Difference between revisions of "Modulation Methods/Envelope Demodulation"

From LNTwww
m
 
(40 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Amplitudenmodulation und AM–Demodulation
+
|Untermenü=Amplitude Modulation and Demodulation
|Vorherige Seite=Amplitude Modulation and Demodulation
+
|Vorherige Seite=Synchronous Demodulation
|Nächste Seite=Einseitenbandmodulation
+
|Nächste Seite=Single-Sideband Modulation
 
}}
 
}}
 
==Functionality under ideal conditions==
 
==Functionality under ideal conditions==
 
<br>
 
<br>
Wie first assume the following conditions:
+
We first assume the following conditions:
*Let the source signal &nbsp;$q(t)$&nbsp; be free of a DC component and limited in magnitude to &nbsp;$q_{\rm max}$&nbsp;.  
+
*Let the source signal &nbsp;$q(t)$&nbsp; be free of a DC component and limited in magnitude to &nbsp;$q_{\rm max}$.
*The transmission is based on the modulation method „DSB–AM with carrier”.&nbsp;  
+
*For simplicity of representation, the carrier phase is set to &nbsp;$\mathbf{ϕ_{\rm T} } = 0$&nbsp; without restricting generality:
+
*The transmission is based on the modulation method&nbsp; "DSB–AM with carrier".&nbsp;
 +
 
 +
*For simplicity of representation,&nbsp; the carrier phase is set to &nbsp;$\mathbf{ϕ_{\rm T} } = 0$&nbsp; without restricting generality:
 
:$$s(t) = \left(q(t) + A_{\rm T}\right)  \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$
 
:$$s(t) = \left(q(t) + A_{\rm T}\right)  \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$
*Let the modulation depth be&nbsp;$m ≤ 1$.&nbsp; Therefore, from the definition&nbsp;$m = q_{\rm max}/A_{\rm T}$&nbsp; it also follows that &nbsp;$q(t) + A_{\rm T} ≥ 0$.  
+
 
*Let the channel be ideal, that is, there is no distortion, no attenuation, no delay, and no (noise) interference.
+
*Let the modulation depth be&nbsp;$m ≤ 1$.&nbsp; Therefore,&nbsp; from the definition&nbsp; $m = q_{\rm max}/A_{\rm T}$&nbsp; it also follows that &nbsp;$q(t) + A_{\rm T} ≥ 0$.
*Thus, when &nbsp;$H_{\rm K}(f) = 1$&nbsp; and &nbsp;$n(t) \equiv 0$&nbsp; we get  
+
 +
*Let the channel be ideal,&nbsp; that is,&nbsp; there is no distortion,&nbsp; no attenuation,&nbsp; no delay,&nbsp; no  interference,&nbsp; and no noise.
 +
 
 +
*Thus,&nbsp; when &nbsp;$H_{\rm K}(f) = 1$&nbsp; and &nbsp;$n(t) \equiv 0$&nbsp; we get for the received signal:
 
:$$r(t) = s(t) = a(t)  \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}$$
 
:$$r(t) = s(t) = a(t)  \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}$$
:for the received signal.
+
 
*In this equation, &nbsp;$a(t)$&nbsp; describes the &nbsp; '''envelope'''&nbsp;of &nbsp;$r(t)$.&nbsp; The phase function is &nbsp;$\mathbf{ϕ}(t) = 0$.  
+
*In this equation, &nbsp;$a(t)$&nbsp; describes the&nbsp; &raquo;'''envelope'''&laquo;&nbsp; of the received signal &nbsp;$r(t)$.&nbsp; The phase function is &nbsp;$\mathbf{ϕ}(t) = 0$.  
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$ &nbsp; An &nbsp; '''envelope demodulator'''&nbsp; detects the envelope &nbsp;$a(t)$&nbsp; of its input signal &nbsp;$r(t)$&nbsp; and outputs it as a sink signal after eliminating the DC component &nbsp;$A_{\rm T}$&nbsp;:  
+
$\text{Definition:}$ &nbsp; An &nbsp; &raquo;'''envelope demodulator'''&laquo;&nbsp; detects the envelope &nbsp;$a(t)$&nbsp; of its input signal &nbsp;$r(t)$&nbsp; and outputs the sink signal after eliminating the DC component &nbsp;$A_{\rm T}$:  
 
:$$v(t) = a(t) - A_{\rm T}\hspace{0.05cm}.$$
 
:$$v(t) = a(t) - A_{\rm T}\hspace{0.05cm}.$$
The removal of the DC component &nbsp;$A_{\rm T}$&nbsp; can be realized, for example, by a high-pass filter that allows all frequencies to pass unimpeded except for $f = 0$&nbsp;.}}
+
The removal of the DC component &nbsp;$A_{\rm T}$&nbsp; can be realized,&nbsp; for example,&nbsp; by a high-pass filter that allows all frequencies to pass unimpeded except for&nbsp; $f = 0$&nbsp;.}}
  
  
*If all the above conditions are met, then&nbsp;$v(t) = q(t)$ holds.  
+
*If all the above conditions are met,&nbsp; then&nbsp;$v(t) = q(t)$&nbsp; holds.
*This means that an ideal message communication system can certainly be realized with an (ideal) envelope demodulator.
+
 +
*This means that an ideal communication system can certainly be realized with an&nbsp; (ideal)&nbsp; envelope demodulator.
  
  
Line 33: Line 39:
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Example 1:}$ &nbsp; In the graph, the received signal &nbsp;$r(t) = s(t)$&nbsp; is shown below, and is based on "DSB–AM with carrier” $($modulation depth &nbsp;$m = 0.5)$.  
+
$\text{Example 1:}$ &nbsp; In the graph,&nbsp; the received signal &nbsp;$r(t) = s(t)$&nbsp; is shown below,&nbsp; and is based on&nbsp; "DSB–AM with carrier”&nbsp; $($modulation depth &nbsp;$m = 0.5)$.  
*The envelope &nbsp;$a(t)$&nbsp; to be evaluated by the envelope demodulator is equal to the sum of the source signal &nbsp;$q(t)$&nbsp; and the DC component &nbsp;$A_{\rm T}$ added at the transmitter.  
+
*The envelope &nbsp;$a(t)$&nbsp; to be evaluated by the envelope demodulator is equal to the sum of the source signal &nbsp;$q(t)$&nbsp; and the DC component &nbsp;$A_{\rm T}$&nbsp; added at the transmitter.  
  
*&nbsp;$v(t) = q(t)$ holds for the demodulator output signal after removing the DC component &nbsp;$A_{\rm T}$&nbsp; with a high-pass filter, assuming that the source signal &nbsp;$q(t)$&nbsp; did not include a DC component. &nbsp; Such a component would (wrongly) also be removed by the high-pass filter.}}
+
*$v(t) = q(t)$&nbsp; holds for the demodulator output signal after removing the DC component &nbsp;$A_{\rm T}$&nbsp; with a high-pass filter,&nbsp; assuming that the source signal &nbsp;$q(t)$&nbsp; did not include a DC component.&nbsp; Such a DC component would&nbsp; (wrongly)&nbsp; also be removed by the high-pass filter.}}
  
  
 
==Realizing an envelope demodulator==
 
==Realizing an envelope demodulator==
[[File: EN_Mod_T_2_3_S2.png|frame|Envelope demodulator| rechts]]
+
[[File: EN_Mod_T_2_3_S2.png|right|frame|Principle of envelope demodulation in the time domain]]
 
The adjacent graph shows:
 
The adjacent graph shows:
*above, a simple possible realization of the envelope demodulator above,  
+
*above,&nbsp; a simple possible realization of the envelope demodulator,  
*below, the signals &nbsp;$r(t)$&nbsp; and &nbsp;$w(t)$&nbsp; to illustrate the principle.  
+
 
 +
*below,&nbsp; the signals &nbsp;$r(t)$&nbsp; and &nbsp;$w(t)$&nbsp; to illustrate the principle.  
  
  
First, consider the middle signal section denoted by &nbsp;$T = T_{\rm opt}$&nbsp;.
+
First,&nbsp; consider the middle signal section denoted by &nbsp;$T = T_{\rm opt}$.
  
 
The first circuit section – consisting of a diode and a parallel connection of a resistor &nbsp;$R$&nbsp; and a capacitance&nbsp;$C$&nbsp; – performs the following tasks:
 
The first circuit section – consisting of a diode and a parallel connection of a resistor &nbsp;$R$&nbsp; and a capacitance&nbsp;$C$&nbsp; – performs the following tasks:
*If the (light) grey signal&nbsp;$r(t)$&nbsp;is larger than the voltage &nbsp;$r(t)$&nbsp; at &nbsp;$R$&nbsp; and &nbsp;$C$, the diode conducts, &nbsp;$w(t) = r(t)$&nbsp; holds, and the capacitance $C$  is charged.  In these regions, the signal &nbsp;$w(t)$&nbsp; is drawn in green.
+
*If the&nbsp; (light)&nbsp; gray signal&nbsp; $r(t)$&nbsp;is larger than the voltage &nbsp;$w(t)$&nbsp; at &nbsp;$R$&nbsp; and &nbsp;$C$,&nbsp; the diode conducts, &nbsp;$w(t) = r(t)$&nbsp; holds,&nbsp; and the capacitance&nbsp; $C$&nbsp; is charged.  In these regions,&nbsp; $w(t)$&nbsp; is drawn in green.
*If &nbsp;$r(t) < w(t)$&nbsp;, as it does at the times marked in purple, the diode blocks and the capacitance discharges through resistor &nbsp;$R$.  The signal &nbsp;$w(t)$&nbsp; decays exponentially with time constant &nbsp;$T = R · C$&nbsp;.
+
 
*From the times marked with circles, &nbsp;$r(t) > w(t)$&nbsp; holds again and the capacitance is recharged.  It can be seen from the sketch that &nbsp;$w(t)$&nbsp; "approximately" matches the envelope &nbsp;$a(t)$&nbsp;.
+
*If &nbsp;$r(t) < w(t)$,&nbsp; as is the case at the times marked in purple,&nbsp; the diode blocks and the capacitance discharges through resistor &nbsp;$R$.&nbsp; The signal &nbsp;$w(t)$&nbsp; decays exponentially with time constant &nbsp;$T = R · C$.
 +
 
 +
*From the times marked with circles, &nbsp;$r(t) > w(t)$&nbsp; holds again and the capacitance is recharged.&nbsp; It can be seen from the sketch that &nbsp;$w(t)$&nbsp;  matches&nbsp; "approximately"&nbsp; the envelope &nbsp;$a(t)$.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Design criteria:}$ &nbsp;  
 
$\text{Design criteria:}$ &nbsp;  
*The deviations between the envelope approximation &nbsp;$w(t)$&nbsp; and its nominal function &nbsp;$a(t)$&nbsp; decrease the larger the carrier frequency &nbsp;$f_{\rm T}$&nbsp; is compared to the bandwidth &nbsp;$B_{\rm NF}$&nbsp; of the low frequency message signal. As a guideline, &nbsp;$f_{\rm T} ≥ 100 · B_{\rm NF}$&nbsp; is often given.
+
*The deviations between the envelope approximation &nbsp;$w(t)$&nbsp; and its nominal function &nbsp;$a(t)$&nbsp; decrease the larger the carrier frequency &nbsp;$f_{\rm T}$&nbsp; is compared to the bandwidth &nbsp;$B_{\rm NF}$&nbsp; of the low frequency message signal.&nbsp; As a guideline, &nbsp;$f_{\rm T} ≥ 100 · B_{\rm NF}$&nbsp; is often given.
*At the same time, the time constant &nbsp;$T$&nbsp; of the RC &ndash;parallel resonant circuit should always be much larger than &nbsp;$1/f_{\rm T}$&nbsp; and much smaller than &nbsp;$1/B_{\rm NF}$&nbsp;.  A good compromise is the geometric mean between the two limits:
+
 
:$$1/f_{\rm T}\hspace{0.1cm} \ll \hspace{0.1cm} T  \hspace{0.1cm} \ll  \hspace{0.1cm} 1/B_{\rm NF} \hspace{0.05cm}, \hspace{2cm} T_{\rm opt} = {1}/{\sqrt{f_{\rm T} \cdot B_{\rm NF} } } \hspace{0.05cm}.$$
+
*At the same time,&nbsp; the time constant &nbsp;$T$&nbsp; of the RC parallel resonant circuit should always be much larger than &nbsp;$1/f_{\rm T}$&nbsp; and much smaller than &nbsp;$1/B_{\rm NF}$:
*If the time constant &nbsp;$T$&nbsp; is too small, as in the left area of the sketch above, the capacitor will always discharge too quickly and the deviation &nbsp;$w(t) \ – \ a(t)$&nbsp; will be unnecessarily large.
+
:$$1/f_{\rm T}\hspace{0.1cm} \ll \hspace{0.1cm} T  \hspace{0.1cm} \ll  \hspace{0.1cm} 1/B_{\rm NF} \hspace{0.05cm}, $$
*Also, too large a value &nbsp;$T > T_{\rm opt}$&nbsp; will result in deterioration, as shown in the right signal detail.  In this case, &nbsp;$w(t)$&nbsp; can no longer follow the envelope &nbsp;$a(t)$&nbsp;.}}
+
 
 +
*A good compromise is the geometric mean between the two limits:
 +
:$$ T_{\rm opt} = {1}/{\sqrt{f_{\rm T} \cdot B_{\rm NF} } } \hspace{0.05cm}.$$
 +
 
 +
*If the time constant &nbsp;$T$&nbsp; is too small,&nbsp; as in the left area of the sketch above,&nbsp; the capacitor will always discharge too quickly and the deviation &nbsp;$w(t) \ – \ a(t)$&nbsp; will be unnecessarily large.
 +
 
 +
*Also,&nbsp; a too large value &nbsp;$T > T_{\rm opt}$&nbsp; will result in deterioration,&nbsp; as shown in the right signal detail.&nbsp; In this case, &nbsp;$w(t)$&nbsp; can no longer follow the envelope &nbsp;$a(t)$.}}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Example 2:}$ &nbsp; For a LF-bandwidth of &nbsp;$5 \ \rm kHz$&nbsp;, the carrier frequency should be at least &nbsp;$500 \ \rm kHz$&nbsp;.  
+
$\text{Example 2:}$ &nbsp; For a low frquency bandwidth of &nbsp;$B_{\rm NF} = 5 \ \rm kHz$,&nbsp; the carrier frequency should be at least &nbsp;$f_{\rm T} = 500 \ \rm kHz$&nbsp;.  
 
