Difference between revisions of "Digital Signal Transmission/Approximation of the Error Probability"

From LNTwww
 
(72 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Verallgemeinerte Beschreibung digitaler Modulationsverfahren
+
|Untermenü=Generalized Description of Digital Modulation Methods
 
|Vorherige Seite=Struktur des optimalen Empfängers
 
|Vorherige Seite=Struktur des optimalen Empfängers
 
|Nächste Seite=Trägerfrequenzsysteme mit kohärenter Demodulation
 
|Nächste Seite=Trägerfrequenzsysteme mit kohärenter Demodulation
 
}}
 
}}
  
== Optimale Entscheidung bei binärer Übertragung (1) ==
+
== Optimal decision with binary transmission==
 
<br>
 
<br>
Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann: <b><i>r</i></b> = <b><i>s</i></b> + <b><i>n</i></b>:
+
We assume here a transmission system which can be characterized as follows: &nbsp; $\boldsymbol{r} = \boldsymbol{s} + \boldsymbol{n}$.&nbsp; This system has the following properties:
*Der das Übertragungssystem vollständig beschreibende Vektorraum wird von <i>N</i> = 2 zueinander orthogonalen Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) aufgespannt.<br>
+
*The vector space fully describing the transmission system is spanned by &nbsp;$N = 2$&nbsp; mutually orthogonal basis functions &nbsp; $\varphi_1(t)$ &nbsp; and &nbsp; $\varphi_2(t)$.&nbsp; <br>
  
*Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor <b><i>n</i></b> = (<i>n</i><sub>1</sub>, <i>n</i><sub>2</sub>).<br>
+
*Consequently,&nbsp; the probability density function of the additive and white Gaussian noise is also to be set two-dimensional,&nbsp; characterized by the vector&nbsp; $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.<br>
  
*Es gibt nur zwei mögliche Sendesignale (<i>M</i> = 2), die durch die beiden Vektoren <b><i>s</i></b><sub>0</sub> = (<i>s</i><sub>01</sub>, <i>s</i><sub>02</sub>) und <b><i>s</i></b><sub>1</sub> = (<i>s</i><sub>11</sub>, <i>s</i><sub>12</sub>) beschrieben werden:
+
*There are only two possible transmitted signals&nbsp; $(M = 2)$,&nbsp; described by the two vectors&nbsp; $\boldsymbol{ s_0} = (s_{01},\hspace{0.05cm}s_{02})$&nbsp; and&nbsp; $\boldsymbol{ s_1} = (s_{11},\hspace{0.05cm}s_{12})$:&nbsp;
 +
[[File:P ID2019 Dig T 4 3 S1 version1.png|right|frame|Decision regions for equal&nbsp; (left)&nbsp; and unequal (right)&nbsp; occurrence probabilities|class=fit]]
 +
 +
:$$s_0(t)= s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},$$
 +
:$$s_1(t) = s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.$$
  
::<math>s_0(t) \hspace{-0.1cm}  =  \hspace{-0.1cm} s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},</math>
+
*The two messages&nbsp; $m_0 \ \Leftrightarrow \ \boldsymbol{ s_0}$&nbsp; and &nbsp;$m_1 \ \Leftrightarrow \ \boldsymbol{ s_1}$&nbsp; are not necessarily equally probable.<br>
::<math>s_1(t) \hspace{-0.1cm}  =  \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.</math>
 
  
*Die beiden Nachrichten <i>m</i><sub>0</sub> &#8660; <b><i>s</i></b><sub>0</sub> und <i>m</i><sub>1</sub> &#8660; <i>'''s'''</i><sub>1</sub> sind nicht notwendigermaßen gleichwahrscheinlich.<br>
+
*The task of the decision is to give an estimate for the current received vector&nbsp; $\boldsymbol{r}$&nbsp; according to the&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Fundamental_approach_to_optimal_receiver_design|"MAP decision rule"]].&nbsp; In the present case,&nbsp; this rule is with&nbsp; $\boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2)$:
 +
:$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} \big[ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm}|\hspace{0.05cm} m_i )\big ]
 +
\hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}.$$
 +
*In the special case&nbsp; $N = 2$&nbsp; and&nbsp; $M = 2$&nbsp; considered here,&nbsp; the decision partitions the two-dimensional space into the two disjoint areas&nbsp; $I_0$&nbsp; (highlighted in red)&nbsp; and&nbsp; $I_1$&nbsp; (blue),&nbsp; as the graphic on the right illustrates.
  
*Aufgabe des Entscheiders ist es nun, für den gegebenen Empfangsvektor <b><i>r</i></b> einen Schätzwert nach der [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Fundamentaler_Ansatz_zum_optimalen_Empf.C3.A4ngerentwurf_.281.29 MAP&ndash;Entscheidungsregel] anzugeben. Diese lautet im vorliegenden Fall:
+
*If the received value lies in&nbsp; $I_0$, &nbsp; $m_0$&nbsp; is output as the estimated value,&nbsp; otherwise&nbsp; $m_1$.
  
::<math>\hat{m} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) ]
 
\hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
 
\boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \rho_2)
 
\hspace{0.05cm}.</math>
 
  
Im hier betrachteten Sonderfall <i>N</i> = 2 und <i>M</i> = 2 partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub>, wie in der nachfolgenden Grafik verdeutlicht. Liegt der Empfangswert in <i>I</i><sub>0</sub>, so wird als Schätzwert <i>m</i><sub>0</sub> ausgegeben, andernfalls <i>m</i><sub>1</sub>.
+
{{BlaueBox|TEXT=
 +
$\text{Derivation and picture description:}$&nbsp;
 +
For the AWGN channel and&nbsp;  $M = 2$,&nbsp; the decision rule is thus:
 +
 
 +
&rArr; &nbsp; Always choose message&nbsp; $m_0$&nbsp; if the following condition is satisfied:
 +
 
 +
:$${\rm Pr}( m_0) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot \vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 \right ]
 +
> {\rm Pr}( m_1) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 \right ]
 +
\hspace{0.05cm}.$$
  
[[File:P ID2019 Dig T 4 3 S1 version1.png|Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten|class=fit]]<br>
+
&rArr; &nbsp; The boundary line between the two decision regions&nbsp; $I_0$&nbsp; and&nbsp; $I_1$&nbsp; is obtained by replacing the&nbsp; "greater sign"&nbsp; with the&nbsp; "equals sign"&nbsp; in the above equation and transforming the equation slightly:
  
Die Herleitung und Bildbeschreibung folgt auf der nächsten Seite.<br>
+
:$$\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2  - 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_0)\big ] =
 +
\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2  - 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_1)\big ]$$
 +
:$$\Rightarrow \hspace{0.3cm} \vert \hspace{-0.05cm} \vert  \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2  - \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 
 +
+ 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_0)}{ {\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  
== Optimale Entscheidung bei binärer Übertragung (2) ==
+
From the plot above one can see:
<br>
+
*The boundary curve between regions&nbsp; $I_0$&nbsp; and&nbsp; $I_1$&nbsp; is a straight line,&nbsp; since the equation of determination is linear in the received vector&nbsp; $\boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2)$.&nbsp; <br>
Beim AWGN&ndash;Kanal und <i>M</i> = 2 lautet somit die Entscheidungsregel: Man entscheide sich immer dann für die Nachricht <i>m</i><sub>0</sub>, falls folgende Bedingung erfüllt ist:
 
  
:<math>{\rm Pr}( m_0) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 \right ]
+
*For equally probable symbols,&nbsp; the boundary is exactly halfway between&nbsp; $\boldsymbol{ s }_0$&nbsp; and&nbsp; $\boldsymbol{ s }_1$&nbsp; and rotated by &nbsp;$90^\circ$&nbsp; with respect to the line connecting the transmission points:
> {\rm Pr}( m_1) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 \right ]
 
\hspace{0.05cm}.</math>
 
  
Die Grenzlinie zwischen den beiden Entscheidungsregionen <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub> erhält man, wenn man in obiger Gleichung das Größerzeichen durch das Gleichheitszeichen ersetzt und die Gleichung etwas umformt:
+
:$$\vert \hspace{-0.05cm} \vert  \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert ^2  - \vert \hspace{-0.05cm} \vert  \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert ^2  = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  
:<math>|| \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2  - 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_0)] =
+
*For&nbsp; ${\rm Pr}(m_0) > {\rm Pr}(m_1)$,&nbsp; the decision boundary is shifted toward the less probable symbol&nbsp; $\boldsymbol{ s }_1$,&nbsp; and the more so the larger the AWGN standard deviation&nbsp; $\sigma_n$.&nbsp; <br>
|| \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2  - 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_1)] </math>
 
