.
  • The  "transmission pulse shape"  $g_s(t)$  is taken into account by the transmitter frequency response  $H_{\rm S}(f)$.  Mostly,  $H_{\rm S}(f) = {\rm sinc}(f T)$  is based   ⇒   NRZ rectangular transmission pulses.
  • In some derivations,  transmitter and channel are combined by the  "common frequency response"  $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$. 
  • The receiver filter  $H_{\rm E}(f)$  is multiplicatively composed of the  matched filter  $H_{\rm MF}(f) = H_{\rm SK}^\star(f)$  and the  transversal filter  $H_{\rm TF}(f)$,  at least it can be split up mentally in this way.
  • The overall frequency response between Dirac source and threshold decision should satisfy the   "first Nyquist condition".  Thus, it must hold:
$$H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm MF}(f) \cdot H_{\rm TF}(f) = H_{\rm Nyq}(f) \hspace{0.05cm}.$$
$$\rho_d = \frac{2 \cdot s_0^2 \cdot T}{\sigma_d^2} = \frac{2 \cdot s_0^2 \cdot T}{N_0}\cdot \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta = \frac{\rho_d }{\rho_{d,\hspace{0.05cm} {\rm max}}} = \frac{\rho_d }{2 \cdot s_0^2 \cdot T/N_0} = \frac{1}{\sigma_{d,\hspace{0.05cm} {\rm norm}}^2} \hspace{0.05cm}.$$
  • The optimization task is therefore limited to determining the receiver filter  $H_{\rm E}(f)$  such
    that the normalized noise power before the decision takes the smallest possible value:
\[\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/ T} =T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f \stackrel {!}{=} {\rm minimum}\hspace{0.05cm}.\]

$\text{Definition:}$  We refer to the configuration described here as  Optimal Nyquist Equalization  $\rm (ONE)$.


Although this can also – and especially effectively – be applied to multi-level systems, we initially set  $M = 2$.

Operating principle of the transversal filter

Second order transversal filter as part of the optimal Nyquist equalizer


Let us first clarify the task of the symmetric transversal filter with frequency response

$$H_{\rm TF}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm TF}(t) = \sum_{\lambda = -N}^{+N} k_\lambda \cdot \delta(t - \lambda \cdot T) $$

and the following properties:

  • $N$  indicates the  "order"  of the filter   ⇒   the graph shows a second order filter  $(N=2)$.
  • For the filter coefficients  $k_{-\lambda} = k_{\lambda}$   ⇒   symmetric structure   ⇒   $H_{\rm TF}(f)$ is real.
  • $H_{\rm TF}(f)$  is thus completely determined by the coefficients  $k_0$, ... , $k_N$.


For the input pulse  $g_m(t)$  we assume without restriction of generality that it

  • is symmetric about  $t=0$  (output of the matched filter),
  • has the value  $g_m(\nu)$  at times  $\nu \cdot T$  and  $-\nu \cdot T$,  respectively.


Thus,  the input pulse values are:

$$\text{...}\hspace{0.2cm} , g_m(3),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(1),\hspace{0.15cm}\hspace {0.15cm}g_m(0),\hspace{0.15cm}g_m(1),\hspace{0.15cm}g_m(2),\hspace{0.15cm}g_m(3),\hspace{0.1cm} \text{...}\hspace{0.05cm}.$$

Consequently,  for the basic detection pulse  $g_d(t)$  at the filter output, the following values result at the time instants  $\nu \cdot T$  with the abbreviations  $g_0 =g_d(t= 0)$,   $g_1 =g_d(t= \pm T)$,   $g_2 =g_d(t= \pm 2T)$: 

$$ t = 0\hspace{-0.1cm}:\hspace{0.9cm}g_0 = k_0 \cdot g_m(0) + k_1 \cdot 2 \cdot g_m(1) \hspace{1.23cm}+k_2 \cdot 2 \cdot g_m(2),\hspace{0.05cm} $$
$$ t = \pm T\hspace{-0.1cm}:\hspace{0.45cm}g_1 = k_0 \cdot g_m(1) + k_1 \cdot \big [g_m(0)+g_m(2)]+ k_2 \cdot [g_m(1)+g_m(3) \big ], $$
$$ t = \pm 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_0 \cdot g_m(2) + k_1 \cdot \big [g_m(1)+g_m(3)\big ]+ k_2 \cdot \big [g_m(2)+g_m(4)\big ] \hspace{0.05cm}. $$