*The time constant &nbsp;$T$&nbsp; must be much larger than &nbsp;$1/f_{\rm T} = 2 \ \rm  &micro; s$&nbsp; and at the same time much smaller than &nbsp;$1/B_{\rm NF} = 200 \ \rm &micro;  s $.
 
*The time constant &nbsp;$T$&nbsp; must be much larger than &nbsp;$1/f_{\rm T} = 2 \ \rm  &micro; s$&nbsp; and at the same time much smaller than &nbsp;$1/B_{\rm NF} = 200 \ \rm &micro;  s $.
 +
 
*The optimal value according to the compromise formula is thus:
 
*The optimal value according to the compromise formula is thus:
 
:$$T_{\rm opt} =  1/\sqrt{ 5 \cdot 10^5 \ {\rm Hz} \cdot 5 \cdot 10^3 \ {\rm Hz} } = 20 \ \rm &micro; s \hspace{0.05cm}.$$ }}
 
:$$T_{\rm opt} =  1/\sqrt{ 5 \cdot 10^5 \ {\rm Hz} \cdot 5 \cdot 10^3 \ {\rm Hz} } = 20 \ \rm &micro; s \hspace{0.05cm}.$$ }}
  
  
[[File:EN_Mod_T_2_3_S2b.png|right|frame|Representation of an envelope demodulator in the frequency domain.]]
+
[[File:EN_Mod_T_2_3_S2b.png|right|frame|Frequency domain representation of an envelope demodulator]]
 
The graph on the right is intended to illustrate the operation of the envelope demodulator in the frequency domain. The spectrum &nbsp;$W(f)$&nbsp; of the signal &nbsp;$w(t)$&nbsp; at the RC parallel circuit differs from the spectrum  &nbsp;$Q(f)$&nbsp; of the source signal as follows:
 
The graph on the right is intended to illustrate the operation of the envelope demodulator in the frequency domain. The spectrum &nbsp;$W(f)$&nbsp; of the signal &nbsp;$w(t)$&nbsp; at the RC parallel circuit differs from the spectrum  &nbsp;$Q(f)$&nbsp; of the source signal as follows:
*Due to the carrier signal &nbsp;$z(t)$&nbsp; added at the transmitter, the spectral function &nbsp;$W(f)$&nbsp; includes a Dirac line at &nbsp;$f = 0$&nbsp; with weight &nbsp;$A_{\rm T}$&nbsp; (carrier amplitude).
+
*Due to the carrier signal &nbsp;$z(t)$&nbsp; added at the transmitter,&nbsp; the spectral function &nbsp;$W(f)$&nbsp; includes a Dirac delta line at &nbsp;$f = 0$&nbsp; with weight &nbsp;$A_{\rm T}$&nbsp; (carrier amplitude).
* $W(f)$&nbsp; also exhibits spectral components in the region around the carrier frequency  &nbsp;$f_{\rm T}$&nbsp;, which can be explained by the jagged time course of &nbsp;$w(t)$&nbsp; (see the first graph in this section).
+
 
*&nbsp;$W(f)$&nbsp; also differs only slightly from &nbsp;$Q(f)$&nbsp; in the LF domain.  Here, the error gets smaller as the carrier frequency increases compared to the AF bandwidth.
+
* $W(f)$&nbsp; also exhibits spectral components in the region around the carrier frequency  &nbsp;$f_{\rm T}$,&nbsp; which can be explained by the jagged time course of &nbsp;$w(t)$&nbsp; (see the first graph in this section).
 +
 
 +
*&nbsp;$W(f)$&nbsp; also differs only slightly from &nbsp;$Q(f)$&nbsp; in the low frequency domain.&nbsp; Here,&nbsp; the error gets smaller as the carrier frequency increases compared to the bandwidth&nbsp; $B_{\rm NF}$.
 
<br clear=all>
 
<br clear=all>
The first two signal distortions are eliminated by the high-pass and low-pass filters, which together produce a bandpass. However, there also remains a slight deviation between the sink signal &nbsp;$v(t)$&nbsp; and the source signal &nbsp;$q(t)$&nbsp; in the interesting range &nbsp;$0 < f < B_{\rm NF}$&nbsp;, as shown by comparing the output spectrum &nbsp;$V(f)$&nbsp; plotted in red and the input spectrum &nbsp;$Q(f)$&nbsp;  plotted in blue.
+
The first two signal distortions are eliminated by the high-pass and low-pass filters,&nbsp; which together produce a band-pass. However,&nbsp; there also remains a slight deviation between the sink signal &nbsp;$v(t)$&nbsp; and the source signal &nbsp;$q(t)$&nbsp; in the interesting range &nbsp;$0 < f < B_{\rm NF}$,&nbsp; as shown by comparing the output spectrum &nbsp;$V(f)$&nbsp; plotted in red and the input spectrum &nbsp;$Q(f)$&nbsp;  plotted in blue.
  
  
==Why envelope demodulation fails for &nbsp; $m > 1$&nbsp;==
+
==Why does envelope demodulation fail for&nbsp; $m > 1$?==
 
<br>
 
<br>
[[File:Mod_T_2_3_S3_version2.png|right|frame|Envelope demodulation  when &nbsp; $m  < 1$&nbsp; (above) and&nbsp;  $m  > 1$&nbsp; (below)]]
 
The graph shows the DSB-AM signals for &nbsp;$m = 0.5$&nbsp; and &nbsp;$m = 2$.&nbsp;
 
  
From this picture one can recognise the following differences:
+
The graph shows the DSB-AM signals for &nbsp;$m = 0.5$&nbsp; and &nbsp;$m = 2$.&nbsp; From this picture one can recognize the following differences:
 +
[[File:Mod_T_2_3_S3_version2.png|right|frame|Envelope demodulation  when&nbsp; $m  < 1$&nbsp; (above) and&nbsp;  $m  > 1$&nbsp; (below)]]
  
* For a modulation depth &nbsp;$m ≤ 1$&nbsp; the envelope of the bandpass signal is characterised by:
+
* For a modulation depth &nbsp;$m ≤ 1$&nbsp; the envelope of the band-pass signal is characterized by:
:$$a(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$
+
::$$a(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$
:Here, an ideal demodulation is possible with an envelope demodulator &nbsp; &rArr; $v(t) = q(t)$, if we ignore unavoidable noise.
+
:Here,&nbsp; an ideal demodulation &nbsp; &rArr; &nbsp; $v(t) = q(t)$&nbsp; is possible with an envelope demodulator,&nbsp; if we ignore unavoidable noise.
* In contrast, when &nbsp;$m > 1$&nbsp;, the following relationship holds:
+
 
:$$a(t) = {q(t) + A_{\rm T} }\hspace{0.05cm}.$$  
+
* In contrast,&nbsp; with &nbsp;$m > 1$&nbsp; the following relationship holds:
:*Here, envelope demodulation always leads to &nbsp;[[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|nonlinear distortions]].
+
::$$a(t) = |q(t) + A_{\rm T} |\hspace{0.05cm}.$$  
:*The sink signal &nbsp;$v(t)$&nbsp; now includes new frequencies, which were not present in&nbsp;$q(t)$&nbsp;.
+
#Here,&nbsp; envelope demodulation always leads to &nbsp;[[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|$\text{nonlinear distortions}$]].
:*For the DC component(expected value) of the envelope der Hüllkurve gilt in diesem Fall: &nbsp;  
+
#The sink signal &nbsp;$v(t)$&nbsp; now includes new frequencies,&nbsp; which were not present in&nbsp;$q(t)$.
::$${\rm E}[a(t)] \ne  A_{\rm T}\hspace{0.05cm}.$$
+
#For the DC component&nbsp;(expected value)&nbsp; of the envelopein this case it holds that: <br> &nbsp; &nbsp;${\rm E}[a(t)] \ne  A_{\rm T}\hspace{0.05cm}.$
:*Da nun anstelle von &nbsp;$A_{\rm T}$&nbsp; dieser Gleichanteil &nbsp;${\rm E}[a(t)]$&nbsp; durch den Hochpass entfernt wird, kommt es zusätzlich zu einer Pegelverschiebung.  
+
#Since now instead of &nbsp;$A_{\rm T}$&nbsp; this DC component &nbsp;${\rm E}[a(t)]$&nbsp; is removed by the high-pass filter,&nbsp; an additional level shift occurs.
  
 
==Description using the equivalent low-pass signal==
 
==Description using the equivalent low-pass signal==
 
<br>
 
<br>
Especially when the source signal &nbsp;$q(t)$&nbsp; can be represented as a sum of several harmonic oscillations, a signal description with the equivalent low-pass signal &nbsp;${|r_{\rm TP}(t)|}$&nbsp; is extremely advantageous.   
+
Especially when the source signal &nbsp;$q(t)$&nbsp; can be represented as a sum of several harmonic oscillations,&nbsp; a signal description with the equivalent low-pass signal &nbsp;${r_{\rm TP}(t)}$&nbsp; is extremely advantageous.&nbsp; This is described in detail in the book &nbsp;[[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|"Signal Representation"]].  
This is described in detail in the book &nbsp;[[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Signal Representation]]&nbsp;.  
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Please note:}$&nbsp; If noise/interference is disregarded, the '''received signal''' can be written as:
+
$\text{Please note:}$&nbsp; If noise/interference is disregarded,&nbsp; the&nbsp; &raquo;'''received signal'''&laquo;&nbsp; can be written as:
 
:$$r(t) = a(t)  \cdot \cos (\omega_{\rm T}\cdot t + \phi(t))\hspace{0.05cm}.$$}}
 
:$$r(t) = a(t)  \cdot \cos (\omega_{\rm T}\cdot t + \phi(t))\hspace{0.05cm}.$$}}
  
  
 
This equation is valid for any form of amplitude modulation under different boundary conditions:
 
This equation is valid for any form of amplitude modulation under different boundary conditions:
*Double sideband (DSB) or single sideband (SSB),  
+
*Double sideband (DSB) or single sideband (SSB),
 +
 
*with or without a carrier,  
 
*with or without a carrier,  
 +
 
*ideal channel or linear distorting channel.  
 
*ideal channel or linear distorting channel.  
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
In general, the associated '''equivalent low-pass signal''' is complex and given as:  
+
$\text{In general}$:&nbsp; The associated&nbsp; &raquo;'''equivalent low-pass signal'''&laquo;&nbsp; (German:&nbsp; "äquivalentes Tiefpass&ndash;Signal" &nbsp; &rArr; &nbsp; subscript&nbsp; "TP")&nbsp;is complex and given as:  
 
:$$r_{\rm TP}(t) = a(t)  \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi(t)}\hspace{0.05cm}.$$
 
:$$r_{\rm TP}(t) = a(t)  \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi(t)}\hspace{0.05cm}.$$
  
 
The time functions &nbsp;$a(t)$&nbsp; and &nbsp;$ϕ(t)$&nbsp; contained in the equations are identical for both representations:
 
The time functions &nbsp;$a(t)$&nbsp; and &nbsp;$ϕ(t)$&nbsp; contained in the equations are identical for both representations:
* $a(t)$&nbsp; describes the&nbsp; '''envelope'''&nbsp; (time-dependent amplitude) of the physical signal &nbsp;$r(t)$&nbsp; and the magnitude &nbsp;$\vert r_{\rm TP}(t) \vert $&nbsp; of the equivalent LP signal, respectively.&nbsp; This is detected during envelope demodulation.
+
* The function&nbsp; $a(t)$&nbsp; describes the&nbsp; &raquo;'''envelope'''&laquo;&nbsp; (time-dependent amplitude)&nbsp; of the physical signal &nbsp;$r(t)$&nbsp; and the magnitude &nbsp;$\vert r_{\rm TP}(t) \vert $&nbsp; of the equivalent low-pass signal, respectively.&nbsp; This is detected during envelope demodulation.
* $ϕ(t)$&nbsp; is the&nbsp; '''time-dependent phase'''.&nbsp; This function contains all information about the position of the zero crossings of &nbsp;$r(t)$&nbsp; and indicates whether an additional phase modulation is effective.}}
+
 
 +
* The function&nbsp; $ϕ(t)$&nbsp; is the&nbsp; &raquo;'''time-dependent phase'''&laquo;.&nbsp; This function contains all information about the position of the zero crossings of &nbsp;$r(t)$&nbsp; and indicates whether an additional phase modulation is effective.}}
 +
 
  
 +
In the case of double sideband amplitude modulation&nbsp; $\text{(DSB-AM)}$,&nbsp; the following holds for an ideal channel:
 +
*The&nbsp; &raquo;'''locality curve'''&laquo;&nbsp; or&nbsp; &raquo;'''locus curve'''&laquo;&nbsp; – by this we mean the time-dependent representation of the signal&nbsp; $r_{\rm TP}(t)$&nbsp; in the complex plane – is a horizontal straight line on the real axis.
  