  
:<math>\Rightarrow \hspace{0.3cm} ||  \boldsymbol{ s }_1 ||^2  - || \boldsymbol{ s }_0 ||^2 + 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.</math>
+
*The green-dashed decision boundary in the right figure as well as the decision regions&nbsp; $I_0$&nbsp; (red)&nbsp; and&nbsp; $I_1$&nbsp; (blue)&nbsp; are valid for the&nbsp; (normalized)&nbsp; standard deviation&nbsp; $\sigma_n = 1$&nbsp; and the dashed boundary lines for&nbsp; $\sigma_n = 0$&nbsp; resp.&nbsp; $\sigma_n = 2$. <br>}}
  
Aus dieser Gleichung erkennt man:
+
==The special case of equally probable binary symbols ==
*Die Grenzkurve zwischen den Regionen <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub> ist eine Gerade, da die Bestimmungsgleichung linear im Empfangsvektor <b><i>&rho;</i></b> = (<i>&rho;</i><sub>1</sub>, <i>&rho;</i><sub>2</sub>) ist.<br>
+
<br>
 +
We continue to assume a binary system&nbsp; $(M = 2)$,&nbsp; but now consider the simple case where this can be described by a single basis function&nbsp; $(N = 1)$.&nbsp; The error probability for this has already been calculated in the section&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_of_the_bit_error_probability|"Definition of the bit error probability"]].&nbsp; <br>
 +
With the nomenclature and representation form chosen for the fourth main chapter the following constellation results:
 +
[[File:P ID2020 Dig T 4 3 S2 version1.png||right|frame|Conditional probability density functions for equally probable symbols|class=fit]]
  
*Bei gleichwahrscheinlichen Symbolen verläuft die Grenze genau in der Mitte zwischen <b><i>s</i></b><sub>0</sub> und <b><i>s</i></b><sub>1</sub> und um 90&deg; verdreht gegenüber der Verbindungslinie zwischen den Sendepunkten (linke Grafik):
+
*The received value&nbsp; $r = s + n$&nbsp; is now a scalar and is composed of the transmitted signal&nbsp; $s \in \{s_0, \hspace{0.05cm}s_1\}$&nbsp; and the noise term&nbsp; $n$&nbsp; additively. The abscissa&nbsp; $\rho$&nbsp; denotes a realization of&nbsp; $r$.<br>
  
::<math>||  \boldsymbol{ s }_1 ||^2  - ||  \boldsymbol{ s }_0 ||^2  = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.</math>
+
*In addition,&nbsp; the abscissa is normalized to the reference quantity&nbsp; $\sqrt{E}$,&nbsp; whereas here the normalization energy&nbsp; $E$&nbsp; has no prominent,&nbsp; physically interpretable meaning.<br>
  
*Für Pr(<i>m</i><sub>0</sub>) > Pr(<i>m</i><sub>1</sub>) ist die Entscheidungsgrenze in Richtung des unwahrscheinlicheren Symbols (<b><i>s</i></b><sub>1</sub>) verschoben, und zwar um so mehr, je größer die AWGN&ndash;Streuung <i>&sigma;<sub>n</sub></i> ist.<br><br>
+
*The noise term&nbsp; $n$&nbsp; is Gaussian distributed with mean&nbsp; $m_n = 0$&nbsp; and variance&nbsp; $\sigma_n^2$.&nbsp; The root of the variance&nbsp; $(\sigma_n)$&nbsp; is called the&nbsp; "rms value"&nbsp; or the&nbsp; "standard deviation".<br>
  
[[File:P ID2027 Dig T 4 3 S1 version1.png|Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten|class=fit]]<br>
+
*The decision boundary&nbsp; $G$&nbsp; divides the entire value range of&nbsp; $r$&nbsp; into the two subranges&nbsp; $I_0$&nbsp; $($in which&nbsp; $s_0$&nbsp; lies$)$ and&nbsp; $I_1$&nbsp; $($with the signal value &nbsp;$s_1)$.<br>
  
Die grün&ndash;durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen <i>I</i><sub>0</sub> (rot) und  <i>I</i><sub>1</sub> (blau) gelten für die Streuung <i>&sigma;<sub>n</sub></i> = 1 und die gestrichelten Grenzlinien für <i>&sigma;<sub>n</sub></i> = 0 bzw. <i>&sigma;<sub>n</sub></i> = 2.<br>
+
*If&nbsp; $\rho > G$,&nbsp; the decision returns the estimated value&nbsp; $m_0$, otherwise&nbsp; $m_1$.&nbsp; It is assumed that the message&nbsp; $m_i$&nbsp; is uniquely related to the signal&nbsp; $s_i$:&nbsp; &nbsp; $m_i \Leftrightarrow s_i$.
  
== Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (1) ==
 
<br>
 
Wir gehen weiterhin von einem Binärsystem aus (<i>M</i> = 2), betrachten aber nun den einfachen Fall, dass dieses durch eine einzige Basisfunktion beschrieben werden kann (<i>N</i> = 1). Die Fehlerwahrscheinlichkeit hierfür wurde bereits in Kapitel 1.2 berechnet.<br>
 
  
Mit der für Kapitel 4 gewählten Nomenklatur und Darstellungsform ergibt sich folgende Konstellation:
+
The graph shows the conditional&nbsp; $($one-dimensional$)$&nbsp; probability density functions &nbsp; $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_0}$ &nbsp; and &nbsp;  $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_1}$ &nbsp; for the AWGN channel,&nbsp; assuming equal symbol probabilities: &nbsp; ${\rm Pr}(m_0) =  {\rm Pr}(m_1)  = 0.5$.&nbsp; Thus,&nbsp; the&nbsp; $($optimal$)$&nbsp; decision boundary is&nbsp; $G = 0$.&nbsp; One can see from this plot:
*Der Empfangswert <i>r</i> = <i>s</i> + <i>n</i> &ndash; nunmehr ein Skalar &ndash; setzt sich aus dem Sendesignal <i>s</i> &#8712; {<i>s</i><sub>0</sub>, <i>s</i><sub>1</sub>} und dem Rauschterm <i>n</i> zusammen. Die Abszisse <i>&rho;</i> bezeichnet eine Realisierung von <i>r</i>.<br>
+
#If&nbsp; $m = m_0$&nbsp; and thus&nbsp; $s = s_0 = 2 \cdot E^{1/2}$,&nbsp; an erroneous decision occurs only if&nbsp; $\eta$,&nbsp; the realization of the noise quantity&nbsp; $n$,&nbsp; is smaller than&nbsp; $-2 \cdot E^{1/2}$.
 +
#In this case,&nbsp; $\rho < 0$, where&nbsp; $\rho$&nbsp; denotes a realization of the received value&nbsp; $r$.&nbsp;
 +
#In contrast,&nbsp; for&nbsp; $m = m_1$ &nbsp; &rArr; &nbsp; $s = s_1 = -2 \cdot E^{1/2}$,&nbsp; an erroneous decision occurs whenever&nbsp; $\eta$&nbsp; is greater than&nbsp; $+2 \cdot E^{1/2}$.&nbsp; In this case,&nbsp; $\rho > 0$.
  
*Die Abszisse ist auf die Bezugsgröße <i>E</i><sup>1/2</sup> normiert, wobei die Normierungsenergie <i>E</i> keine herausgehobene physikalische Bedeutung hat.<br>
 
  
*Der Rauschterm <i>n</i>  ist gaußverteilt mit dem Mittelwert 0 und der Varianz <i>&sigma;<sub>n</sub></i><sup>2</sup>. Die Wurzel aus der Varianz (<i>&sigma;<sub>n</sub></i>) wird als Effektivwert  oder Streuung bezeichnet.<br>
+
== Error probability for symbols with equal probability ==
 +
<br>
 +
Let&nbsp; ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$.&nbsp; For AWGN noise with standard deviation&nbsp; $\sigma_n$,&nbsp; as already calculated in the section&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_of_the_bit_error_probability|"Definition of the bit error probability"]]&nbsp; with different nomenclature,&nbsp; we obtain for the probability of a wrong decision&nbsp; $(\cal E)$&nbsp; under the condition that message&nbsp; $m_0$&nbsp; was sent:
  