From this system with three linearly independent equations,  one can determine the filter coefficients  $k_0$,  $k_1$  and  $k_2$  in such a way that the basic detection pulse  $g_d(t)$  has the following interpolation points:

$$\text{...}\hspace{0.15cm} , g_3,\hspace{0.25cm}g_2 = 0 ,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_0 = 1,\hspace{0.15cm}g_1 = 0 ,\hspace{0.15cm}g_2 = 0 ,\hspace{0.25cm}g_3 ,\hspace{0.15cm} \text{...}$$

$\text{Example 1:}$  We assume the symmetrical input signal according to the upper diagram in the graph. With the abbreviation  $g_m(\nu)= g_m(\pm \nu \cdot T)$  there are the following samples at the distance of the symbol duration  $T$:

$$g_m(t) = {\rm e}^{ - \sqrt{2 \hspace{0.05cm} \cdot \hspace{0.05cm}\vert\hspace{0.05cm} t \hspace{0.05cm} \vert /T} }\hspace{0.3cm} \Rightarrow \hspace{0.3cm} g_m(0) = 1 ,\hspace{0.35cm}g_m(1)= 0.243,\hspace{0.35cm}g_m(2)= 0.135,\hspace{0.35cm}g_m(3)= 0.086, \hspace{0.35cm}g_m(4)= 0.059 \hspace{0.05cm}.$$

⇒   For the output pulse  $g_d(t =0) = 1$  and  $g_d(t =\pm T) = 0$  should be valid.  For this purpose,  a first-order delay filter with coefficients  $k_0$  and  $k_1$ is suitable,  which must satisfy the following conditions:

Input and output pulse of the
optimal Nyquist equalizer
$$t = \pm T\hspace{-0.1cm} : \hspace{0.2cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot \big [1.000 +0.135 \big ] = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{k_1} = -0.214 \cdot {k_0}\hspace{0.05cm},$$
$$ t = 0 \hspace{-0.1cm} : \hspace{0.6cm}g_0 = k_0 \cdot 1.000 + k_1 \cdot 2 \cdot 0.243= 1\hspace{0.3cm}\Rightarrow \hspace{0.3cm}0.896 \cdot {k_0} = 1 \hspace{0.05cm}.$$

From this,  the optimal filter coefficients  $k_0 = 1.116$  and  $k_1 = 0.239$ are obtained.

  • The middle diagram shows that thus the first precursor and the first trailer can be compensated and at the same time  $g_d(0) =1$  is valid  (yellow background).
  • However,  the further basic detection pulse values (blue circles) are different from zero and cause intersymbol interference.

⇒   The lower diagram shows that with a second order filter  $(N = 2)$  zero crossings are forced at  $\pm T$  and at  $\pm 2T$  if the coefficients  $k_0 = 1.127$,  $k_1 = 0.219$  and  $k_2 = 0.075$  are suitably chosen. The system of equations for determining the optimal coefficients is thereby:

$$t = 0\hspace{-0.1cm}:\hspace{0.85cm}g_0 = k_0 \cdot 1.000 + k_1 \cdot 2 \cdot 0.243 + k_2 \cdot 2 \cdot 0.135 = 1\hspace{0.05cm},$$
$$t= \pm T\hspace{-0.1cm}:\hspace{0.45cm}g_1 = k_0 \cdot 0.243 + k_1 \cdot \big [1.000+0.135 \big ]+ k_2 \cdot \big [0.243+0.086 \big ] = 0\hspace{0.05cm},$$
$$t = \pm 2 T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_0 \cdot 0.135 + k_1 \cdot \big [0.243+0.086\big ]+ k_2 \cdot \big [1.000 + 0.059 \big ]= 0 \hspace{0.05cm}.$$


$\text{Conclusion:}$  The results can be generalized as follows:

  1. With an  $N$–th order delay filter,  the main value can be made to  $g_d(0)=1$  (normalized).
  2. The first $N$  trailers  $g_{\nu}$  and the first $N$  precursors  $g_{-\nu}$  can be made to zero.
  3. Further precursors and trailers  $(\nu \gt N)$  cannot be compensated in this way. 
  4. It is even possible that the precursors and trailers outside the compensation range are enlarged or even new ones are created.
  5. In the limit  $N \to \infty$  (in practice this means:   a filter with very many coefficients)  a complete Nyquist equalization and thus an ISI-free transmission is possible.