In the case of double sideband amplitude modulation, the following holds for an ideal channel:
 
*The ''locus curve'' – by this we mean the time-dependent representation of the signal &nbsp;$r_{\rm TP}(t)$&nbsp; in the complex plane – is a horizontal straight line on the real axis.
 
 
*It further follows that the phase function can take only two values: &nbsp;$0$&nbsp; and &nbsp;$π$ &nbsp; $(180^\circ)$&nbsp;.  
 
*It further follows that the phase function can take only two values: &nbsp;$0$&nbsp; and &nbsp;$π$ &nbsp; $(180^\circ)$&nbsp;.  
:*When &nbsp;$m ≤ 1$&nbsp;, then &nbsp;$ϕ(t) ≡ 0$&nbsp; and envelope demodulation can be applied without distortion.  
+
:*When &nbsp;$m ≤ 1$,&nbsp; then &nbsp;$ϕ(t) ≡ 0$&nbsp; and the envelope demodulation can be applied without distortion.  
:*When &nbsp;$m > 1$&nbsp;, a section of the locus curve lies in the left half-plane&nbsp; &rArr; &nbsp; nonlinear distortions arise when envelope demodulation is applied.  
+
:*When &nbsp;$m > 1$,&nbsp; a section of the locus curve lies in the left half-plane &nbsp; &rArr; &nbsp; nonlinear distortions arise when envelope demodulation is applied.  
  
  
[[File: P_ID1023__Mod_T_2_3_S4_neu.png|right|frame|Locus curves illustrating envelope demodulation]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Example 3:}$ &nbsp; We assume that the source signal &nbsp;$q(t)$&nbsp; can take on all values in the range &nbsp;$±1\ \rm  V$&nbsp;.  
+
$\text{Example 3:}$ &nbsp; We assume that the source signal &nbsp;$q(t)$&nbsp; can take on all values in the range &nbsp;$±1\ \rm  V$.
*Adding a DC component of &nbsp;$A_{\rm T} = 2\ \rm  V$&nbsp; results in a DSB-AM with modulation depth &nbsp;$m = 0.5$, whose locus curve can be seen in the left graph.
+
[[File: P_ID1023__Mod_T_2_3_S4_neu.png|right|frame|Locus curves illustrating envelope demodulation]]
*$r_{\rm TP}(t)$&nbsp; always lies in the right half-plane.&nbsp; The pointer length changes with the message signal &nbsp;$q(t)$.  
+
*Adding a DC component of &nbsp;$A_{\rm T} = 2\ \rm  V$&nbsp; results in a DSB-AM with modulation depth &nbsp;$m = 0.5$,&nbsp; whose locus curve can be seen in the left graph.
 +
 
 +
*$r_{\rm TP}(t)$&nbsp; always lies in the right half-plane.&nbsp; The pointer length changes with the source signal &nbsp;$q(t)$.  
  
  
The right-hand graph shows the locus curve for &nbsp;$A_{\rm T} = 0.5 \ \rm  V$ &nbsp; &rArr; &nbsp; $m = 2$.  
+
The right-hand graph holds for &nbsp;$A_{\rm T} = 0.5 \ \rm  V$ &nbsp; &rArr; &nbsp; $m = 2$.  
*&nbsp;$r_{\rm TP}(t)$&nbsp; now takes on real values between&nbsp;$-0.5\ \rm  V$&nbsp; and &nbsp;$1.5\ \rm  V$&nbsp;.  
+
*&nbsp;$r_{\rm TP}(t)$&nbsp; now takes on real values between&nbsp;$-0.5\ \rm  V$&nbsp; and &nbsp;$1.5\ \rm  V$.
 +
 
*The envelope demodulator cannot distinguish between positive and negative values &nbsp; &rArr; &nbsp; nonlinear distortions occur.  
 
*The envelope demodulator cannot distinguish between positive and negative values &nbsp; &rArr; &nbsp; nonlinear distortions occur.  
  
  
The physical signals &nbsp;$q(t)$, &nbsp;$r(t)$ and &nbsp;$v(t)$&nbsp; corresponding to this example can be found in the graph on the [[Modulation_Methods/Envelope_Demodulation#Why_envelope_demodulation_fails_for_.7F.27.22.60UNIQ-MathJax104-QINU.60.22.27.7F|previous page]].}}  
+
The physical signals &nbsp;$q(t)$, &nbsp;$r(t)$ and &nbsp;$v(t)$&nbsp; corresponding to this example can be found in the graph in the&nbsp; [[Modulation_Methods/Envelope_Demodulation#Why_does_envelope_demodulation_fail_for_.7F.27.22.60UNIQ-MathJax104-QINU.60.22.27.7F.3F|"previous section"]].}}  
  
 
==Special case of a cosine-shaped message signal==
 
==Special case of a cosine-shaped message signal==
 
<br>
 
<br>
To quantitatively capture the nonlinear distortions due to a modulation depth &nbsp;$m> 1$&nbsp;, we assume the following scenario:
+
To quantitatively capture the nonlinear distortions due to a modulation depth &nbsp;$m> 1$,&nbsp; we assume the following scenario:
[[File: P_ID2960__Mod_T_2_3_S5_neu.png |right|frame| Error signal for envelope demodulation]]
+
 
 
*cosine-shaped source signal: &nbsp; $q(t) = A_{\rm N} \cdot  \cos(\omega_{\rm N} \cdot t);$
 
*cosine-shaped source signal: &nbsp; $q(t) = A_{\rm N} \cdot  \cos(\omega_{\rm N} \cdot t);$
 +
 
*DSB–AM with carrier: &nbsp; $s(t) = \left ( q(t) + A_{\rm T} \right ) \hspace{-0.05cm}\cdot  \hspace{-0.05cm}\cos(\omega_{\rm N} \hspace{-0.05cm}\cdot \hspace{-0.05cm}t),$ &nbsp; $r(t) = s(t);$
 
*DSB–AM with carrier: &nbsp; $s(t) = \left ( q(t) + A_{\rm T} \right ) \hspace{-0.05cm}\cdot  \hspace{-0.05cm}\cos(\omega_{\rm N} \hspace{-0.05cm}\cdot \hspace{-0.05cm}t),$ &nbsp; $r(t) = s(t);$
 +
 
*modulation depth: &nbsp; $m = A_{\rm N}/A_{\rm T} = 1.25;$
 
*modulation depth: &nbsp; $m = A_{\rm N}/A_{\rm T} = 1.25;$
 +
 
*ideal envelope demodulation: &nbsp; $a(t) = {| q(t) + A_{\rm T}|} $
 
*ideal envelope demodulation: &nbsp; $a(t) = {| q(t) + A_{\rm T}|} $
*elimination of the DC component by low-pass: &nbsp;  $r(t) = a(t) - {\rm E}\big[a(t)\big].$
+
 
 +
*elimination of the DC component by a low-pass: &nbsp;  $r(t) = a(t) - {\rm E}\big[a(t)\big].$
  
  
 
The graph is valid for the signal parameters  &nbsp;$A_{\rm N} = 5 \ \rm V$, &nbsp;$f_{\rm N} = 2 \ \rm kHz$, &nbsp;$A_{\rm T} = 4 \ \rm  V$&nbsp; and &nbsp;$f_{\rm T} = 100\ \rm  kHz$.&nbsp; It shows
 
The graph is valid for the signal parameters  &nbsp;$A_{\rm N} = 5 \ \rm V$, &nbsp;$f_{\rm N} = 2 \ \rm kHz$, &nbsp;$A_{\rm T} = 4 \ \rm  V$&nbsp; and &nbsp;$f_{\rm T} = 100\ \rm  kHz$.&nbsp; It shows
*above, the sink signal &nbsp;$v(t)$&nbsp; compared to the source signal &nbsp;$q(t)$,
+
*above,&nbsp; the sink signal &nbsp;$v(t)$&nbsp; compared to the source signal &nbsp;$q(t)$,
*in the middle, the received signal &nbsp;$r(t)$&nbsp; as well as the envelope curve &nbsp;$a(t) = {|r(t)|}$,
+
 
*below, the error signal &nbsp;$ε(t) = v(t) \ – \ q(t)$&nbsp; due to nonlinear distortions.
+
*in the middle,&nbsp; the received signal &nbsp;$r(t)$&nbsp; as well as the envelope curve &nbsp;$a(t) = {|r(t)|}$,
<br clear=all>
+
 
 +
*below,&nbsp; the error signal &nbsp;$ε(t) = v(t) \ – \ q(t)$&nbsp; due to nonlinear distortions.
 +
 
 +
 
 
Based on the graphs, the following statements can be made:
 
Based on the graphs, the following statements can be made:
*A comparison of the signals &nbsp;$q(t)$&nbsp; and &nbsp;$a(t)$&nbsp; reveals, that the envelope &nbsp;$a(t)$&nbsp; correctly reproduces the shape of the source signal &nbsp;$q(t)$&nbsp; around &nbsp; $80\%$&nbsp; of the time in this example.  
+
[[File: P_ID2960__Mod_T_2_3_S5_neu.png |right|frame| Error signal&nbsp;$ε(t)$&nbsp; for envelope demodulation]]
*However, the maximum of &nbsp;$a(t)$&nbsp; is noticeably larger than the maximum of &nbsp;$q(t)$ due to the added carrier &nbsp;$A_{\rm T}$&nbsp;.
+
*A comparison of the signals &nbsp;$q(t)$&nbsp; and &nbsp;$a(t)$&nbsp; reveals,&nbsp; that in this example the envelope &nbsp;$a(t)$&nbsp; correctly reproduces the shape of the source signal &nbsp;$q(t)$&nbsp; in around &nbsp; $80\%$&nbsp; of the time.
*The sink signal &nbsp;$v(t)$&nbsp; differs from the envelope curve &nbsp;$a(t)$&nbsp; by the expected value &nbsp;${\rm Ε}\big[a(t)\big]$, which is removed by the low-pass of the envelope demodulator.  
+
*Since &nbsp;${\rm Ε}\big[a(t)\big] = 4.27 \ \rm  V$&nbsp; does not match &nbsp;$A_{\rm T} = 4 \ \rm V$&nbsp;, &nbsp;$v(t)$&nbsp; differs from &nbsp;$q(t)$&nbsp; by the constant value &nbsp;$0.27 \ \rm V$, also in the regions where &nbsp;$a(t)$&nbsp; is correctly detected.  
+
*However,&nbsp; the maximum of the envelope&nbsp;$a(t)$&nbsp; is noticeably larger than the maximum of the source signal&nbsp; $q(t)$&nbsp; due to the added carrier &nbsp;$A_{\rm T}$.
 +
 
 +
*The sink signal &nbsp;$v(t)$&nbsp; differs from the envelope curve &nbsp;$a(t)$&nbsp; by the expected value &nbsp;${\rm Ε}\big[a(t)\big]$,&nbsp; which is removed by the low-pass of the envelope demodulator.
 +
 +
*Since &nbsp;${\rm Ε}\big[a(t)\big] = 4.27 \ \rm  V$&nbsp; does not match &nbsp;$A_{\rm T} = 4 \ \rm V$,&nbsp;$v(t)$&nbsp; differs from &nbsp;$q(t)$&nbsp; by the constant value &nbsp;$0.27 \ \rm V$,&nbsp; also in the regions where &nbsp;$a(t)$&nbsp; is correctly detected.
 +
 
*The cosine source signal &nbsp;$q(t)$&nbsp; becomes a signal &nbsp;$v(t)$&nbsp; with harmonics:
 
*The cosine source signal &nbsp;$q(t)$&nbsp; becomes a signal &nbsp;$v(t)$&nbsp; with harmonics:
 
:$$v(t) = A_{\rm 1} \cdot \cos(\omega_{\rm N} t ) +A_{\rm 2} \cdot \cos(2\omega_{\rm N} t
 
:$$v(t) = A_{\rm 1} \cdot \cos(\omega_{\rm N} t ) +A_{\rm 2} \cdot \cos(2\omega_{\rm N} t
Line 169: Line 203:
 
:$$\Rightarrow \hspace{0.3cm}A_{\rm 1} = 4.48\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.46\,{\rm V},\hspace{0.3cm}A_{\rm 3} = -0.37\,{\rm V},\hspace{0.3cm}
 
:$$\Rightarrow \hspace{0.3cm}A_{\rm 1} = 4.48\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.46\,{\rm V},\hspace{0.3cm}A_{\rm 3} = -0.37\,{\rm V},\hspace{0.3cm}
 
  A_{\rm 4} = 0.26\,{\rm V},\hspace{0.1cm}\text{...}$$
 
  A_{\rm 4} = 0.26\,{\rm V},\hspace{0.1cm}\text{...}$$
*Thus, according to the details in the book [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#The_distortion_factor|Linear and Time Invariant Systems]], we obtain for the individual distortion factors as well as the total distortion factor:   
+
 