*Die Entscheidergrenze <i>G</i> unterteilt den gesamten Wertebereich von <i>r</i> in die beiden Teilbereiche <i>I</i><sub>0</sub> (in dem unter anderem <i>s</i><sub>0</sub> liegt) und <i>I</i><sub>1</sub> (mit dem Signalwert <i>s</i><sub>1</sub>).<br>
+
:$${\rm Pr}({ \cal E}\hspace{0.05cm} \vert \hspace{0.05cm} m_0) = \int_{-\infty}^{G = 0} p_{r \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \rho } \hspace{0.05cm} \vert \hspace{0.05cm}m_0 ) \,{\rm d} \rho =  \int_{-\infty}^{-  s_0 } p_{{ n} \hspace{0.05cm}\vert\hspace{0.05cm}m_0 } ({ \eta } \hspace{0.05cm}|\hspace{0.05cm}m_0 ) \,{\rm d} \eta = \int_{-\infty}^{- s_0 } p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta =
 +
\int_{ s_0 }^{\infty} p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta = {\rm Q} \left ( {s_0 }/{\sigma_n} \right )
 +
\hspace{0.05cm}.$$
  
*Ist <i>&rho;</i> > <i>G</i>, so liefert der Entscheider den Schätzwert <i>m</i><sub>0</sub>, andernfalls <i>m</i><sub>1</sub>. Hierbei ist vorausgesetzt, dass die Nachricht <i>m<sub>i</sub></i> mit dem Sendesignal <i>s<sub>i</sub></i> eineindeutig zusammenhängt: <i>m<sub>i</sub></i> &nbsp;&#8660;&nbsp; <i>s<sub>i</sub></i>.
+
In deriving the equation,&nbsp; it was considered that the AWGN noise&nbsp; $\eta$&nbsp; is independent of the signal &nbsp;$(m_0$&nbsp; or&nbsp; $m_1)$&nbsp; and has a symmetric PDF.&nbsp; The complementary Gaussian error integral was also used:
:[[File:P ID2020 Dig T 4 3 S2 version1.png|Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen|class=fit]]<br>
+
:$${\rm Q}(x) =  \frac{1}{\sqrt{2\pi}}  \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u
 +
\hspace{0.05cm}.$$
  
Die Grafik zeigt die bedingten (eindimensionalen) Wahrscheinlichkeitsdichtefunktionen <i>p<sub>r|m<sub>0</sub></sub></i> und  <i>p<sub>r|m<sub>1</sub></sub></i> für den hier betrachteten AWGN&ndash;Kanal, wobei gleiche Symbolwahrscheinlichkeiten vorausgesetzt sind: Pr(<i>m<sub>0</sub></i>) =  Pr(<i>m<sub>1</sub></i>) = 0.5. Dementsprechend ist die (optimale) Entscheidergrenze <i>G</i> = 0.<br>
+
Correspondingly,&nbsp; for&nbsp; $m = m_1$ &nbsp; &rArr; &nbsp; $s = s_1 = -2 \cdot E^{1/2}$:
 +
:$${\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) =  \int_{0}^{\infty} p_{{ r} \hspace{0.05cm}\vert\hspace{0.05cm}m_1 } ({ \rho } \hspace{0.05cm}\vert\hspace{0.05cm}m_1 ) \,{\rm d} \rho =  \int_{- s_1 }^{\infty} p_{{ n}  } (\boldsymbol{ \eta }  ) \,{\rm d} \eta = {\rm Q} \left ( {- s_1 }/{\sigma_n} \right )
 +
\hspace{0.05cm}.$$
  
Man erkennt aus dieser Darstellung:
+
{{BlaueBox|TEXT= 
*Ist <i>m</i> = <i>m</i><sub>0</sub> und damit <i>s</i> = <i>s</i><sub>0</sub> = 2 &middot; <i>E</i><sup> 1/2</sup>, so kommt es nur dann zu einer Fehlentscheidung, wenn <i>&eta;</i>, die Realisierung der Rauschgröße <i>n</i>, kleiner ist als &ndash;2 &middot; <i>E</i><sup> 1/2</sup>.<br>
+
$\text{Conclusion:}$&nbsp; With the distance&nbsp; $d = s_1 - s_0$&nbsp; of the signal space points, we can summarize the results, still considering&nbsp; ${\rm Pr}(m_0) + {\rm Pr}(m_1) = 1$:&nbsp;  
 +
:$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0) =  {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) = {\rm Q} \big ( {d}/(2{\sigma_n}) \big )$$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_0)  + {\rm Pr}(m_1) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1)= \big [ {\rm Pr}(m_0) + {\rm Pr}(m_1) \big ] \cdot
 +
{\rm Q}  \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] \hspace{0.05cm}.$$
  
*In diesem Fall ist <i>&rho;</i> < 0, wobei <i>&rho;</i> eine Realisierung des Empfangswertes <i>r</i> bezeichnet.<br><br>
+
<u>Notes:</u>
 +
#This equation is valid under the condition&nbsp; $G = 0$&nbsp; quite generally,&nbsp; thus also for&nbsp; ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$.
 +
#For&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Optimal_threshold_for_non-equally_probable_symbols|"non-equally probable symbols"]],&nbsp; however,&nbsp; the error probability can be reduced by a different decision threshold.<br>
 +
#The equation mentioned here is also valid if the signal space points are not scalars but are described by the vectors&nbsp; $\boldsymbol{ s}_0$&nbsp; and&nbsp; $\boldsymbol{ s}_1$.&nbsp;
 +
#The distance&nbsp; $d$&nbsp; results then as the norm of the difference vector: &nbsp; $d = \vert \hspace{-0.05cm} \vert \hspace{0.05cm} \boldsymbol{ s}_1  - \boldsymbol{ s}_0 \hspace{0.05cm} \vert \hspace{-0.05cm} \vert
 +
\hspace{0.05cm}.$}}
  
Die Bildbeschreibung wird auf der nächsten Seite fortgesetzt.<br>
 
  
== Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (2) ==
+
{{GraueBox|TEXT=
<br>
+
$\text{Example 1:}$&nbsp; Let's look again at the signal space constellation from the&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Optimal_decision_with_binary_transmission|"first chapter section"]]&nbsp; $($lower graphic$)$&nbsp; with the values
[[File:P ID2021 Dig T 4 3 S2 version1.png|Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen|class=fit]]<br>
 
  
Kommen wir nun zur Berechnung der Fehlerwahrscheinlichkeit:
+
[[File:Dig_T_4_3_S2b_version2.png|right|frame|Two signal space constellations|class=fit]] 
*Bei AWGN&ndash;Rauschen mit dem Effektivwert (Streuung) <i>&sigma;<sub>n</sub></i> erhält man in diesem Fall, wie bereits in Kapitel 1.2 mit anderer Nomenklatur berechnet wurde:
+
*$\boldsymbol{ s}_0/E^{1/2}  = (3.6, \hspace{0.05cm}0.8)$,
  
::<math>{\rm Pr}({ \cal E} | m_0) \hspace{-0.1cm}  = \hspace{-0.1cm} \int_{-\infty}^{G = 0} p_{r \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \rho } |m_0 ) \,{\rm d} \rho =  \int_{-\infty}^{-  s_0 } p_{{ n} \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \eta } |m_0 ) \,{\rm d} \eta = </math>
+
*$\boldsymbol{ s}_1/E^{1/2}  = (0.4, \hspace{0.05cm}3.2)$.  
:::::<math>\hspace{-0.05cm} =  \hspace{-0.1cm}\int_{-\infty}^{- s_0 } p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta =
 
\int_{ s_0 }^{\infty} p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta = {\rm Q} \left ( {s_0 }/{\sigma_n} \right )
 
\hspace{0.05cm}.</math>
 
  
*Bei der Herleitung der Gleichung wurde berücksichtigt, dass das AWGN&ndash;Rauschen <i>&eta;</i> unabhängig vom Signal (<i>m</i><sub>0</sub> oder <i>m</i><sub>1</sub>) ist und eine symmetrische WDF besitzt. Verwendet wurde zudem das komplementäre Gaußsche Fehlerintegral
 
  
::<math>{\rm Q}(x) =  \frac{1}{\sqrt{2\pi}}  \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u
+
Here the distance of the signal space points is
\hspace{0.05cm}.</math>
 
  
*Entsprechend gilt für <i>m</i> = <i>m</i><sub>1</sub> &nbsp;&nbsp;&#8660;&nbsp;&nbsp; <i>s</i> = <i>s</i><sub>1</sub> = &ndash;2 &middot; <i>E</i><sup> 1/2</sup>:
+
:$$d = \vert \hspace{-0.05cm} \vert s_1 - s_0 \vert \hspace{-0.05cm} \vert = \sqrt{E \cdot (0.4 - 3.6)^2 + E \cdot (3.2 - 0.8)^2} = 4 \cdot \sqrt {E}\hspace{0.05cm}.$$
  