Description in the frequency domain


The fact that the optimal Nyquist equalizer is multiplicatively derived from

  • the matched filter  $H_{\rm MF}(f) = H_{\rm S}^\star (f)\cdot H_{\rm K}^\star(f)$  – i.e. matched to the basic receiver pulse  $g_r(t)$  – and
  • a transversal filter  $H_{\rm MF}(f)$  with infinitely many filter coefficients

follows from the first Nyquist criterion.  By applying the  "Calculus of Variations",  the frequency response of the transversal filter is obtained   – see [TS87][1]:

Magnitude frequency response of the transversal filter  (left) and the entire optimal Nyquist equalizer  (right)

$$H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - \frac{\kappa}{T}) |^2},$$ $$\text{where }H_{\rm SK}(f) = H_{\rm S}(f)\cdot H_{\rm K}(f).$$

The left graph shows  $20 \cdot \lg \ H_{\rm TF}(f)$  in the range  $| f | \le 1/T$. This assumes rectangular NRZ transmission pulses and a coaxial cable with the characteristic cable attenuation  $a_\star$.

One can see from the equation and the left graph:

  • $H_{\rm TF}(f)$  is  "real",  which results in the symmetrical structure of the transversal filter:   $k_{-\lambda} =k_{+\lambda} $.
  • $H_{\rm TF}(f)$  is at the same time   "periodic"  with frequency  $1/T$.
  • The coefficients are thus obtained from the  "Fourier series"  (applied to the spectral function):
$$k_\lambda =T \cdot \int_{-1/(2T)}^{+1/(2T)}\frac{\cos(2 \pi f \lambda T)} {\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2} \hspace{0.2cm} {\rm d} f$$
$$ \hspace{0.25cm}\Rightarrow \hspace{0.25cm}H_{\rm TF}(f) = \sum\limits_{\lambda = -\infty}^{+\infty} k_\lambda \cdot {\rm e}^{-{\rm j}2 \pi f \lambda T}\hspace{0.05cm}.$$

The right graph shows the frequency response  $20 \cdot \lg \ |H_{\rm E}(f)|$  of the entire receiver filter including the matched filter.  It holds:

$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f) = \frac{H_{\rm SK}^{\star}(f)}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}.$$

To these representations it is to be noted:

$$H_{\rm E}(f) =H_{\rm S}(f) = {\rm sinc} (f T).$$
  • While the transversal filter frequency response  $H_{\rm TF}(f)$  is symmetrical to the Nyquist frequency  $f_{\rm Nyq} = 1/(2T)$  at  $a_\star \ne 0 \ \rm dB$,  this symmetry is no longer given for the receiver filter overall frequency response  $H_{\rm E}(f)$. 
  • The maxima of the frequency responses  $H_{\rm TF}(f)$  and  $|H_{\rm E}(f)|$  depend significantly on the characteristic cable attenuation  $a_\star$.  From the blue and red function curves, respectively,  can be read:
$$a_{\star} = 40\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}\big[H_{\rm TF}(f)\big]\hspace{0.1cm} \approx 80\,{\rm dB}, \hspace{0.2cm}{\rm Max}\big[\ |H_{\rm E}(f)| \ \big] \approx 40\,{\rm dB}\hspace{0.05cm},$$
$$a_{\star} = 80\,{\rm dB}\hspace{-0.1cm}:\hspace{0.2cm}{\rm Max}\big[H_{\rm TF}(f)\big] \approx 160\,{\rm dB}, \hspace{0.2cm}{\rm Max}\big[\ |H_{\rm E}(f)|\ \big] \approx 80\,{\rm dB}\hspace{0.05cm}.$$


Approximation of the optimal Nyquist equalizer


We now consider the overall frequency response between the Dirac source and the decision.

  • This is made up multiplicatively of the frequency responses of the transmitter, channel and receiver.
  • According to the derivation, the overall frequency response must satisfy the Nyquist condition:
Optimum overall Nyquist frequency response for a coaxial cable system
$$H_{\rm Nyq}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f) \cdot H_{\rm E}(f) = \frac{|H_{\rm SK}(f)|^2}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}\hspace{0.05cm}.$$


The graph shows the following properties of the  optimal Nyquist equalizer  $\rm (ONE)$:

  • If the cable attenuation is sufficiently large  $(a_\star \ge 10 \ \rm dB)$,  the overall frequency response can be described with good approximation by the   "cosine rolloff low-pass"
  • The larger  $a_\star$  is,  the smaller is the rolloff factor  $r$  and the steeper is the edge drop.  For the characteristic cable attenuation  $a_\star = 40 \ \rm dB$  (blue curve)  we get  $r \approx 0.4$, for  $a_\star = 80 \ \rm dB$  (red curve) $r \approx 0.18$.
  • Above the frequency  $f_{\rm Nyq} \cdot (1 + r)$,   $H_{\rm Nyq}(f)$  has no components.  However,  with ideal channel   ⇒    $a_\star = 0 \ \rm dB$  (green curve),  $H_{\rm Nyq}(f)= {\rm sinc}^2(f T)$  theoretically extends to infinity.