 +
*Thus,&nbsp; according to the details in the book&nbsp; [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#The_distortion_factor|"Linear and Time Invariant Systems"]],&nbsp; we obtain for the individual distortion factors as well as the total distortion factor:   
 
:$$K_2 ={|A_{\rm 2}|}/{A_{\rm 1}} = 0.102\hspace{0.3cm}K_3 ={|A_{\rm 3}|}/{A_{\rm 1}} = 0.082,\hspace{0.3cm}K_4 = {|A_{\rm 4}|}/{A_{\rm 1}} = 0.058,\hspace{0.1cm}\text{...}$$
 
:$$K_2 ={|A_{\rm 2}|}/{A_{\rm 1}} = 0.102\hspace{0.3cm}K_3 ={|A_{\rm 3}|}/{A_{\rm 1}} = 0.082,\hspace{0.3cm}K_4 = {|A_{\rm 4}|}/{A_{\rm 1}} = 0.058,\hspace{0.1cm}\text{...}$$
 
:$$\Rightarrow \hspace{0.3cm}K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{...} } \approx 15 \%.$$
 
:$$\Rightarrow \hspace{0.3cm}K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{...} } \approx 15 \%.$$
  
In the chapter &nbsp;[[Modulation_Methods/Quality_Criteria#Investigations_with_regard_to_signal_distortions|Quality Criteria]]&nbsp; it was shown, that this also fixes the SNR at &nbsp;$ρ_v = 1/K^2 ≈ 44$&nbsp;.&nbsp; $ρ_v$&nbsp; $($but not &nbsp;$K)$&nbsp; can also be used as a quality criterion if &nbsp;$q(t)$&nbsp; contains more than one frequenczy  &nbsp; ⇒  &nbsp; derivation in the book im Buch &nbsp;[[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#The_distortion_factor|Linear and Time Invariant Systems]].  
+
*In the chapter &nbsp;[[Modulation_Methods/Quality_Criteria#Investigations_with_regard_to_signal_distortions|"Quality Criteria"]]&nbsp; it was shown,&nbsp; that this also fixes the SNR at &nbsp;$ρ_v = 1/K^2 ≈ 44$&nbsp;.&nbsp;
 +
 +
*The SNR&nbsp; $ρ_v$&nbsp; $($but not &nbsp;$K)$&nbsp; can also be used as a quality criterion if &nbsp;$q(t)$&nbsp; contains more than one frequency &nbsp; ⇒  &nbsp; derivation in the book&nbsp;[[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#The_distortion_factor|"Linear and Time Invariant Systems"]].  
  
 
==Considering channel distortions==
 
==Considering channel distortions==
 
<br>
 
<br>
For the following considerations, we assume the modulation method "DSB-AM with carrier" as well as a cosine-shaped source signal&nbsp;$q(t)$&nbsp;. Let the amplitudes of the message and carrier signals be &nbsp;$A_{\rm N} = 4 \ \rm V$&nbsp; and &nbsp;$A_{\rm T} = 5 \ \rm  V $ &nbsp;, respectively ⇒  &nbsp;  modulation depth &nbsp;$m = 0.8$. Thus (ideal) envelope demodulation is applicable in principle anwendbar.  
+
For the following considerations,&nbsp; we assume the modulation method&nbsp; "DSB-AM with carrier"&nbsp; as well as a cosine-shaped source signal&nbsp;$q(t)$&nbsp;.  
 +
*Let the amplitudes of the source and carrier signals be &nbsp;$A_{\rm N} = 4 \ \rm V$&nbsp; and &nbsp;$A_{\rm T} = 5 \ \rm  V $,&nbsp; resp. &nbsp; ⇒  &nbsp;  modulation depth &nbsp;$m = 0.8$.  
 +
 
 +
*Thus&nbsp; (ideal)&nbsp; envelope demodulation is applicable in principle.  
  
 
[[File: P_ID1028__Mod_T_2_3_S7_neu.png |right|frame|Spectra and signals illustrating envelope demodulation]]
 
[[File: P_ID1028__Mod_T_2_3_S7_neu.png |right|frame|Spectra and signals illustrating envelope demodulation]]
The graph shows, in descending order
+
<br>The graph shows,&nbsp; in descending order
*the spectra&nbsp;$S_{\rm TP}(f)$&nbsp; and &nbsp;$R_{\rm TP}(f)$&nbsp; of the equivalent low-pass signals, which are assumed to be real,
+
*the spectra&nbsp; $S_{\rm TP}(f)$&nbsp; and &nbsp;$R_{\rm TP}(f)$&nbsp; of the equivalent low-pass signals,&nbsp; which are assumed to be real,
*the equivalent low-pass signals &nbsp;$s_{\rm TP}(t)$&nbsp; and &nbsp;$r_{\rm TP}(t)$&nbsp; in the complex plane, and lastly  
+
 
 +
*the equivalent low-pass signals &nbsp;$s_{\rm TP}(t)$&nbsp; and &nbsp;$r_{\rm TP}(t)$&nbsp; in the complex plane, and lastly
 +
 
*the physical signals &nbsp;$s(t)$&nbsp; and &nbsp;$r(t)$.
 
*the physical signals &nbsp;$s(t)$&nbsp; and &nbsp;$r(t)$.
 
 
  
  
 
The left half of the image shows the transmitter and at the same time gives the conditions at the receiver for an ideal channel.  
 
The left half of the image shows the transmitter and at the same time gives the conditions at the receiver for an ideal channel.  
*Due to the modulation depth &nbsp;$m ≤ 1$&nbsp;, the source signal &nbsp;$q(t)$ can be recognised in the envelope &nbsp;$a(t)$&nbsp;. Consequently, envelope demodulation is applicable without distortion under certain conditions, as shown in &nbsp;$\text{Example 4}$&nbsp;.
+
#Due to the modulation depth &nbsp;$m ≤ 1$,&nbsp; the source signal &nbsp;$q(t)$ can be recognized in the envelope &nbsp;$a(t)$.
 +
#Consequently,&nbsp; envelope demodulation is applicable without distortion under certain conditions,&nbsp; as shown in &nbsp;$\text{Example 4}$.
  
 
   
 
   
*The right half considers asymmetrical distortions through the channel. Here the carrier is attenuated by &nbsp;$α_{\rm T} = 0.8$&nbsp;, and the upper sideband by &nbsp;$α_{\rm O} = 0.5$.&nbsp; Now the envelope  &nbsp;$a(t) ≠ q(t) + A_{\rm T}$&nbsp; is no longer cosine-shaped &nbsp; ⇒  &nbsp; here envelope demodulation leads to nonlinear distortions as shown in &nbsp;$\text{Example 5}$&nbsp;.  
+
The right half considers asymmetrical distortions through the channel.  
 +
#Here the carrier is attenuated by &nbsp;$α_{\rm T} = 0.8$,&nbsp; and the upper sideband by &nbsp;$α_{\rm O} = 0.5$.&nbsp;  
 +
#Now the envelope  &nbsp;$a(t) ≠ q(t) + A_{\rm T}$&nbsp; is no longer cosine-shaped.
 +
#Here,&nbsp; envelope demodulation leads to nonlinear distortions as shown in &nbsp;$\text{Example 5}$.  
 
<br clear=all>
 
<br clear=all>
 +
{{GraueBox|TEXT=
 +
$\text{Example 4:}$ &nbsp; Let &nbsp;$A_{\rm N} = 4 \ \rm V$&nbsp; and &nbsp;$A_{\rm T} = 5 \rm V$  &nbsp; continue to hold ⇒  &nbsp;  modulation depth &nbsp;$m = 0.8$.&nbsp; The graph illustrates the use of an ideal envelope demodulator with an ideal channel,&nbsp; whereby the following identities are considered:
 
[[File:Mod_T_2_3_S7a_version2.png|right|frame|Envelope demodulation with an ideal channel]]
 
[[File:Mod_T_2_3_S7a_version2.png|right|frame|Envelope demodulation with an ideal channel]]
{{GraueBox|TEXT=
+
:$$R_{\rm TP}(f) \hspace{-0.05cm}=\hspace{-0.05cm}  S_{\rm TP}(f) \hspace{0.02cm}, \hspace{0.5cm}
$\text{Example 4:}$ &nbsp; Let &nbsp;$A_{\rm N} = 4 \ \rm V$&nbsp; and &nbsp;$A_{\rm T} = 5 \rm V$  &nbsp; continue to hold ⇒  &nbsp;  modulation depth &nbsp;$m = 0.8$.
+
r_{\rm TP}(t) \hspace{-0.05cm}=\hspace{-0.05cm} s_{\rm TP}(t) \hspace{0.02cm}, \hspace{0.5cm}
 
 
The graph illustrates the use of an ideal envelope demodulator with an ideal channel, whereby the following identities are considered:
 
:$$R_{\rm TP}(f) \hspace{-0.05cm}=\hspace{-0.05cm}  S_{\rm TP}(f) \hspace{0.02cm}, \hspace{0.15cm}
 
r_{\rm TP}(t) \hspace{-0.05cm}=\hspace{-0.05cm} s_{\rm TP}(t) \hspace{0.02cm}, \hspace{0.15cm}
 
 
r(t) \hspace{-0.05cm}=\hspace{-0.05cm}  s(t) \hspace{0.02cm}.$$   
 
r(t) \hspace{-0.05cm}=\hspace{-0.05cm}  s(t) \hspace{0.02cm}.$$   
  
From these representations one can recognise:  
+
From these representations one can recognize:  
*The red pointer of length &nbsp;$A_{\rm T}$&nbsp; depicting the carrier is fixed.  
+
#The red pointer of length &nbsp;$A_{\rm T}$&nbsp; depicting the carrier is fixed.  
*The upper sideband (in blue) rotates in mathematically positive direction, the lower sideband (in green) in the opposite direction.
+
#The upper sideband&nbsp; (in blue)&nbsp; rotates in mathematically positive direction,&nbsp; the lower sideband&nbsp; (in green)&nbsp; in the opposite direction.
*Since the blue and green pointers both rotate with the same angular velocity &nbsp;$ω_{\rm N}$&nbsp; but in opposite directions, the vector sum of all pointers is always real.
+
#Since the blue and green pointers both rotate with the same angular velocity &nbsp;$ω_{\rm N}$&nbsp; but in opposite directions,&nbsp; the vector sum of all pointers is always real.
*Should the modulation depth &nbsp;$m ≤ 1$, then at all times &nbsp;$r_{\rm TP}(t) ≥ 0$&nbsp; and &nbsp;$ϕ(t) = 0$. This means, that the zero crossings of the received signal &nbsp;$r(t)$&nbsp; exactly coincide with those of the carrier signal &nbsp;$z(t)$&nbsp;.  
+
#Should the modulation depth &nbsp;$m ≤ 1$,&nbsp; then at all times &nbsp;$r_{\rm TP}(t) ≥ 0$&nbsp; and &nbsp;$ϕ(t) = 0$.&nbsp; This means,&nbsp; that the zero crossings of the received signal &nbsp;$r(t)$&nbsp; exactly coincide with those of the carrier signal &nbsp;$z(t)$.  
* The envelope&nbsp;$a(t)$&nbsp; of the physical signal  &nbsp;$r(t)$&nbsp; is equal to the resulting pointer length, i.e., equal tot he magnitude of &nbsp;$r_{\rm TP}(t)$. Because &nbsp;$m< 1$&nbsp;, &nbsp;$a(t) = q(t) + A_{\rm T}$ holds.  
+
# The envelope&nbsp;$a(t)$&nbsp; of the physical signal  &nbsp;$r(t)$&nbsp; is equal to the resulting pointer length, i.e., equal to the magnitude of &nbsp;$r_{\rm TP}(t)$.&nbsp; Because &nbsp;$m< 1$&nbsp;, &nbsp;$a(t) = q(t) + A_{\rm T}$ holds.  
*For the given amplitude values, the locus curve &nbsp;$r_{\rm TP}(t)$&nbsp; lies on the real axis between the end-points  &nbsp;$A_{\rm T} \ – \ A_{\rm N} = 1\ \rm  V$&nbsp; and &nbsp;$A_{\rm T} + A_{\rm N} = 9 \ \rm  V$.  
+
#For the given amplitude values,&nbsp; the locus curve &nbsp;$r_{\rm TP}(t)$&nbsp; lies on the real axis between the end-points  &nbsp;$A_{\rm T} \ – \ A_{\rm N} = 1\ \rm  V$&nbsp; and &nbsp;$A_{\rm T} + A_{\rm N} = 9 \ \rm  V$.  
*The locus curve on the real axis in the right half-plane is an indicator that the message signal can be extracted without distortion by an envelope demodulator.}}  
+
#The locus curve on the real axis in the right half-plane is an indicator that the message signal can be extracted without distortion by an envelope demodulator.}}  
  
  
[[File:Mod_T_2_3_S7b_version2.png|right|frame|Envelope demodulation with a distorting channel]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
 
$\text{Example 5:}$ &nbsp; Now let us consider the same graphs for a distorting channel where
 
$\text{Example 5:}$ &nbsp; Now let us consider the same graphs for a distorting channel where
*$α_{\rm U} = 1$  &nbsp; ⇒  &nbsp; the lower sideband (LSB) is unchanged,
+
*$α_{\rm U} = 1.0$  &nbsp; ⇒  &nbsp; the lower sideband&nbsp;  (German:&nbsp; "unteres Seitenband" &nbsp; &rArr; &nbsp; subscript "U")&nbsp; is unchanged,
*$α_{\rm T} = 0.8$ &nbsp; ⇒  &nbsp; the carrier is slightly attenuated,
 
* $α_{\rm U} = 0.5$ &nbsp;⇒  &nbsp; the upper sideband (USB) is attenuated more.
 