::<math>{\rm Pr}({ \cal E} | m_1) =  \int_{0}^{\infty} p_{{ r} \hspace{0.05cm}|\hspace{0.05cm}m_1 } ({ \rho } |m_1 ) \,{\rm d} \rho = \int_{- s_1 }^{\infty} p_{{ n}  } (\boldsymbol{ \eta }  ) \,{\rm d} \eta = {\rm Q} \left ( {- s_1 }/{\sigma_n} \right )
+
This results in exactly the same value as for the upper constellation with
\hspace{0.05cm}.</math>
+
*$\boldsymbol{ s}_0/E^{1/2} = (2, \hspace{0.05cm}0)$,
 +
   
 +
*$\boldsymbol{ s}_1/E^{1/2}   = (-2, \hspace{0.05cm}0)$. <br>
  
*Mit dem Abstand <i>d</i> = <i>s</i><sub>1</sub> &ndash; <i>s</i><sub>0</sub> der zwei Signalraumpunkte lassen sich die beiden Ergebnisse zusammenfassen, wobei noch Pr(<i>m</i><sub>0</sub>) + Pr(<i>m</i><sub>1</sub>) = 1 zu berücksichtigen ist:
 
  
::<math>{\rm Pr}({ \cal E} | m_0) =  {\rm Pr}({ \cal E} | m_1) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right )</math>
+
The figures show these two constellations and reveal the following similarities and differences,&nbsp; assuming the AWGN noise variance&nbsp; $\sigma_n^2 = N_0/2$&nbsp; in each case.&nbsp; The circles in the graph illustrate the circular symmetry of the two-dimensional AWGN noise.
::<math>\Rightarrow \hspace{0.3cm}{\rm Pr}({ \cal E} ) \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm Pr}(m_0) \cdot {\rm Pr}({ \cal E} | m_0)  + {\rm Pr}(m_1) \cdot {\rm Pr}({ \cal E} | m_1)=</math>
+
*As said before,&nbsp; both the distance of the signal points from the decision line&nbsp; $(d/2 = 2 \cdot \sqrt {E})$&nbsp; and the AWGN characteristic value&nbsp;  $\sigma_n$&nbsp; are the same in both cases.<br>
:::::<math> \hspace{0.2cm}\hspace{-0.1cm}  =  \hspace{-0.1cm} \left [ {\rm Pr}(m_0) + {\rm Pr}(m_1) \right ] \cdot
 
{\rm Q}  \left ( {d}/(2{\sigma_n}) \right ) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right ) \hspace{0.05cm}.</math>
 
  
Diese Gleichung gilt unter der Voraussetzung <i>G</i> = 0 ganz allgemein, also auch für Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>). Bei nicht gleichwahrscheinlichen Symbolen lässt sich allerdings die Symbolfehlerwahrscheinlichkeit durch eine andere Entscheidergrenze verkleinern.<br>
+
*It follows: &nbsp; The two arrangements lead to the same error probability if the parameter&nbsp; $E$&nbsp; $($a kind of normalization energy$)$&nbsp; is kept constant:
  
<b>Hinweis:</b> Die hier genannte Gleichung gilt auch dann, wenn die Signalraumpunkte keine Skalare sind, sondern durch die Vektoren <b><i>s</i></b><sub>0</sub> und <b><i>s</i></b><sub>1</sub> beschrieben werden. Der Abstand <i>d</i> ergibt sich dann als die Norm des Differenzvektors:
+
:$${\rm Pr} ({\rm symbol\hspace{0.15cm} error}) = {\rm Pr}({ \cal E} ) =  {\rm Q} \big [ {d}/(2{\sigma_n}) \big ]\hspace{0.05cm}.$$
  
:<math>d = || \hspace{0.05cm} \boldsymbol{ s}_1  - \boldsymbol{ s}_0 \hspace{0.05cm} ||
+
*The&nbsp; "mean energy per symbol" &nbsp;$(E_{\rm S})$&nbsp; for the upper constellation is given by
\hspace{0.05cm}.</math>
+
:$$E_{\rm S} = 1/2 \cdot \vert \hspace{-0.05cm} \vert s_0 \vert \hspace{-0.05cm} \vert^2 + 1/2 \cdot \vert \hspace{-0.05cm} \vert s_1 \vert \hspace{-0.05cm} \vert^2 = E/2 \cdot \big[(+2)^2 + (-2)^2\big] = 4 \cdot  {E}\hspace{0.05cm}.$$
 +
*With the lower constellation one receives in the same way:
 +
:$$E_{\rm S} = \ \text{...} \ = E/2 \cdot \big[(3.6)^2 + (0.8)^2\big] + E/2 \cdot \big[(0.4)^2 + (3.2)^2 \big] = 12 \cdot  {E}\hspace{0.05cm}.$$
 +
*For a given mean energy per symbol</i> &nbsp; &rArr; &nbsp; $E_{\rm S}$,&nbsp; the upper constellation is therefore clearly superior to the lower one: &nbsp; The same error probability results with one third of the energy per symbol.&nbsp; This issue will be discussed in detail in&nbsp; [[Aufgaben:Exercise_4.06Z:_Signal_Space_Constellations|"Exercise 4.6Z"]].&nbsp; }}<br>
  
== Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (3) ==
+
== Optimal threshold for non-equally probable symbols ==
 
<br>
 
<br>
Betrachten wir nun nochmals die Signalraumkonstellation von der ersten Seite dieses Kapitels mit den Werten  <b><i>s</i></b><sub>0</sub>/<i>E</i><sup> 1/2</sup> = (3.6, 0.8) und <b><i>s</i></b><sub>1</sub>/<i>E</i><sup> 1/2</sup> = (0.4, 3.2). Hier beträgt der Abstand der Signalraumpunkte
+
If&nbsp; ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$&nbsp; holds,&nbsp; a slightly smaller error probability can be obtained by shifting the decision threshold&nbsp; $G$.&nbsp; The following results are derived in detail in the solution to&nbsp; [[Aufgaben:Exercise_4.07:_Decision_Boundaries_once_again|"Exercise 4.7"]]:&nbsp;
 +
*For unequal symbol probabilities, the optimal decision threshold&nbsp; $G_{\rm opt}$&nbsp; between regions&nbsp; $I_0$&nbsp; and&nbsp; $I_1$&nbsp; is closer to the less probable symbol.&nbsp; The normalized optimal shift with respect to the value&nbsp; $G = 0$&nbsp; for equally probable symbols is
  
:<math>d = || s_1 - s_0 || = \sqrt{E \cdot (0.4 - 3.6)^2 + E \cdot (3.2 - 0.8)^2} = 4 \cdot \sqrt {E}
+
::<math>\gamma_{\rm opt} = \frac{G_{\rm opt}}{s_0 } = 2 \cdot  \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm}.</math>
\hspace{0.05cm},</math>
 
  
also der genau gleiche Wert wie für <b><i>s</i></b><sub>0</sub>/<i>E</i><sup>1/2</sup> = (2, 0) und <b><i>s</i></b><sub>1</sub>/<i>E</i><sup>1/2</sup> = (&ndash;2, 0). Die AWGN&ndash;Rauschvarianz beträgt jeweils <i>&sigma;<sub>n</sub></i><sup>2</sup> = <i>N</i><sub>0</sub>/2.<br>
+
*The error probability is then
  
[[File:P_ID2023__Dig_T_4_3_S2b_version1.png|Zwei Signalraumkonstellationen|class=fit]]<br>
+
:$${\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Q} \big[  {d}/(2{\sigma_n})  \cdot (1 - \gamma_{\rm opt}) \big ]
 +
+ {\rm Pr}(m_1) \cdot {\rm Q} \big [ {d}/(2{\sigma_n})  \cdot (1 + \gamma_{\rm opt}) \big ]\hspace{0.05cm}.$$
  
Die Abbildungen zeigen diese beiden Konstellationen und lassen folgende Gemeinsamkeiten bzw. Unterschiede erkennen:
+
{{GraueBox|TEXT= 
*Wie bereits gesagt, sind sowohl der Abstand der Signalpunkte von der Entscheidungsgeraden (<i>d</i>/2 = 2 &middot; <i>E</i><sup>1/2</sup>) als auch der AWGN&ndash;Kennwert <i>&sigma;<sub>n</sub></i> in beiden Fällen gleich.<br>
+
$\text{Example 2:}$&nbsp; The formal parameter&nbsp; $\rho$&nbsp; (abscissa)&nbsp; denotes a realization of the AWGN random variable&nbsp; $r = s + n$.&nbsp; For the following  further holds:
 +
[[File:P ID2024 Dig T 4 3 S3 version2.png|right|frame|Density functions for equal/unequal symbol probabilities|class=fit]]
 +
 +
:$$\boldsymbol{ s }_0 = (2 \cdot \sqrt{E},  \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E},  \hspace{0.1cm} 0)$$
 +
:$$  \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E},  \hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.$$
  