The interactive applet  "Frequency & Impulse Responses"  illustrates,  among other things,  the properties of the  "cosine rolloff low–pass".


Calculation of the normalized noise power


We now consider the (normalized) noise power at the decision. For this holds:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = \frac{\sigma_d^2}{N_0/ (2T)} =T \cdot \int_{-1/(2T)}^{+1/(2T)} |H_{\rm E}(f)|^2 \,{\rm d} f .$$
To calculate the normalized noise power at the optimal Nyquist equalizer  $\rm (ONE)$
  • The left plot shows  $|H_{\rm E}(f)|^2$  in linear scale for the characteristic cable attenuation  $a_\star = 80 \ \rm dB$.  Note that  $|H_{\rm E}(f = 0)|^2 = 1$. 
  • Since the frequency has been normalized to  $1/T$  in this plot,  the normalized noise power corresponds exactly to the area  (highlighted in red)  under this curve.  The numerical evaluation results in:
$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = 1.68 \cdot 10^7\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 \approx 72.25\,{\rm dB} \hspace{0.05cm}.$$
  • It can be shown that the normalized noise power can be calculated using the transversal filter frequency response  $H_{\rm TF}(f)$  alone, as shown in the right graph:
$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f \hspace{0.3cm}(= k_0)\hspace{0.05cm}.$$
  • The red areas are exactly the same in both images.


$\text{Conclusion:}$  The normalized noise power of the optimal Nyquist equalizer is equal to the Fourier coefficient  $k_0$ when the real, symmetric, and periodic transversal filter frequency response  $H_{\rm TF}(f)$  is represented as a Fourier series.

Coefficients of the optimal Nyquist equalizer  $\rm (ONE)$
  • In the second column of the table,  $10 \cdot \lg \ (k_0)$  is given depending on the characteristic cable attenuation  $a_\star$  of a coaxial cable.
  • The coefficients  $k_1$,  $k_2$,  $k_3$, ... of the transversal filter have alternating signs for  $a_\star \ne 0 \ \rm dB$. 
  • For  $a_\star = 40 \ \rm dB$,  four coefficients are greater in magnitude than  $k_0/10$,  and for  $a_\star = 80 \ \rm dB$  even seven.

Comparison based on the system efficiency


For a system comparison, the  "system efficiency"  is suitable,  which relates the achievable detection SNR  $\rho_d$  to the maximum SNR  $\rho_{d, \ {\rm max}}$,  which,  however,  is only achievable for ideal channel  $H_{\rm K}(f) \equiv 1$. 

Comparison of binary and multi-level transmission systems according to  $\text{GLP}$  and  $\text{ONE}$

For the system efficiency, with  $M$–level transmission and optimal Nyquist equalization:

$$\eta = \frac{\rho_d}{s_0^2 \cdot T / N_0}=\frac{{\rm log_2}\hspace{0.1cm}M}{(M-1)^2 \cdot k_0}.$$
  • The  (normalized)  noise power  $k_0$  can be read from the  table  in the last section.
  • Note the normalization of the characteristic cable attenuation  $a_\star$  in the first column.
  • The table on the right from  [TS87][1]  allows a system comparison for the characteristic cable attenuation  $a_\star = 80 \ \rm dB$.


Compared are:


$\text{Conclusion:}$  The results of this system comparison can be summarized as follows:

  1. In the binary case  $(M = 2)$,  the intersymbol interference-free system  $\text{(ONE)}$  outperforms the intersymbol interference system  $\text{(GLP)}$ by about  $6 \ \rm dB$. 
  2. If the optimal Nyquist equalization is applied to multi-level systems, a further, significant gain in signal-to-noise ratio is possible compared to  $\text{GLP}$. 
  3. For  $M =4$,  this gain is about  $18.2 \ \rm dB$.
  4. However, the narrowband  $\text{GLP}$ system can be significantly improved by using a receiver with decision feedback. This will be discussed in the next chapter.


⇒   At this point we refer to the  (German language)  SWF applet  "Lineare Nyquistentzerrung"   ⇒   "Linear Nyquist Equalization".


Exercises for the chapter


Exercise 3.6: Transversal Filter of the Optimal Nyquist Equalizer

Exercise 3.6Z: Optimum Nyquist Equalizer for Exponential Pulse

Exercise 3.7: Optimal Nyquist Equalization once again

Exercise 3.7Z: Regenerator Field Length

References

  1. 1.0 1.1 Tröndle, K.; Söder, G.:  Optimization of Digital Transmission Systems.  Boston – London: Artech House, 1987,  ISBN:  0-89006-225-0.