  
 +
*$α_{\rm T} = 0.8$ &nbsp; ⇒  &nbsp; the carrier&nbsp; (German:&nbsp; "Träger" &nbsp; &rArr; &nbsp; subscript "T")&nbsp; is slightly attenuated,
  
 +
* $α_{\rm U} = 0.5$ &nbsp;⇒  &nbsp; the upper sideband &nbsp; (German:&nbsp; "oberes Seitenband" &nbsp; &rArr; &nbsp; subscript "O")&nbsp; is attenuated more.
 +
 +
[[File:Mod_T_2_3_S7b_version2.png|right|frame|Envelope demodulation with a distorting channel]]
 +
<br>
 
The graphs can then be interpreted as follows:
 
The graphs can then be interpreted as follows:
*Due to the different lengths of the green pointer (LSB) and blue pointer (USB), the locus curve becomes and ellipse, whose center is fixed by the (red) carrier.
+
#Due to the different lengths of the green pointer&nbsp; $\rm (USB)$&nbsp;    and blue pointer&nbsp; $\rm (OSB)$,&nbsp; the locus curve becomes an ellipse,&nbsp; whose center is fixed by the&nbsp; (red)&nbsp; carrier.
*The angle between the complex-valued &nbsp;$r_{\rm TP}(t)$&nbsp; and the coordinate origin is now no longer continuous &nbsp;$ϕ(t) = 0$, but instead fluctuates between &nbsp;$±ϕ_{\rm max}.$  
+
#The angle between the complex-valued &nbsp;$r_{\rm TP}(t)$&nbsp; and the coordinate origin is now no longer continuous &nbsp;$ϕ(t) \equiv 0$,&nbsp; but instead fluctuates between &nbsp;$±ϕ_{\rm max}.$  
*The maximal phase is equal to the angle of the tangent to the ellipse. In the physical signal, &nbsp;$ϕ(t) ≠ 0$&nbsp; leads to shifts  of the zero crossings of &nbsp;$r(t)$&nbsp; with respect to its nominal positions &ndash; as given by the carrier signal &nbsp;$z(t)$.  
+
#The maximal phase is equal to the angle of the tangent to the ellipse.&nbsp; In the physical signal, &nbsp;$ϕ(t) ≠ 0$&nbsp; leads to shifts  of the zero crossings of &nbsp;$r(t)$&nbsp; with respect to its nominal positions &ndash; as given by the carrier signal &nbsp;$z(t)$.  
*The magnitude &nbsp;$a(t) = \vert r_{\rm TP}(t) \vert$ – i.e., the envelope of &nbsp;$r(t)$ – is thus no longer cosine-shaped, and the signal after the envelope demodulator contains harmonicsin addition to the frequency &nbsp;$f_{\rm N}$&nbsp;:
+
#The magnitude &nbsp;$a(t) = \vert r_{\rm TP}(t) \vert$ – i.e.,&nbsp; the envelope of &nbsp;$r(t)$ – is thus no longer cosine-shaped,&nbsp; and the signal after the envelope demodulator contains harmonics in addition to the frequency &nbsp;$f_{\rm N}$: <br> &nbsp; &nbsp; $v(t) = A_{\rm 1} \cdot \cos(\omega_{\rm N}\cdot t ) +A_{\rm 2} \cdot \cos(2\omega_{\rm N}\cdot t
:$$v(t) = A_{\rm 1} \cdot \cos(\omega_{\rm N}\cdot t ) +A_{\rm 2} \cdot \cos(2\omega_{\rm N}\cdot t
+
  )+A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t )+ \text{...}$<br>
  )+A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t )+ \text{...}$$
+
#These lead to nonlinear distortions,&nbsp; which are captured by the distortion factor &nbsp;$K$&nbsp;. <br>When &nbsp;$A_{\rm N} = 4 \ \rm V$, &nbsp;$A_{\rm T} = 5 \ \rm  V$, &nbsp;$α_{\rm U} = 1$&nbsp; and &nbsp;$α_{\rm T} = 0.8$,&nbsp; the following numerical values are obtained as a function of the upper sideband&nbsp;$α_{\rm O}$:  
*These lead to nonlinear distortions and are captured by the distortion factor &nbsp;$K$&nbsp;. <br>When &nbsp;$A_{\rm N} = 4 \ \rm V$, &nbsp;$A_{\rm T} = 5 \ \rm  V$, &nbsp;$α_{\rm U} = 1$&nbsp; and &nbsp;$α_{\rm T} = 0.8$&nbsp;, the following numerical values are obtained as a function of &nbsp;$α_{\rm O}$&nbsp; :  
 
  
:: $α_{\rm O} = 1.00$:  &nbsp;  &nbsp; $K = 0$ &nbsp; ⇒  &nbsp; only the carrier is attenuated,
+
::: $α_{\rm O} = 1.00$:  &nbsp;  &nbsp; $K = 0$ &nbsp; ⇒  &nbsp; only the carrier is attenuated,
:: $α_{\rm O} = 0.75$:  &nbsp;  &nbsp; $K ≈ 0.4\%$,
+
::: $α_{\rm O} = 0.75$:  &nbsp;  &nbsp; $K ≈ 0.4\%$,
:: $α_{\rm O} = 0.50$:  &nbsp;  &nbsp; $K ≈ 1.5\%$ &nbsp;⇒  &nbsp; this value is used as a basis for the graph,  
+
::: $α_{\rm O} = 0.50$:  &nbsp;  &nbsp; $K ≈ 1.5\%$ &nbsp;⇒  &nbsp; this value is used as a basis for the graph,  
:: $α_{\rm O} = 0.25$:  &nbsp;  &nbsp; $K ≈ 4\%$,  
+
::: $α_{\rm O} = 0.25$:  &nbsp;  &nbsp; $K ≈ 4\%$,  
:: $α_{\rm O} = 0.00$:  &nbsp;  &nbsp; $K ≈ 10\%$ &nbsp; ⇒  &nbsp; complete suppression of USB.  
+
::: $α_{\rm O} = 0.00$:  &nbsp;  &nbsp; $K ≈ 10\%$ &nbsp; ⇒  &nbsp; complete suppression of&nbsp; $\rm OSB$.  
  
*This graph is valid for &nbsp;$α_{\rm O} = 0.5$.&nbsp;, in which case we obtain (although difficult to see with the naked eye):
+
This graph is valid for &nbsp;$α_{\rm O} = 0.5$,&nbsp; in which case we obtain&nbsp; (although difficult to see with the naked eye):
:*shifts in the zero crossings of the signal &nbsp;$r(t)$&nbsp; by at most &nbsp;$25^\circ\hspace{-0.05cm}/360^\circ ≈ 7\%$ of the carrier period $T_0$, and  
+
*shifts in the zero crossings of the signal &nbsp;$r(t)$&nbsp; by at most &nbsp;$25^\circ\hspace{-0.05cm}/360^\circ ≈ 7\%$&nbsp; of the carrier period&nbsp; $T_0$,&nbsp; and
:* deviation from the ideal cosine shape  &nbsp; ⇒  &nbsp;  $K ≈ 1.5\%$  (allerdings ist beides mit dem bloßen Auge nur schwer zu erkennen) . }}
+
 +
* deviation from the ideal cosine shape  &nbsp; ⇒  &nbsp;  $K ≈ 1.5\%$  . }}
  
  
==Symmetrische Kanalverzerrungen – Dämpfungsverzerrungen==
+
==Symmetrical channel distortions - attenuation distortions==
 
<br>
 
<br>
Ein wesentliches Ergebnis des letzten Abschnitts war, dass es bei unsymmetrischen linearen Verzerrungen auf dem Kanal zu nichtlinearen Verzerrungen bezüglich des Nachrichtensignals kommt.&nbsp; Wird dagegen das untere Seitenband in gleicher Weise gedämpft wie das obere Seitenband, so ist die Ortskurve wieder eine horizontale Gerade und es entstehen keine nichtlinearen Verzerrungen.&nbsp; Vielmehr sind dann die Verzerrungen bezüglich &nbsp;$q(t)$&nbsp; und &nbsp;$v(t)$ – ebenso wie die Verzerrungen bezüglich &nbsp;$s(t)$&nbsp; und &nbsp;$r(t)$ – linear und können durch ein geeignet dimensioniertes Filter entzerrt werden.  
+
An important result of the last section was that nonlinear signal distortions occur in the case of asymmetric linear distortions in the channel.&nbsp; 
 +
*If,&nbsp; on the other hand,&nbsp; the lower sideband is attenuated in the same way as the upper sideband,&nbsp; the locus curve is once again a horizontal straight line and no nonlinear distortions occur.
 +
 
 +
*Rather,&nbsp; the distortions with respect to &nbsp;$q(t)$&nbsp; and &nbsp;$v(t)$&nbsp; as well as the distortions with respect to &nbsp;$s(t)$&nbsp; and &nbsp;$r(t)$ –&nbsp; are linear in this case,&nbsp; and can be corrected for by a suitably dimensioned  filter.
  
  
Wir gehen hier von folgenden Voraussetzungen aus:  
+
We now assume the following:  
*Quellensignal &nbsp;$q(t)$&nbsp; – bestehend aus zwei Cosinusanteilen bei den Frequenzen &nbsp;$f_1$&nbsp; und &nbsp;$f_2$&nbsp; mit den Amplituden &nbsp;$A_1$&nbsp; und &nbsp;$A_2$;
+
*A source signal &nbsp;$q(t)$&nbsp; – composed of two cosine components at the frequencies &nbsp;$f_1$&nbsp; and &nbsp;$f_2$&nbsp; with amplitudes &nbsp;$A_1$&nbsp; and &nbsp;$A_2$.
*ZSB–AM mit Träger &nbsp; ⇒  &nbsp;  das Sendesignal &nbsp;$s(t)$&nbsp; setzt sich aus insgesamt fünf Cosinusschwingungen bei den Frequenzen &nbsp;$f_{\rm T}, &nbsp;f_{\rm T} ± f_1$&nbsp; und &nbsp;$f_{\rm T} ± f_2$&nbsp; zusammen;
+
[[File:Mod_T_2_3_S6_version2.png|right|frame|Spektren im äquivalenten Tiefpass-Bereich]]
+
*DSB–AM with carrier&nbsp; ⇒  &nbsp;  the transmitted signal &nbsp;$s(t)$&nbsp; is composed of a total of five cosine oscillations at the frequencies &nbsp;$f_{\rm T}, &nbsp;f_{\rm T} ± f_1$&nbsp; and &nbsp;$f_{\rm T} ± f_2$.
*Kanal mit Dämpfungsverzerrungen, symmetrisch um die Trägerfrequenz:  
+
[[File:Mod_T_2_3_S6_version2.png|right|frame|Spectra in the equivalent low-pass region]]
 +
*A channel with attenuation distortions,&nbsp; symmetrical about the carrier frequency:  
 
:$$H_{\rm K} (f = f_{\rm T})= \alpha_0,  \hspace{0.3cm} H_{\rm K} (f
 
:$$H_{\rm K} (f = f_{\rm T})= \alpha_0,  \hspace{0.3cm} H_{\rm K} (f
 
= \pm f_{\rm 1})= \alpha_1,  \hspace{0.3cm}H_{\rm K} (f = \pm
 
= \pm f_{\rm 1})= \alpha_1,  \hspace{0.3cm}H_{\rm K} (f = \pm
 
f_{\rm 2})= \alpha_2;$$
 
f_{\rm 2})= \alpha_2;$$
*Idealer Hüllkurvendemodulator gemäß der Beschreibung in diesem Abschnitt.
+
 
 +
*An ideal envelope demodulator as described in this section.  
  