*Daraus folgt: Die beiden Anordnungen führen zur gleichen Fehlerwahrscheinlichkeit, wenn man den Parameter <i>E</i> (eine Art Normierungsenergie) konstant lässt:
+
*For equally probable symbols &nbsp; &rArr; &nbsp; ${\rm Pr}( m_0) = {\rm Pr}( m_1) = 1/2$,&nbsp; the optimal decision threshold is&nbsp; $G_{\rm opt} = 0$ &nbsp; &rArr; &nbsp; see upper sketch.&nbsp; This gives us for the error probability:
  
::<math>{\rm Pr} ({\rm Symbolfehler}) = {\rm Pr}({ \cal E} ) =  {\rm Q} \left ( {d}/(2{\sigma_n}) \right )\hspace{0.05cm}.</math>
+
:$${\rm Pr}({ \cal E} ) =  {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} (2) \approx 2.26\% \hspace{0.05cm}.$$
  
*Bei gegebener <i>mittlerer Energie pro Symbol</i> (<i>E<sub>s</sub></i>) ist jedoch die linke Konstellation (<i>E<sub>s</sub></i> = 4 &middot; <i>E</i>) der rechten (<i>E<sub>s</sub></i> = 24 &middot; <i>E</i>) deutlich überlegen: Die gleiche Fehlerwahrscheinlichkeit ergibt sich mit weniger Energie.<br><br>
+
*Now let the probabilities be&nbsp; ${\rm Pr}( m_0) = 3/4\hspace{0.05cm},\hspace{0.1cm}{\rm Pr}( m_1) = 1/4\hspace{0.05cm}$ &nbsp; &rArr; &nbsp; see lower sketch.&nbsp; Let the other system variables be unchanged from the upper graph.&nbsp; In this case the optimal&nbsp; (normalized)&nbsp; shift factor is
  
Auf diesen Sachverhalt wird in der Aufgabe Z4.6 noch im Detail eingegangen. Die Kreise in obiger Grafik veranschaulichen die zirkuläre Symmetrie von 2D&ndash;AWGN&ndash;Rauschen.<br>
+
::<math>\gamma =  2 \cdot \frac{  \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_1)}{ {\rm Pr}( m_0)} =  2 \cdot
 +
\frac{ E}{16  \cdot E} \cdot {\rm ln} \hspace{0.15cm} \frac{1/4}{3/4 } \approx - 0.14
 +
\hspace{0.05cm}.</math>
  
== Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (1) ==
+
*This is a&nbsp; $14\%$&nbsp; shift toward the less probable symbol&nbsp; $\boldsymbol {s}_1$&nbsp; (i.e., to the left).&nbsp; This makes the error probability slightly smaller than for equally probable symbols:
<br>
+
 
Gilt Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>), so kann man durch eine Verschiebung der Entscheidungsgrenze <i>G</i> eine etwas kleinere Fehlerwahrscheinlichkeit erreichen. Die nachfolgenden Ergebnisse werden ausführlich in der Musterlösung zur Aufgabe A4.7 hergeleitet:
+
::<math>{\rm Pr}({ \cal E} )= 0.75 \cdot {\rm Q} \left ( 2 \cdot 1.14 \right ) + 0.25 \cdot {\rm Q} \left ( 2 \cdot 0.86 \right ) = 0.75 \cdot 0.0113 + 0.25 \cdot 0.0427 \approx 1.92\% \hspace{0.05cm}.</math>
*Bei ungleichen Symbolwahrscheinlichkeiten liegt die optimale Entscheidungsgrenze <i>G</i><sub>opt</sub> zwischen den Regionen <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub> näher beim unwahrscheinlicheren Symbol.<br>
+
 
 +
One recognizes from these numerical values:
 +
#Due to the threshold shift,&nbsp; the symbol $\boldsymbol&nbsp; {s}_1$&nbsp; is now more distorted,&nbsp; but the more probable symbol&nbsp; $\boldsymbol {s}_0$&nbsp; is distorted disproportionately less.<br>
 +
#However,&nbsp; the result should not lead to misinterpretations.&nbsp; In the asymmetrical case &nbsp; &#8658; &nbsp; ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$&nbsp; there is a smaller error probability than for&nbsp; ${\rm Pr}( m_0) ={\rm Pr}( m_1) = 0.5$,&nbsp; but then only less information can be transmitted with each symbol.
 +
#With the selected numerical values &nbsp; "$0.81 \ \rm bit/symbol$" &nbsp; instead of &nbsp; "$1\ \rm  bit/symbol$".&nbsp;
 +
#From an information theoretic point of view,&nbsp; ${\rm Pr}( m_0) ={\rm Pr}( m_1)$&nbsp; would be optimal.}}
  
*Die normierte optimale Verschiebung gegenüber der Grenze <i>G</i> = 0 bei gleichwahrscheinlichen Symbolen beträgt
 
  
::<math>\gamma_{\rm opt} = \frac{G_{\rm opt}}{s_0 } = 2 \cdot  \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm}.</math>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;
 +
*In the symmetric case &nbsp; &rArr; &nbsp; ${\rm Pr}( m_0) ={\rm Pr}( m_1)$,&nbsp; the conventional conditional PDF values&nbsp; $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$&nbsp; can be used for decision.
 +
*In the asymmetric case &nbsp; &rArr; &nbsp; ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$,&nbsp; these functions must be weighted beforehand: &nbsp; ${\rm Pr}(m_i) \cdot p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m_i } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$.  
  
*Die Fehlerwahrscheinlichkeit ist dann gleich
 
  
::<math>{\rm Pr}({ \cal E} ) =  {\rm Pr}(m_0) \cdot {\rm Q} \left[  {d}/(2{\sigma_n})  \cdot (1 - \gamma_{\rm opt}) \right ]
+
In the following, we consider this issue.}}
+ {\rm Pr}(m_1) \cdot {\rm Q} \left [ {d}/(2{\sigma_n})  \cdot (1 + \gamma_{\rm opt}) \right ]\hspace{0.05cm}.</math>
 
  
{{Beispiel}}''':''' Für das Folgende gelte
+
== Decision regions in the non-binary case ==
 +
<br>
 +
In general,&nbsp; the decision regions&nbsp; $I_i$&nbsp; partition the &nbsp;$N$&ndash;dimensional real space into&nbsp; $M$&nbsp; mutually disjoint regions.&nbsp;
  
:<math>\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}\hspace{0.1cm} 0), \hspace{0.2cm}
+
*Here,&nbsp; the decision region&nbsp; $I_i$&nbsp; with &nbsp;$i = 0$, ... , $M-1$&nbsp; is defined as the set of all points leading to the estimate&nbsp; $m_i$:&nbsp;
  \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}\hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.</math>
+
::<math>\boldsymbol{ \rho } \in I_i \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \hat{m} = m_i, \hspace{0.3cm}{\rm where}\hspace{0.3cm}I_i = \left \{ \boldsymbol{ \rho } \in { \cal R}^N \hspace{0.05cm} | \hspace{0.05cm}
 +
{\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm} m_i ) >
 +
{\rm Pr}( m_k) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm}m_k )\hspace{0.15cm} \forall k \ne i 
 +
\right \} \hspace{0.05cm}.</math>
  
Bei gleichwahrscheinlichen Symbolen ergibt sich die optimale Entscheidergrenze zu <i>G</i><sub>opt</sub> = 0. Damit erhält man für die Fehlerwahrscheinlichkeit:
+
*The shape of the decision regions&nbsp; $I_i$&nbsp; in the &nbsp;$N$&ndash;dimensional space depend on the conditional probability density functions&nbsp; $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m }$,&nbsp; i.e. on the considered channel.
  