  
Die Grafik zeigt die Spektralfunktionen der äquivalenten Tiefpass–Signale von Sende– und Empfangssignal.&nbsp; Anhand dieses Bildes sind folgende Aussagen möglich:  
+
The graphic shows the spectral function of the equivalent low-pass signals of the transmitted signal and the received signal. From this picture,&nbsp; the following statements can be made:
*Das äquivalente Tiefpass–Signal &nbsp;$r_{\rm TP}(t)$&nbsp; ist reell.&nbsp; Die Ortskurve also die Spitze des Zeigerverbundes in der komplexen Ebene liegt auch hier wieder auf der reellen Achse.  
+
#The equivalent low-pass signal &nbsp;$r_{\rm TP}(t)$&nbsp; is real.&nbsp; The locus curve i.e., the peak of the pointer composite in the complex plane again also lies on the real axis.  
*Ist &nbsp;$α_0 · A_{\rm T}$&nbsp; größer als &nbsp;$α_1 · A_1 + α_2 · A_2,$ so ist der „Modulationsgrad des Empfangssignals” kleiner als&nbsp; $1$&nbsp; und es kommt nicht zu nichtlinearen Verzerrungen.  
+
#Should &nbsp;$α_0 · A_{\rm T}$&nbsp; be greater than &nbsp;$α_1 · A_1 + α_2 · A_2$,&nbsp; then the&nbsp; "modulation depth of the received signal"&nbsp;  is less than&nbsp; $1$&nbsp; and nonlinear distortions do not occur.
*Das Sinkensignal nach idealer Hüllkurvendemodulation und Eliminierung des Gleichanteils &nbsp;$α_0 · A_{\rm T}$&nbsp; durch den nachgeschalteten Hochpass lautet:  
+
#The sink signal after ideal envelope demodulation and elimination of the DC component &nbsp;$α_0 · A_{\rm T}$&nbsp; by the downstream high-pass filter is:  
:$$v(t) = \alpha_1 \cdot A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) +
+
::$$v(t) = \alpha_1 \cdot A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) +
 
  \alpha_2 \cdot A_{\rm 2} \cdot \cos(2 \pi f_{\rm 2} t ) \hspace{0.05cm}.$$
 
  \alpha_2 \cdot A_{\rm 2} \cdot \cos(2 \pi f_{\rm 2} t ) \hspace{0.05cm}.$$
*Das bedeutet: &nbsp; Es kommt zu linearen Verzerrungen (Dämpfungsverzerrungen), falls &nbsp;$α_2 ≠ α_1$&nbsp; ist.&nbsp; Wäre die Symmetrie bezüglich &nbsp;$f_{\rm T}$&nbsp; nicht gegeben, so würden nichtlineare Verzerrungen entstehen.
+
This means: &nbsp;  
 +
*'''Linear distortions (attenuation distortions) occur when &nbsp;$α_2 ≠ α_1$&nbsp;.&nbsp;  
  
 +
*'''If the symmetry with respect to &nbsp;$f_{\rm T}$&nbsp; were not present,&nbsp; nonlinear distortions would arise'''.
  
Wir verweisen auf das Lernvideo&nbsp; [[Lineare_und_nichtlineare_Verzerrungen_(Lernvideo)|Lineare und nichtlineare Verzerrungen]].
 
  
==Einfluss von Rauschstörungen==
+
&rArr; &nbsp; We refer you to the&nbsp; (German language)&nbsp; learning video&nbsp; [[Lineare_und_nichtlineare_Verzerrungen_(Lernvideo)|"Lineare und nichtlineare Verzerrungen"]] &nbsp; &rArr; &nbsp; "Linear and nonlinear distortions".
 +
 
 +
==Influence of additive white Gaussian noise==
 
<br>
 
<br>
[[File: P_ID1031__Mod_T_2_3_S8_neu.png |right|frame| Sinkenstörabstand bei "ZSB-AM mit/ohne  Träger" und Hüllkurvendemodulation]]
+
Based on the system configuration
Ausgehend von der Systemkonfiguration
+
*DSB–AM with modulation depth &nbsp;$m ≤ 1$,&nbsp; and
*ZSB–Amplitudenmodulation mit Modulationsgrad &nbsp;$m ≤ 1$&nbsp; sowie
+
*bestmöglich angepasste Hüllkurvendemodulation
+
*the best-fitting envelope demodulation
 
 
  
wird nun der Einfluss von additivem Rauschen abgeschätzt.&nbsp; Verzerrungen jeglicher Art – beispielsweise bedingt durch einen ungeeigneten  Kanal oder die nichtperfekte Realisierung von Modulator und Demodulator – werden ausgeschlossen.
 
  
 +
we can now estimate the influence of additive white Gaussian noise. Distortions of any kind&nbsp; – for example caused by an unsuitable channel or an imperfect realization of the modulator and demodulator  –&nbsp; are ruled out.
  
Die Grafik zeigt den Sinkenstörabstand &nbsp;$10 · \lg \, ρ_v$&nbsp; bei unterschiedlichem Modulationsgrad &nbsp;$m$&nbsp; in Abhängigkeit der logarithmierten Leistungskenngröße
+
The graph on the right shows the sink SNR &nbsp;$10 · \lg \, ρ_v$&nbsp; for different modulation depths &nbsp;$m$&nbsp; as a function of the logarithmic performance parameter:
 +
[[File: P_ID1031__Mod_T_2_3_S8_neu.png |right|frame| SNR for&nbsp; "DSB-AM with/without carrier"&nbsp; and envelope demodulation]]
 
:$$10 \cdot {\rm lg }\hspace{0.1cm} \xi = 10 \cdot {\rm lg }\hspace{0.1cm} \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg }\hspace{0.1cm} \xi = 10 \cdot {\rm lg }\hspace{0.1cm} \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \hspace{0.05cm}.$$
  
Das Ergebnis des Hüllkurvendemodulators ist mit durchgezogenen Linien markiert, während die gestrichelten Geraden den Synchrondemodulator kennzeichnen.  
+
The result of the envelope demodulator&nbsp; $\rm (ED)$&nbsp; is marked with solid lines,&nbsp; while the dotted lines represent the synchronous demodulator&nbsp; $\rm (SD)$.  
  
Wie bereits in Kapitel &nbsp;[[Modulation_Methods/Qualitätskriterien#Untersuchungen_im_Hinblick_auf_Signalverzerrungen|Untersuchungen im Hinblick auf Signalverzerrungen]]&nbsp; hergeleitet wurde, ergeben sich für den Synchrondemodulator in dieser doppelt–logarithmischen Darstellung
+
As already derived in the section&nbsp;[[Modulation_Methods/Quality_Criteria#Investigations_with_regard_to_signal_distortions|"Investigations with regard to signal distortions"]],&nbsp; the results for the synchronous demodulator in this double-logarithmic representation are
*die Winkelhalbierende&nbsp; (für &nbsp;$m → ∞$, ZSB–AM ohne Träger), bzw.
+
*the angle bisector&nbsp; (for &nbsp;$m → ∞$,&nbsp; "DSB–AM without carrier"),&nbsp; and
*hierzu parallel verschobene Gerade mit vertikalem Abstand &nbsp;$10 · \lg \, (1 + 2/m^2$).  
+
 +
*a shifted line parallel to it for&nbsp; "DSB–AM with carrier", with a vertical distance of &nbsp;$10 · \lg \, (1 + 2/m^2$).  
  
  
Bei Anwendung von Hüllkurvendemodulation sind folgende Unterschiede festzustellen:  
+
When envelope demodulation&nbsp; $\rm (ED)$&nbsp; is applied,&nbsp; the following differences are observed:  
*Ein Hüllkurvendemodulator ist für &nbsp;$m > 1$&nbsp; nicht sinnvoll, da dadurch starke nichtlineare Verzerrungen entstehen würden.  
+
*An envelope demodulator is not useful when &nbsp;$m > 1$,&nbsp; because it would cause strong nonlinear distortions.
*Die durchgehend gezeichneten Kurven für den Hüllkurvendemodulator&nbsp; $\rm (HKD)$&nbsp; liegen stets unterhalb der für den Synchrondemodulator&nbsp; $\rm (SD)$&nbsp; gültigen gestrichelten Geraden, wenn man vom gleichen Modulationsgrad&nbsp; $m$&nbsp; ausgeht.  
+
*Ab einem gewissen Wert der Leistungskenngröße &nbsp;$ξ$&nbsp; sind die&nbsp; $\rm HKD$–Kurven von den&nbsp; $\rm SD$–Geraden innerhalb der Zeichengenauigkeit nicht mehr zu unterscheiden.  
+
*The&nbsp; $\rm ED$&ndash;curves always lie beneath the dashed&nbsp; $\rm SD$&ndash;lines,&nbsp; assuming the same modulation depth&nbsp; $m$.
 +
 +
*Above a certain&nbsp; $ξ$&ndash;value,&nbsp; the&nbsp; $\rm ED$&ndash; and the&nbsp; $\rm SD$&ndash;curves cannot be distinguished for the given degree of precision.  
  
  
Mehr Informationen zu dieser Thematik finden Sie beispielsweise in&nbsp; [Kam 04]<ref>Kammeyer, K.D.: ''Nachrichtenübertragung.'' Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>.  
+
More information on this topic can be found e.g. in&nbsp; [Kam 04]<ref>Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>.  
  
  
==Argumente für und gegen den Hüllkurvendemodulator==
+
==Arguments for and against the envelope demodulator==
 
<br>
 
<br>
Der wichtigste Grund für die Verwendung des Hüllkurvendemodulators ist &nbsp;(besser gesagt:&nbsp; war), dass damit die oft aufwändige Frequenz– und Phasensynchronisation vermieden wurde, so dass dieser preisgünstig realisiert werden konnte.&nbsp; Der Hüllkurvendemodulator ist somit ein Beispiel eines ''inkohärenten Demodulators''.  
+
The most important reason for the use of the envelope demodulator is&nbsp; (better said:&nbsp; was)&nbsp; that it avoids the often laborious need for frequency and phase synchronization,&nbsp; so that it can be realized cheaply.&nbsp;  The envelope demodulator is thus an example of an&nbsp; "incoherent demodulator".
 +
 
 +
On the other hand,&nbsp; several reasons can be given in favour of the&nbsp; [[Modulation_Methods/Synchronous_Demodulation|$\text{synchronous demodulator}$]]&nbsp; and against the envelope demodulator:
 +
*With envelope demodulation,&nbsp; an over-modulation &nbsp;$(m > 1)$&nbsp; must be avoided under all circumstances.&nbsp; This can be achieved for example by limiting the amplitude of the source signal,&nbsp; though this also results in nonlinear distortions.
 +
 
 +
*All else being equal,&nbsp; the modulation depth &nbsp;$m < 1$&nbsp; can only be achieved by increasing the transmitted power by at least a factor of&nbsp; $3$.&nbsp; This is also problematic because of justified discussions on the topic of&nbsp; "electronic smog"&nbsp; in large parts of our society.
  
Für den&nbsp; [[Modulation_Methods/Synchrondemodulation|Synchrondemodulator]]&nbsp; und gegen den Hüllkurvendemodulator können dagegen mehrere Gründe angeführt werden:
+
*Linear channel distortions  in the case of an envelope demodulator can lead to irreversible nonlinear channel distortions,&nbsp; whereas the linear distortions occurring during synchronous demodulation can possibly be compensated for by special measures taken at the receiver.  
*Bei Hüllkurvendemodulation muss eine Übermodulation &nbsp;$(m > 1)$&nbsp; unter allen Umständen vermieden werden.&nbsp; Dies erreicht man beispielsweise durch die Amplitudenbegrenzung des Quellensignals, was aber ebenfalls nichtlineare Verzerrungen zur Folge hat.
 
*Bei sonst gleichen Randbedingungen ist ein Modulationsgrad &nbsp;$m < 1$&nbsp; nur durch die Erhöhung der Sendeleistung um mindestens den Faktor&nbsp; $3$&nbsp; zu erreichen.&nbsp; Dies ist auch wegen der berechtigten Diskussionen zum Thema „Elektro-Smog” in großen Teilen unserer Gesellschaft problematisch.
 
*Lineare Kanalverzerrungen können bei einem Hüllkurvendemodulator zu irreversiblen nichtlinearen Verzerrungen führen, während die bei Synchrondemodulation entstehenden linearen Verzerrungen möglicherweise durch besondere Maßnahmen beim Empfänger kompensiert werden können.  
 
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_2.7:_Ist_der_Modulationsgrad_zu_groß%3F|Aufgabe 2.7: Ist der Modulationsgrad zu groß?]]
+
[[Aufgaben:Exercise_2.7:_Is_the_Modulation_Depth_Too_High%3F|Exercise 2.7: Is the Modulation Depth Too High?]]
  
[[Aufgaben:Aufgabe_2.7Z:_ZSB-AM_und_Hüllkurvendemodulator|Aufgabe 2.7Z: ZSB-AM und Hüllkurvendemodulator]]
+
[[Aufgaben:Exercise_2.7Z:_DSB-AM_and_Envelope_Demodulator|Exercise 2.7Z: DSB-AM and Envelope Demodulator]]
  
[[Aufgaben:Aufgabe_2.8:_Unsymmetrischer_Kanal|Aufgabe 2.8: Unsymmetrischer Kanal]]
+
[[Aufgaben:Exercise_2.8:_Asymmetrical_Channel|Exercise 2.8: Asymmetrical Channel]]
  
[[Aufgaben:Aufgabe_2.9:_Symmetrische_Verzerrungen|Aufgabe 2.9: Symmetrische Verzerrungen]]
+
[[Aufgaben:Exercise_2.9:_Symmetrical_Distortions|Exercise 2.9: Symmetrical Distortions]]
  
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 10:44, 13 January 2023

Functionality under ideal conditions


We first assume the following conditions:

  • Let the source signal  $q(t)$  be free of a DC component and limited in magnitude to  $q_{\rm max}$.
  • The transmission is based on the modulation method  "DSB–AM with carrier". 
  • For simplicity of representation,  the carrier phase is set to  $\mathbf{ϕ_{\rm T} } = 0$  without restricting generality:
$$s(t) = \left(q(t) + A_{\rm T}\right) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$
  • Let the modulation depth be $m ≤ 1$.  Therefore,  from the definition  $m = q_{\rm max}/A_{\rm T}$  it also follows that  $q(t) + A_{\rm T} ≥ 0$.
  • Let the channel be ideal,  that is,  there is no distortion,  no attenuation,  no delay,  no interference,  and no noise.
  • Thus,  when  $H_{\rm K}(f) = 1$  and  $n(t) \equiv 0$  we get for the received signal:
$$r(t) = s(t) = a(t) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}$$
  • In this equation,  $a(t)$  describes the  »envelope«  of the received signal  $r(t)$.  The phase function is  $\mathbf{ϕ}(t) = 0$.


$\text{Definition:}$   An   »envelope demodulator«  detects the envelope  $a(t)$  of its input signal  $r(t)$  and outputs the sink signal after eliminating the DC component  $A_{\rm T}$:

$$v(t) = a(t) - A_{\rm T}\hspace{0.05cm}.$$

The removal of the DC component  $A_{\rm T}$  can be realized,  for example,  by a high-pass filter that allows all frequencies to pass unimpeded except for  $f = 0$ .


  • If all the above conditions are met,  then $v(t) = q(t)$  holds.
  • This means that an ideal communication system can certainly be realized with an  (ideal)  envelope demodulator.


Signal waveforms illustrating envelope demodulation

$\text{Example 1:}$   In the graph,  the received signal  $r(t) = s(t)$  is shown below,  and is based on  "DSB–AM with carrier”  $($modulation depth  $m = 0.5)$.

  • The envelope  $a(t)$  to be evaluated by the envelope demodulator is equal to the sum of the source signal  $q(t)$  and the DC component  $A_{\rm T}$  added at the transmitter.
  • $v(t) = q(t)$  holds for the demodulator output signal after removing the DC component  $A_{\rm T}$  with a high-pass filter,  assuming that the source signal  $q(t)$  did not include a DC component.  Such a DC component would  (wrongly)  also be removed by the high-pass filter.


Realizing an envelope demodulator

Principle of envelope demodulation in the time domain

The adjacent graph shows:

  • above,  a simple possible realization of the envelope demodulator,
  • below,  the signals  $r(t)$  and  $w(t)$  to illustrate the principle.


First,  consider the middle signal section denoted by  $T = T_{\rm opt}$.

The first circuit section – consisting of a diode and a parallel connection of a resistor  $R$  and a capacitance $C$  – performs the following tasks:

  • If the  (light)  gray signal  $r(t)$ is larger than the voltage  $w(t)$  at  $R$  and  $C$,  the diode conducts,  $w(t) = r(t)$  holds,  and the capacitance  $C$  is charged. In these regions,  $w(t)$  is drawn in green.
  • If  $r(t) < w(t)$,  as is the case at the times marked in purple,  the diode blocks and the capacitance discharges through resistor  $R$.  The signal  $w(t)$  decays exponentially with time constant  $T = R · C$.
  • From the times marked with circles,  $r(t) > w(t)$  holds again and the capacitance is recharged.  It can be seen from the sketch that  $w(t)$  matches  "approximately"  the envelope  $a(t)$.


$\text{Design criteria:}$  

  • The deviations between the envelope approximation  $w(t)$  and its nominal function  $a(t)$  decrease the larger the carrier frequency  $f_{\rm T}$  is compared to the bandwidth  $B_{\rm NF}$  of the low frequency message signal.  As a guideline,  $f_{\rm T} ≥ 100 · B_{\rm NF}$  is often given.
  • At the same time,  the time constant  $T$  of the RC parallel resonant circuit should always be much larger than  $1/f_{\rm T}$  and much smaller than  $1/B_{\rm NF}$:
$$1/f_{\rm T}\hspace{0.1cm} \ll \hspace{0.1cm} T \hspace{0.1cm} \ll \hspace{0.1cm} 1/B_{\rm NF} \hspace{0.05cm}, $$
  • A good compromise is the geometric mean between the two limits:
$$ T_{\rm opt} = {1}/{\sqrt{f_{\rm T} \cdot B_{\rm NF} } } \hspace{0.05cm}.$$
  • If the time constant  $T$  is too small,  as in the left area of the sketch above,  the capacitor will always discharge too quickly and the deviation  $w(t) \ – \ a(t)$  will be unnecessarily large.
  • Also,  a too large value  $T > T_{\rm opt}$  will result in deterioration,  as shown in the right signal detail.  In this case,  $w(t)$  can no longer follow the envelope  $a(t)$.


$\text{Example 2:}$   For a low frquency bandwidth of  $B_{\rm NF} = 5 \ \rm kHz$,  the carrier frequency should be at least  $f_{\rm T} = 500 \ \rm kHz$ .

  • The time constant  $T$  must be much larger than  $1/f_{\rm T} = 2 \ \rm µ s$  and at the same time much smaller than  $1/B_{\rm NF} = 200 \ \rm µ s $.
  • The optimal value according to the compromise formula is thus:
$$T_{\rm opt} = 1/\sqrt{ 5 \cdot 10^5 \ {\rm Hz} \cdot 5 \cdot 10^3 \ {\rm Hz} } = 20 \ \rm µ s \hspace{0.05cm}.$$


Frequency domain representation of an envelope demodulator

The graph on the right is intended to illustrate the operation of the envelope demodulator in the frequency domain. The spectrum  $W(f)$  of the signal  $w(t)$  at the RC parallel circuit differs from the spectrum  $Q(f)$  of the source signal as follows:

  • Due to the carrier signal  $z(t)$  added at the transmitter,  the spectral function  $W(f)$  includes a Dirac delta line at  $f = 0$  with weight  $A_{\rm T}$  (carrier amplitude).
  • $W(f)$  also exhibits spectral components in the region around the carrier frequency  $f_{\rm T}$,  which can be explained by the jagged time course of  $w(t)$  (see the first graph in this section).
  •  $W(f)$  also differs only slightly from  $Q(f)$  in the low frequency domain.  Here,  the error gets smaller as the carrier frequency increases compared to the bandwidth  $B_{\rm NF}$.


The first two signal distortions are eliminated by the high-pass and low-pass filters,  which together produce a band-pass. However,  there also remains a slight deviation between the sink signal  $v(t)$  and the source signal  $q(t)$  in the interesting range  $0 < f < B_{\rm NF}$,  as shown by comparing the output spectrum  $V(f)$  plotted in red and the input spectrum  $Q(f)$  plotted in blue.


Why does envelope demodulation fail for  $m > 1$?


The graph shows the DSB-AM signals for  $m = 0.5$  and  $m = 2$.  From this picture one can recognize the following differences:

Envelope demodulation when  $m < 1$  (above) and  $m > 1$  (below)
  • For a modulation depth  $m ≤ 1$  the envelope of the band-pass signal is characterized by:
$$a(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$
Here,  an ideal demodulation   ⇒   $v(t) = q(t)$  is possible with an envelope demodulator,  if we ignore unavoidable noise.
  • In contrast,  with  $m > 1$  the following relationship holds:
$$a(t) = |q(t) + A_{\rm T} |\hspace{0.05cm}.$$
  1. Here,  envelope demodulation always leads to  $\text{nonlinear distortions}$.
  2. The sink signal  $v(t)$  now includes new frequencies,  which were not present in $q(t)$.
  3. For the DC component (expected value)  of the envelope, in this case it holds that:
       ${\rm E}[a(t)] \ne A_{\rm T}\hspace{0.05cm}.$
  4. Since now instead of  $A_{\rm T}$  this DC component  ${\rm E}[a(t)]$  is removed by the high-pass filter,  an additional level shift occurs.

Description using the equivalent low-pass signal


Especially when the source signal  $q(t)$  can be represented as a sum of several harmonic oscillations,  a signal description with the equivalent low-pass signal  ${r_{\rm TP}(t)}$  is extremely advantageous.  This is described in detail in the book  "Signal Representation".

$\text{Please note:}$  If noise/interference is disregarded,  the  »received signal«  can be written as:

$$r(t) = a(t) \cdot \cos (\omega_{\rm T}\cdot t + \phi(t))\hspace{0.05cm}.$$


This equation is valid for any form of amplitude modulation under different boundary conditions:

  • Double sideband (DSB) or single sideband (SSB),
  • with or without a carrier,
  • ideal channel or linear distorting channel.


$\text{In general}$:  The associated  »equivalent low-pass signal«  (German:  "äquivalentes Tiefpass–Signal"   ⇒   subscript  "TP") is complex and given as:

$$r_{\rm TP}(t) = a(t) \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi(t)}\hspace{0.05cm}.$$

The time functions  $a(t)$  and  $ϕ(t)$  contained in the equations are identical for both representations:

  • The function  $a(t)$  describes the  »envelope«  (time-dependent amplitude)  of the physical signal  $r(t)$  and the magnitude  $\vert r_{\rm TP}(t) \vert $  of the equivalent low-pass signal, respectively.  This is detected during envelope demodulation.
  • The function  $ϕ(t)$  is the  »time-dependent phase«.  This function contains all information about the position of the zero crossings of  $r(t)$  and indicates whether an additional phase modulation is effective.


In the case of double sideband amplitude modulation  $\text{(DSB-AM)}$,  the following holds for an ideal channel:

  • The  »locality curve«  or  »locus curve«  – by this we mean the time-dependent representation of the signal  $r_{\rm TP}(t)$  in the complex plane – is a horizontal straight line on the real axis.
  • It further follows that the phase function can take only two values:  $0$  and  $π$   $(180^\circ)$ .
  • When  $m ≤ 1$,  then  $ϕ(t) ≡ 0$  and the envelope demodulation can be applied without distortion.
  • When  $m > 1$,  a section of the locus curve lies in the left half-plane   ⇒   nonlinear distortions arise when envelope demodulation is applied.


$\text{Example 3:}$   We assume that the source signal  $q(t)$  can take on all values in the range  $±1\ \rm V$.

Locus curves illustrating envelope demodulation
  • Adding a DC component of  $A_{\rm T} = 2\ \rm V$  results in a DSB-AM with modulation depth  $m = 0.5$,  whose locus curve can be seen in the left graph.
  • $r_{\rm TP}(t)$  always lies in the right half-plane.  The pointer length changes with the source signal  $q(t)$.


The right-hand graph holds for  $A_{\rm T} = 0.5 \ \rm V$   ⇒   $m = 2$.

  •  $r_{\rm TP}(t)$  now takes on real values between $-0.5\ \rm V$  and  $1.5\ \rm V$.
  • The envelope demodulator cannot distinguish between positive and negative values   ⇒   nonlinear distortions occur.


The physical signals  $q(t)$,  $r(t)$ and  $v(t)$  corresponding to this example can be found in the graph in the  "previous section".

Special case of a cosine-shaped message signal


To quantitatively capture the nonlinear distortions due to a modulation depth  $m> 1$,  we assume the following scenario:

  • cosine-shaped source signal:   $q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t);$
  • DSB–AM with carrier:   $s(t) = \left ( q(t) + A_{\rm T} \right ) \hspace{-0.05cm}\cdot \hspace{-0.05cm}\cos(\omega_{\rm N} \hspace{-0.05cm}\cdot \hspace{-0.05cm}t),$   $r(t) = s(t);$
  • modulation depth:   $m = A_{\rm N}/A_{\rm T} = 1.25;$
  • ideal envelope demodulation:   $a(t) = {| q(t) + A_{\rm T}|} $
  • elimination of the DC component by a low-pass:   $r(t) = a(t) - {\rm E}\big[a(t)\big].$


The graph is valid for the signal parameters  $A_{\rm N} = 5 \ \rm V$,  $f_{\rm N} = 2 \ \rm kHz$,  $A_{\rm T} = 4 \ \rm V$  and  $f_{\rm T} = 100\ \rm kHz$.  It shows

  • above,  the sink signal  $v(t)$  compared to the source signal  $q(t)$,
  • in the middle,  the received signal  $r(t)$  as well as the envelope curve  $a(t) = {|r(t)|}$,
  • below,  the error signal  $ε(t) = v(t) \ – \ q(t)$  due to nonlinear distortions.


Based on the graphs, the following statements can be made:

Error signal $ε(t)$  for envelope demodulation
  • A comparison of the signals  $q(t)$  and  $a(t)$  reveals,  that in this example the envelope  $a(t)$  correctly reproduces the shape of the source signal  $q(t)$  in around   $80\%$  of the time.
  • However,  the maximum of the envelope $a(t)$  is noticeably larger than the maximum of the source signal  $q(t)$  due to the added carrier  $A_{\rm T}$.
  • The sink signal  $v(t)$  differs from the envelope curve  $a(t)$  by the expected value  ${\rm Ε}\big[a(t)\big]$,  which is removed by the low-pass of the envelope demodulator.
  • Since  ${\rm Ε}\big[a(t)\big] = 4.27 \ \rm V$  does not match  $A_{\rm T} = 4 \ \rm V$, $v(t)$  differs from  $q(t)$  by the constant value  $0.27 \ \rm V$,  also in the regions where  $a(t)$  is correctly detected.
  • The cosine source signal  $q(t)$  becomes a signal  $v(t)$  with harmonics:
$$v(t) = A_{\rm 1} \cdot \cos(\omega_{\rm N} t ) +A_{\rm 2} \cdot \cos(2\omega_{\rm N} t )+A_{\rm 3} \cdot \cos(3\omega_{\rm N} t )+ \text{...}$$
$$\Rightarrow \hspace{0.3cm}A_{\rm 1} = 4.48\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.46\,{\rm V},\hspace{0.3cm}A_{\rm 3} = -0.37\,{\rm V},\hspace{0.3cm} A_{\rm 4} = 0.26\,{\rm V},\hspace{0.1cm}\text{...}$$
$$K_2 ={|A_{\rm 2}|}/{A_{\rm 1}} = 0.102\hspace{0.3cm}K_3 ={|A_{\rm 3}|}/{A_{\rm 1}} = 0.082,\hspace{0.3cm}K_4 = {|A_{\rm 4}|}/{A_{\rm 1}} = 0.058,\hspace{0.1cm}\text{...}$$
$$\Rightarrow \hspace{0.3cm}K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{...} } \approx 15 \%.$$
  • In the chapter  "Quality Criteria"  it was shown,  that this also fixes the SNR at  $ρ_v = 1/K^2 ≈ 44$ . 
  • The SNR  $ρ_v$  $($but not  $K)$  can also be used as a quality criterion if  $q(t)$  contains more than one frequency   ⇒   derivation in the book "Linear and Time Invariant Systems".