:<math>{\rm Pr}({ \cal E} ) =  {\rm Q}  \left ( {d}/(2{\sigma_n}) \right ) = {\rm Q} (2) \approx 2.26\% \hspace{0.05cm}.</math>
+
*In many cases &ndash; including the AWGN channel &ndash; the decision boundaries between every two signal points are straight lines,&nbsp; which simplifies further considerations.<br>
  
[[File:P ID2024 Dig T 4 3 S3 version2.png|Dichtefunktionen für gleiche/ungleiche Symbolwahrscheinlichkeiten|class=fit]]<br>
 
  
Die Beschreibung der unteren Grafik folgt auf der nächsten Seite.{{end}}<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; The graph shows the decision regions&nbsp; $I_0$,&nbsp; $I_1$&nbsp; and&nbsp; $I_2$&nbsp; for a transmission system with the parameters&nbsp; $N = 2$&nbsp; and&nbsp; $M = 3$.
 +
[[File:P ID2025 Dig T 4 3 S4 version2.png|right|frame|AWGN decision regions&nbsp; <br>$(N = 2$,&nbsp; $M = 3)$]]
 +
The normalized transmission vectors here are
  
== Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (2) ==
+
:$$\boldsymbol{ s }_0 = (2,\hspace{0.05cm} 2),$$
<br>
+
:$$  \boldsymbol{ s }_1 = (1,\hspace{0.05cm} 3),$$
 +
:$$  \boldsymbol{ s }_2 = (1,\hspace{0.05cm} -1)  \hspace{0.05cm}.$$
  
{{Beispiel}}''':''' Wir betrachten nun ungleiche Symbolwahrscheinlichkeiten, wie für das untere Bild vorausgesetzt:
+
Now two cases have to be distinguished:
 +
*For equally probable symbols &nbsp; &rArr; &nbsp;  ${\rm Pr}( m_0) =  {\rm Pr}( m_1) ={\rm Pr}( m_2) = 1/3 $,&nbsp; the boundaries between two regions are always straight,&nbsp; centered and perpendicular to the connecting lines.<br>
  
:<math>{\rm Pr}( m_0) = 3/4\hspace{0.05cm},\hspace{0.3cm}{\rm Pr}( m_1) = 1/4\hspace{0.05cm}.</math>
 
  
[[File:P ID2024 Dig T 4 3 S3 version2 (1).png|Dichtefunktionen für gleiche/ungleiche Symbolwahrscheinlichkeiten|class=fit]]<br>
+
*In the case of unequal symbol probabilities,&nbsp; the decision boundaries are to be shifted&nbsp;  $($parallel$)$&nbsp; in the direction of the more improbable symbol in each case&nbsp; &ndash;&nbsp; the further the greater the AWGN standard deviation&nbsp; $\sigma_n$.}}
  
Die weiteren Systemgrößen seien gegenüber der oberen Grafik unverändert:
 
  
:<math>\boldsymbol{ s }_0 = (2 \cdot \sqrt{E},  \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E},  \hspace{0.1cm} 0), \hspace{0.2cm}
 
  \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E},  \hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.</math>
 
  
In diesem Fall beträgt der optimale (normierte) Verschiebungsfaktor
+
== Error probability calculation in the non-binary case ==
 +
<br>
 +
After the decision regions&nbsp; $I_i$&nbsp; are fixed,&nbsp; we can compute the symbol error probability of the overall system.&nbsp; We use the following names,&nbsp; although we sometimes have to use different names in continuous text than in equations because of the limitations imposed by our character set:
 +
#Symbol error probability: &nbsp; ${\rm Pr}({ \cal E} ) = {\rm Pr(symbol\hspace{0.15cm} error)} \hspace{0.05cm},$
 +
#Probability of correct decision: &nbsp; ${\rm Pr}({ \cal C} ) = 1 - {\rm Pr}({ \cal E} ) = {\rm Pr(correct \hspace{0.15cm} decision)} \hspace{0.05cm},$
 +
#Conditional probability of a correct decision under the condition&nbsp; $m = m_i$: &nbsp; &nbsp; ${\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i)  \hspace{0.05cm}.$
  
:<math>\gamma =  2 \cdot \frac{  \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} =  2 \cdot
+
*With these definitions,&nbsp; the probability of a correct decision is:
\frac{ E}{16  \cdot E} \cdot {\rm ln} \hspace{0.15cm} \frac{1/4}{3/4 } \approx - 0.14
 
\hspace{0.05cm},</math>
 
  
was einer Verschiebung um 14% hin zum unwahrscheinlicheren Symbol <b><i>s</i></b><sub>1</sub> (also nach links) bedeutet. Dadurch wird die Fehlerwahrscheinlichkeit geringfügig kleiner als bei gleichwahrscheinlichen Symbolen:
+
:$${\rm Pr}({ \cal C} ) \hspace{-0.1cm}  =  \hspace{-0.1cm}  \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  \sum_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot
 +
\int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho }    \hspace{0.05cm}.$$
  
:<math>{\rm Pr}({ \cal E} ) \hspace{-0.1cm}  =  \hspace{-0.1cm}  0.75 \cdot {\rm Q} \left ( 2 \cdot 1.14 \right ) + 0.25 \cdot {\rm Q} \left ( 2 \cdot 0.86 \right ) = </math>
+
*For the AWGN channel,&nbsp; this is according to the section&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#N-dimensional_Gaussian_noise| "N&ndash;dimensional Gaussian noise"]]:
:::<math> \hspace{-0.2cm}  =  \hspace{-0.1cm}0.75 \cdot 0.0113 + 0.25 \cdot 0.0427 \approx 1.92\% \hspace{0.05cm}.</math>
 
  
Man erkennt aus diesen Zahlenwerten: Durch die Schwellenverschiebung wird nun zwar das Symbol <b><i>s</i></b><sub>1</sub> stärker verfälscht, das wahrscheinlichere Symbol <b><i>s</i></b><sub>0</sub> jedoch überproportional weniger.<br>
+
::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) = \frac{1}{(\sqrt{2\pi} \cdot \sigma_n)^N} \cdot 
 +
\int_{I_i} {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_i ||^2 \right ] \,{\rm d} \boldsymbol {\rho }\hspace{0.05cm}.</math>
  
Das Ergebnis sollte nicht zu Fehlinterpretationen führen. Im unsymmetrischen Fall &nbsp;&#8658;&nbsp; Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>) ergibt sich zwar eine kleinere Fehlerwahrscheinlichkeit  als für Pr(<i>m</i><sub>0</sub>) = Pr(<i>m</i><sub>1</sub>) = 0.5, aber mit jedem Symbol kann auch nur weniger Information übertragen werden, bei den gewählten Zahlenwerten 0.81 bit/Symbol statt 1 bit/Symbol. Aus informationstheoretischer Sicht ist Pr(<i>m</i><sub>0</sub>) = Pr(<i>m</i><sub>1</sub>) optimal.<br>
+
:#This integral must be calculated numerically in the general case.
 +
:#Only for a few,&nbsp; easily describable decision regions&nbsp; $\{I_i\}$&nbsp; an analytical solution is possible.<br>
  
<i>Anmerkung: </i>Bei Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>)  müssen nun die absoluten Wahrscheinlichkeitsdichefunktionen Pr(<i>m<sub>i</sub></i>) &middot; <i>p<sub>r|m<sub>i</sub></sub></i>(<i>&rho;</i>&nbsp;|&nbsp;<i>m<sub>i</sub></i>) betrachtet werden. Der formale Parameter <i>&rho;</i> gibt dabei wieder eine Realisierung der AWGN&ndash;Zufallsgröße <i>r</i> = <i>s</i> + <i>n</i> an. Im Folgenden wird dieser Sachverhalt berücksichtigt.<br>
 
  
{{end}}<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; For the AWGN channel,&nbsp; there is a two-dimensional Gaussian bell around the transmission point&nbsp; $\boldsymbol{ s }_i$,&nbsp; recognizable in the left graphic by the concentric contour lines.
 +
[[File:P ID2026 Dig T 4 3 S5b version1.png|right|frame|To calculate the error probability for AWGN|class=fit]]
  
== Entscheidungsregionen im nichtbinären Fall (M > 2) ==
+
#In addition,&nbsp; the decision line&nbsp; $G$&nbsp; is drawn somewhat arbitrarily.
<br>
+
#Shown alone on the right in a different coordinate system&nbsp; (shifted and rotated)&nbsp; is the PDF of the noise component.
Allgemein partitionieren die Entscheidungsregionen <i>I<sub>i</sub></i> den <i>N</i>&ndash;dimensionalen reellen Raum in <i>M</i> zueinander disjunkte Gebiete. <i>I<sub>i</sub></i> ist definiert als die Menge aller Punkte, die zum Schätzwert <i>m<sub>i</sub></i> führen:
 
  
:<math>\boldsymbol{ \rho } \in I_i \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} \hat{m} = m_i, \hspace{0.15cm}{\rm wobei}</math>
 
  
:<math>I_i = \left \{ \boldsymbol{ \rho } \in { \cal R}^N \hspace{0.05cm} | \hspace{0.05cm}
+
The graph can be interpreted as follows:
{\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) >
+
*The probability that the received vector does not fall into the blue&nbsp; "target area"&nbsp; $I_i$,&nbsp; but into the red highlighted area&nbsp; $I_k$, is&nbsp; $ {\rm Q} (A/\sigma_n)$;&nbsp;  ${\rm Q}(x)$&nbsp; is the Gaussian error function.
{\rm Pr}( m_k) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_k )\hspace{0.15cm} \forall k \ne i 
 
\right \} \hspace{0.05cm}.</math>
 
  
Die Form der Entscheidungsregionen <i>I<sub>i</sub></i> (<i>i</i> = 0, ... , <i>M</i> &ndash;1) im <i>N</i>&ndash;dimensionalen Raum hängen von den bedingten Wahrscheinlichkeitsdichtefunktionen <i>p<sub><b><i>r</i></b>|m</sub></i> ab, also vom betrachteten Kanal. In vielen Fällen &ndash; so auch beim AWGN&ndash;Kanal &ndash; sind die Entscheidungsgrenzen zwischen je zwei Signalpunkten Gerade, was die weiteren Betrachtungen deutlich vereinfacht.<br>
+
*$A$&nbsp; denotes the distance between&nbsp; $\boldsymbol{ s }_i$&nbsp; and&nbsp; $G$.&nbsp; $\sigma_n$&nbsp; indicates the&nbsp; "rms value"&nbsp; (root of the variance)&nbsp; of the AWGN noise. <br>
  
{{Beispiel}}''':''' Die Grafik zeigt die Entscheidungsregionen <i>I</i><sub>0</sub>, <i>I</i><sub>1</sub> und <i>I</i><sub>2</sub> für ein Übertragungssystem mit den Parametern <i>N</i> = 2 und <i>M</i> = 3. Die normierten Sendevektoren sind dabei
+
*Correspondingly,&nbsp; the probability for the event&nbsp; $r \in I_i$&nbsp; is equal to the complementary value
  
[[File:P ID2025 Dig T 4 3 S4 version2.png|rahmenlos|rechts|Entscheidungsregionen für AWGN, <i>N</i> = 2, <i>M</i> = 3]]
+
::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) = {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) =
 +
1 - {\rm Q} (A/\sigma_n)\hspace{0.05cm}.</math>}}<br>
  
:<math>\boldsymbol{ s }_0 = (2,\hspace{0.05cm} 2), \hspace{0.2cm} \hspace{0.01cm}
+
We now consider the equations given above,
  \boldsymbol{ s }_1 = (1,\hspace{0.05cm} 3), \hspace{0.01cm} \hspace{0.2cm}
 
  \boldsymbol{ s }_2 = (1,\hspace{0.05cm} -1)
 
  \hspace{0.05cm}.</math>
 
  
Es sind nun zwei Fälle zu unterscheiden:
+
::<math>{\rm Pr}({ \cal C} ) =  \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) \hspace{0.3cm}{\rm with}
*Bei gleichen Symbolwahrscheinlichkeiten,
+
  \hspace{0.3cm} {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  
::<math>{\rm Pr}( m_0) =  {\rm Pr}( m_1) ={\rm Pr}( m_2) = 1/3 \hspace{0.05cm},</math>
+
  \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho }
 +
  \hspace{0.05cm},</math>
  
:verlaufen die Grenzen zwischen jeweils zwei Regionen stets geradlinig, mittig und rechtwinklig zu den Verbindungsgeraden.<br>
+
in a little more detail,&nbsp; where we again assume two basis functions&nbsp; $(N = 2)$&nbsp; and three signal space points&nbsp;  $(M = 3)$&nbsp; at&nbsp; $\boldsymbol{ s }_0$,&nbsp; $\boldsymbol{ s }_1$,&nbsp;  $\boldsymbol{ s }_2$.
  
*Bei ungleichen Symbolwahrscheinlichkeiten sind die Entscheidungsgrenzen dagegen jeweils in Richtung des unwahrscheinlicheren Symbols (parallel) zu verschieben, und zwar umso weiter, je größer die AWGN&ndash;Streuung <i>&sigma;<sub>n</sub></i> ist.{{end}}<br>
+
[[File:P ID2028 Dig T 4 3 S5 version1.png|right|frame|Error probability calculation for AWGN,&nbsp; $M = 3$]]
 +
#The decision regions&nbsp; $I_0$,&nbsp; $I_1$&nbsp; and &nbsp;$I_2$&nbsp; are chosen&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Optimal_threshold_for_non-equally_probable_symbols|"best as possible"]].&nbsp;
 +
#The AWGN noise is indicated in the sketch by three circular contour lines each.
  
Nachdem die Entscheidungsregionen <i>I<sub>i</sub></i> festliegen, kann man die Symbolfehlerwahrscheinlichkeit des Gesamtsystems berechnen. Auf den nächsten Seiten benutzen wir folgende Bezeichnungen, wobei wir aufgrund der Einschränkungen durch den verwendeten HTML&ndash;Zeichensatz im Fließtext manchmal andere Namen als in Gleichungen verwenden müssen:
 
*Symbolfehlerwahrscheinlichkeit:
 
::<math>{\rm Pr}({ \cal E} ) = {\rm Pr(Symbolfehler)} \hspace{0.05cm},</math>
 
  
*Wahrscheinlichkeit für korrekte Entscheidung:
+
One can see from this plot:
::<math>{\rm Pr}({ \cal C} ) = 1 - {\rm Pr}({ \cal E} ) = {\rm Pr(korrekte \hspace{0.15cm} Entscheidung)} \hspace{0.05cm},</math>
+
*Assuming that&nbsp; $m = m_i \ \Leftrightarrow \ \boldsymbol{ s } = \boldsymbol{ s }_i$&nbsp; was sent,&nbsp; a correct decision is made only if the received value&nbsp; $\boldsymbol{ r } \in I_i$.&nbsp; <br>
  
*Bedingte Wahrscheinlichkeit einer korrekten Entscheidung unter der Bedingung <i>m</i> = <i>m<sub>i</sub></i>:
+
*The conditional probability&nbsp;  ${\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm}m_2)$&nbsp; is&nbsp; (by far)&nbsp; largest  for &nbsp;$i = 2$ &nbsp; &#8658; &nbsp; correct decision.&nbsp;
  
::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) \hspace{0.05cm}.</math>
+
*${\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm}m_2)$&nbsp; is much smaller.&nbsp; Almost negligible is&nbsp;  ${\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm}m_2)$.
  
== Fehlerwahrscheinlichkeitsberechnung im nichtbinären Fall (1) ==
+
*Thus,&nbsp; the falsification probabilities for&nbsp; $m = m_0$&nbsp; and&nbsp; $m = m_1$&nbsp; are:
<br>
 
Mit den Definitionen der letzten Seite gilt für die Wahrscheinlichkeit einer korrekten Entscheidung:
 
  
:<math>{\rm Pr}({ \cal C} ) \hspace{-0.1cm} \hspace{-0.1cm} \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) = </math>
+
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ),</math>
:::<math> \hspace{-0.1cm} \hspace{-0.1cm} \sum_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot
+
::<math> {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) ={\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 ) +  {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 )
\int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho }  
+
  \hspace{0.05cm}.</math>
  \hspace{0.05cm}.</math>
 
  
Für den AWGN&ndash;Kanal gilt dabei entsprechend [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#N.E2.80.93dimensionales_Gau.C3.9Fsches_Rauschen_.281.29 Kapitel 4.2]:
+
*The largest falsification probability is obtained for&nbsp; $m = m_0$.&nbsp; Because of
  
:<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) = \frac{1}{(\sqrt{2\pi} \cdot \sigma_n)^N} \cdot 
+
::<math>{\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \approx {\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 )
\int_{I_i} {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_i ||^2 \right ] \,{\rm d} \boldsymbol {\rho }\hspace{0.05cm}.</math>
+
\hspace{0.05cm}, </math>
 +
::<math>{\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \gg {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 )
 +
\hspace{0.05cm}</math>
  
Dieses Integral muss im allgemeinen Fall numerisch berechnet werden. Nur bei einigen wenigen,  einfach beschreibbaren Entscheidungsregionen {<i>I<sub>i</sub></i>} ist eine analytische Lösung möglich.<br>
+
:the following relations hold: &nbsp;
 +
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) > {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) >{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\hspace{0.05cm}. $$
  