Considering channel distortions


For the following considerations,  we assume the modulation method  "DSB-AM with carrier"  as well as a cosine-shaped source signal $q(t)$ .

  • Let the amplitudes of the source and carrier signals be  $A_{\rm N} = 4 \ \rm V$  and  $A_{\rm T} = 5 \ \rm V $,  resp.   ⇒   modulation depth  $m = 0.8$.
  • Thus  (ideal)  envelope demodulation is applicable in principle.
Spectra and signals illustrating envelope demodulation


The graph shows,  in descending order

  • the spectra  $S_{\rm TP}(f)$  and  $R_{\rm TP}(f)$  of the equivalent low-pass signals,  which are assumed to be real,
  • the equivalent low-pass signals  $s_{\rm TP}(t)$  and  $r_{\rm TP}(t)$  in the complex plane, and lastly
  • the physical signals  $s(t)$  and  $r(t)$.


The left half of the image shows the transmitter and at the same time gives the conditions at the receiver for an ideal channel.

  1. Due to the modulation depth  $m ≤ 1$,  the source signal  $q(t)$ can be recognized in the envelope  $a(t)$.
  2. Consequently,  envelope demodulation is applicable without distortion under certain conditions,  as shown in  $\text{Example 4}$.


The right half considers asymmetrical distortions through the channel.

  1. Here the carrier is attenuated by  $α_{\rm T} = 0.8$,  and the upper sideband by  $α_{\rm O} = 0.5$. 
  2. Now the envelope  $a(t) ≠ q(t) + A_{\rm T}$  is no longer cosine-shaped.
  3. Here,  envelope demodulation leads to nonlinear distortions as shown in  $\text{Example 5}$.


$\text{Example 4:}$   Let  $A_{\rm N} = 4 \ \rm V$  and  $A_{\rm T} = 5 \rm V$   continue to hold ⇒   modulation depth  $m = 0.8$.  The graph illustrates the use of an ideal envelope demodulator with an ideal channel,  whereby the following identities are considered:

Envelope demodulation with an ideal channel
$$R_{\rm TP}(f) \hspace{-0.05cm}=\hspace{-0.05cm} S_{\rm TP}(f) \hspace{0.02cm}, \hspace{0.5cm} r_{\rm TP}(t) \hspace{-0.05cm}=\hspace{-0.05cm} s_{\rm TP}(t) \hspace{0.02cm}, \hspace{0.5cm} r(t) \hspace{-0.05cm}=\hspace{-0.05cm} s(t) \hspace{0.02cm}.$$

From these representations one can recognize:

  1. The red pointer of length  $A_{\rm T}$  depicting the carrier is fixed.
  2. The upper sideband  (in blue)  rotates in mathematically positive direction,  the lower sideband  (in green)  in the opposite direction.
  3. Since the blue and green pointers both rotate with the same angular velocity  $ω_{\rm N}$  but in opposite directions,  the vector sum of all pointers is always real.
  4. Should the modulation depth  $m ≤ 1$,  then at all times  $r_{\rm TP}(t) ≥ 0$  and  $ϕ(t) = 0$.  This means,  that the zero crossings of the received signal  $r(t)$  exactly coincide with those of the carrier signal  $z(t)$.
  5. The envelope $a(t)$  of the physical signal  $r(t)$  is equal to the resulting pointer length, i.e., equal to the magnitude of  $r_{\rm TP}(t)$.  Because  $m< 1$ ,  $a(t) = q(t) + A_{\rm T}$ holds.
  6. For the given amplitude values,  the locus curve  $r_{\rm TP}(t)$  lies on the real axis between the end-points  $A_{\rm T} \ – \ A_{\rm N} = 1\ \rm V$  and  $A_{\rm T} + A_{\rm N} = 9 \ \rm V$.
  7. The locus curve on the real axis in the right half-plane is an indicator that the message signal can be extracted without distortion by an envelope demodulator.


$\text{Example 5:}$   Now let us consider the same graphs for a distorting channel where

  • $α_{\rm U} = 1.0$   ⇒   the lower sideband  (German:  "unteres Seitenband"   ⇒   subscript "U")  is unchanged,
  • $α_{\rm T} = 0.8$   ⇒   the carrier  (German:  "Träger"   ⇒   subscript "T")  is slightly attenuated,
  • $α_{\rm U} = 0.5$  ⇒   the upper sideband   (German:  "oberes Seitenband"   ⇒   subscript "O")  is attenuated more.
Envelope demodulation with a distorting channel


The graphs can then be interpreted as follows:

  1. Due to the different lengths of the green pointer  $\rm (USB)$  and blue pointer  $\rm (OSB)$,  the locus curve becomes an ellipse,  whose center is fixed by the  (red)  carrier.
  2. The angle between the complex-valued  $r_{\rm TP}(t)$  and the coordinate origin is now no longer continuous  $ϕ(t) \equiv 0$,  but instead fluctuates between  $±ϕ_{\rm max}.$
  3. The maximal phase is equal to the angle of the tangent to the ellipse.  In the physical signal,  $ϕ(t) ≠ 0$  leads to shifts of the zero crossings of  $r(t)$  with respect to its nominal positions – as given by the carrier signal  $z(t)$.
  4. The magnitude  $a(t) = \vert r_{\rm TP}(t) \vert$ – i.e.,  the envelope of  $r(t)$ – is thus no longer cosine-shaped,  and the signal after the envelope demodulator contains harmonics in addition to the frequency  $f_{\rm N}$:
        $v(t) = A_{\rm 1} \cdot \cos(\omega_{\rm N}\cdot t ) +A_{\rm 2} \cdot \cos(2\omega_{\rm N}\cdot t )+A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t )+ \text{...}$
  5. These lead to nonlinear distortions,  which are captured by the distortion factor  $K$ .
    When  $A_{\rm N} = 4 \ \rm V$,  $A_{\rm T} = 5 \ \rm V$,  $α_{\rm U} = 1$  and  $α_{\rm T} = 0.8$,  the following numerical values are obtained as a function of the upper sideband $α_{\rm O}$:
$α_{\rm O} = 1.00$:     $K = 0$   ⇒   only the carrier is attenuated,
$α_{\rm O} = 0.75$:     $K ≈ 0.4\%$,
$α_{\rm O} = 0.50$:     $K ≈ 1.5\%$  ⇒   this value is used as a basis for the graph,
$α_{\rm O} = 0.25$:     $K ≈ 4\%$,
$α_{\rm O} = 0.00$:     $K ≈ 10\%$   ⇒   complete suppression of  $\rm OSB$.

This graph is valid for  $α_{\rm O} = 0.5$,  in which case we obtain  (although difficult to see with the naked eye):

  • shifts in the zero crossings of the signal  $r(t)$  by at most  $25^\circ\hspace{-0.05cm}/360^\circ ≈ 7\%$  of the carrier period  $T_0$,  and
  • deviation from the ideal cosine shape   ⇒   $K ≈ 1.5\%$ .


Symmetrical channel distortions - attenuation distortions


An important result of the last section was that nonlinear signal distortions occur in the case of asymmetric linear distortions in the channel. 

  • If,  on the other hand,  the lower sideband is attenuated in the same way as the upper sideband,  the locus curve is once again a horizontal straight line and no nonlinear distortions occur.
  • Rather,  the distortions with respect to  $q(t)$  and  $v(t)$  – as well as the distortions with respect to  $s(t)$  and  $r(t)$ –  are linear in this case,  and can be corrected for by a suitably dimensioned filter.


We now assume the following:

  • A source signal  $q(t)$  – composed of two cosine components at the frequencies  $f_1$  and  $f_2$  with amplitudes  $A_1$  and  $A_2$.
  • DSB–AM with carrier  ⇒   the transmitted signal  $s(t)$  is composed of a total of five cosine oscillations at the frequencies  $f_{\rm T},  f_{\rm T} ± f_1$  and  $f_{\rm T} ± f_2$.
Spectra in the equivalent low-pass region
  • A channel with attenuation distortions,  symmetrical about the carrier frequency:
$$H_{\rm K} (f = f_{\rm T})= \alpha_0, \hspace{0.3cm} H_{\rm K} (f = \pm f_{\rm 1})= \alpha_1, \hspace{0.3cm}H_{\rm K} (f = \pm f_{\rm 2})= \alpha_2;$$
  • An ideal envelope demodulator as described in this section.


The graphic shows the spectral function of the equivalent low-pass signals of the transmitted signal and the received signal. From this picture,  the following statements can be made:

  1. The equivalent low-pass signal  $r_{\rm TP}(t)$  is real.  The locus curve – i.e., the peak of the pointer composite in the complex plane – again also lies on the real axis.
  2. Should  $α_0 · A_{\rm T}$  be greater than  $α_1 · A_1 + α_2 · A_2$,  then the  "modulation depth of the received signal"  is less than  $1$  and nonlinear distortions do not occur.
  3. The sink signal after ideal envelope demodulation and elimination of the DC component  $α_0 · A_{\rm T}$  by the downstream high-pass filter is:
$$v(t) = \alpha_1 \cdot A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) + \alpha_2 \cdot A_{\rm 2} \cdot \cos(2 \pi f_{\rm 2} t ) \hspace{0.05cm}.$$

This means:  

  • Linear distortions (attenuation distortions) occur when  $α_2 ≠ α_1$ . 
  • If the symmetry with respect to  $f_{\rm T}$  were not present,  nonlinear distortions would arise.


⇒   We refer you to the  (German language)  learning video  "Lineare und nichtlineare Verzerrungen"   ⇒   "Linear and nonlinear distortions".

Influence of additive white Gaussian noise


Based on the system configuration

  • DSB–AM with modulation depth  $m ≤ 1$,  and
  • the best-fitting envelope demodulation


we can now estimate the influence of additive white Gaussian noise. Distortions of any kind  – for example caused by an unsuitable channel or an imperfect realization of the modulator and demodulator –  are ruled out.

The graph on the right shows the sink SNR  $10 · \lg \, ρ_v$  for different modulation depths  $m$  as a function of the logarithmic performance parameter:

SNR for  "DSB-AM with/without carrier"  and envelope demodulation
$$10 \cdot {\rm lg }\hspace{0.1cm} \xi = 10 \cdot {\rm lg }\hspace{0.1cm} \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \hspace{0.05cm}.$$

The result of the envelope demodulator  $\rm (ED)$  is marked with solid lines,  while the dotted lines represent the synchronous demodulator  $\rm (SD)$.

As already derived in the section "Investigations with regard to signal distortions",  the results for the synchronous demodulator in this double-logarithmic representation are

  • the angle bisector  (for  $m → ∞$,  "DSB–AM without carrier"),  and
  • a shifted line parallel to it for  "DSB–AM with carrier", with a vertical distance of  $10 · \lg \, (1 + 2/m^2$).


When envelope demodulation  $\rm (ED)$  is applied,  the following differences are observed:

  • An envelope demodulator is not useful when  $m > 1$,  because it would cause strong nonlinear distortions.
  • The  $\rm ED$–curves always lie beneath the dashed  $\rm SD$–lines,  assuming the same modulation depth  $m$.
  • Above a certain  $ξ$–value,  the  $\rm ED$– and the  $\rm SD$–curves cannot be distinguished for the given degree of precision.


More information on this topic can be found e.g. in  [Kam 04][1].


Arguments for and against the envelope demodulator


The most important reason for the use of the envelope demodulator is  (better said:  was)  that it avoids the often laborious need for frequency and phase synchronization,  so that it can be realized cheaply.  The envelope demodulator is thus an example of an  "incoherent demodulator".

On the other hand,  several reasons can be given in favour of the  $\text{synchronous demodulator}$  and against the envelope demodulator:

  • With envelope demodulation,  an over-modulation  $(m > 1)$  must be avoided under all circumstances.  This can be achieved for example by limiting the amplitude of the source signal,  though this also results in nonlinear distortions.
  • All else being equal,  the modulation depth  $m < 1$  can only be achieved by increasing the transmitted power by at least a factor of  $3$.  This is also problematic because of justified discussions on the topic of  "electronic smog"  in large parts of our society.
  • Linear channel distortions in the case of an envelope demodulator can lead to irreversible nonlinear channel distortions,  whereas the linear distortions occurring during synchronous demodulation can possibly be compensated for by special measures taken at the receiver.

Exercises for the chapter


Exercise 2.7: Is the Modulation Depth Too High?

Exercise 2.7Z: DSB-AM and Envelope Demodulator

Exercise 2.8: Asymmetrical Channel

Exercise 2.9: Symmetrical Distortions


References

  1. Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4. Auflage, 2004.