{{Beispiel}}''':''' Beim AWGN&ndash;Kanal liegt eine 2D&ndash;Gaußglocke um den Sendepunkt <b><i>s</i></b><sub><i>i</i></sub>, in der linken Grafik erkennbar an den konzentrischen Höhenlinien. Etwas willkürlich ist zudem die Entscheidungsgerade <i>G</i> eingezeichnet. Rechts dargestellt ist in einem anderen Koordinatensystem (verschoben und gedreht) allein die WDF der Rauschkomponente.
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; These results can be summarized as follows:
 +
#To calculate the&nbsp; (average)&nbsp; error probability,&nbsp; it is necessary to average over all&nbsp; $M$&nbsp; terms in general,&nbsp; even in the case of equally probable symbols.
 +
#In the case of equally probable symbols,&nbsp; ${\rm Pr}(m_i) = 1/M$&nbsp; can be drawn in front of the summation,&nbsp; but this does not simplify the calculation very much.
 +
#Only in the case of symmetrical arrangement the averaging can be omitted.<br>}}
  
[[File:P ID2026 Dig T 4 3 S5b version1.png|Zur Berechnung der Fehlerwahrscheinlichkeit bei AWGN|class=fit]]<br>
+
== Union Bound - Upper bound for the error probability==
 +
<br>
 +
For arbitrary values of&nbsp; $M$,&nbsp; the following applies to the falsification probability under the condition that the message&nbsp; $m_i$&nbsp; $($or the signal &nbsp;$\boldsymbol{s}_i)$&nbsp; has been sent:
  
Die Grafik lässt sich wie folgt interpretieren:
+
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = {\rm Pr} \left [ \bigcup_{k \ne i} { \cal E}_{ik}\right ] 
*Die Wahrscheinlichkeit, dass der Empfangsvektor nicht in das Gebiet <i>I<sub>i</sub></i> fällt, sondern in das rot hinterlegte Gebiet <i>I<sub>k</sub></i>, ist Q(<i>A</i>/<i>&sigma;<sub>n</sub></i>). <i>A</i> ist der Abstand zwischen <b><i>s</i></b><sub><i>i</i></sub> und <i>G</i> und <i>&sigma;<sub>n</sub></i> der Effektivwert (Wurzel aus der Varianz) des AWGN&ndash;Rauschens. Q(<i>x</i>) ist die Gaußsche Fehlerfunktion.<br>
+
\hspace{0.05cm},\hspace{0.5cm}{ \cal E}_{ik}\hspace{-0.1cm}: \boldsymbol{ r }{\rm \hspace{0.15cm}is \hspace{0.15cm}closer \hspace{0.15cm}to \hspace{0.15cm}}\boldsymbol{ s }_k {\rm \hspace{0.15cm}than \hspace{0.15cm}to \hspace{0.15cm}the \hspace{0.15cm}nominal \hspace{0.15cm}value \hspace{0.15cm}}\boldsymbol{ s }_i
 +
\hspace{0.05cm}. </math>
  
*Entsprechend ist die Wahrscheinlichkeit für das Ereignis <i>r</i> &#8712; <i>I<sub>i</sub></i> gleich dem Komplementärwert
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; An upper bound can be specified for this expression with a Boolean inequality &ndash; the so-called &nbsp;'''Union Bound''':
  
::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) =
+
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) \le \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1}
1 - {\rm Q} (A/\sigma_n)\hspace{0.05cm}.</math>
+
{\rm Pr}({ \cal E}_{ik}) =  \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ]\hspace{0.05cm}. </math>
{{end}}<br>
 
  
== Fehlerwahrscheinlichkeitsberechnung im nichtbinären Fall (2) ==
+
<u>Remarks:</u>
<br>
+
#$d_{ik} = \vert \hspace{-0.05cm} \vert \boldsymbol{s}_i - \boldsymbol{s}_k \vert \hspace{-0.05cm} \vert$&nbsp; is the distance between the signal space points $\boldsymbol{s}_i$ and $\boldsymbol{s}_k$.
Wir betrachten nun die auf der letzten Seite angegebenen Gleichungen
+
#$\sigma_n$&nbsp; specifies the rms value of the AWGN noise.<br>
 +
#The&nbsp; "Union Bound"&nbsp; can only be used for equally probable symbols &nbsp; &rArr; &nbsp; ${\rm Pr}(m_i) = 1/M$.&nbsp;
 +
#But also in this case,&nbsp; an average must be taken over all&nbsp; $m_i$&nbsp;in order to calculate the&nbsp; (average)&nbsp; error probability.}}
  
:<math>{\rm Pr}({ \cal C} ) =  \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) \hspace{0.3cm}{\rm mit}
 
  \hspace{0.3cm} {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) =
 
  \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho }
 
  \hspace{0.05cm}</math>
 
  
etwas genauer, wobei wir wieder von zwei Basisfunktionen (<i>N</i> = 2) und den drei Signalraumpunkten <b><i>s</i></b><sub>0</sub>, <b><i>s</i></b><sub>1</sub> und <b><i>s</i></b><sub>2</sub> (also <i>M</i> = 3)  ausgehen.
+
{{GraueBox|TEXT=   
Die Entscheidungsregionen <i>I</i><sub>0</sub>, <i>I</i><sub>1</sub> und <i>I</i><sub>2</sub> sind bestmöglich gewählt. Das AWGN&ndash;Rauschen ist in der Skizze durch jeweils drei kreisförmige Höhenlinien angedeutet.
+
$\text{Example 5:}$&nbsp; The graphic illustrates the &nbsp;<b>Union Bound</b>&nbsp; using the example of &nbsp;$M = 3$&nbsp; with equally probable symbols: &nbsp; ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) =1/3$.<br>
  
[[File:P ID2028 Dig T 4 3 S5 version1.png|rahmenlos|rechts|Fehlerwahrscheinlichkeitsberechnung beim AWGN-Kanal und <i>M</i> = 3]]
+
[[File:P ID2041 Dig T 4 3 S6 version1.png|right|frame|To clarify the "Union Bound" |class=fit]]
 +
The following should be noted about these representations:
 +
*The following applies to the symbol error probability:
 +
:$${\rm Pr}({ \cal E} ) = 1 - {\rm Pr}({ \cal C} )  \hspace{0.05cm},$$
 +
:$${\rm Pr}({ \cal C} ) = {1}/{3} \cdot
 +
\big [ {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_1 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_2 ) \big ]\hspace{0.05cm}.$$
  
<br>Man erkennt aus dieser Darstellung:
+
*The first term&nbsp; ${\rm Pr}(\boldsymbol{r} \in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$&nbsp; in the expression in brackets under the assumption&nbsp; $m = m_0 \  \Leftrightarrow  \ \boldsymbol{s} = \boldsymbol{s}_0$&nbsp; is visualized in the left graphic by the red region&nbsp; $I_0$.&nbsp;
*Unter der Voraussetzung, dass <i>m</i> = <i>m<sub>i</sub></i> &#8660;&nbsp; <b><i>s</i></b> = <b><i>s</i></b><sub>i</sub> gesendet wurde, wird nur dann eine richtige Entscheidung getroffen, wenn der Empfangswert <b><i>r</i></b> in der Region <i>I<sub>i</sub></i> liegt.<br>
 
  
*Die Wahrscheinlichkeit  Pr(<b><i>r</i></b> &#8712; <i>I<sub>i</sub></i>&nbsp;|&nbsp;<i>m</i><sub>2</sub>) für eine ist für <i>i</i> = 2 (weitaus) am größten &nbsp;&#8658;&nbsp; richtige Entscheidung. Pr(<b><i>r</i></b> &#8712; <i>I</i><sub>0</sub>&nbsp;|&nbsp;<i>m</i><sub>2</sub>) ist deutlich kleiner. Nahezu vernachlässigbar ist Pr(<b><i>r</i></b> &#8712; <i>I</i><sub>1</sub>&nbsp;|&nbsp;<i>m</i><sub>2</sub>) .
+
*The complementary region&nbsp; ${\rm Pr}(\boldsymbol{r} \not\in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$&nbsp; is marked on the left with either blue or green or blue&ndash;green hatching. It applies&nbsp; ${\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) = 1 - {\rm Pr}({ \cal E}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 )$&nbsp; with
 +
:$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 )  =
 +
  {\rm Pr}(\boldsymbol{ r } \in I_1  \hspace{0.05cm}\cup \hspace{0.05cm} \boldsymbol{ r } \in I_2 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) $$
 +
:$$\Rightarrow \hspace{0.3cm} {\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) \le {\rm Pr}(\boldsymbol{ r } \in I_1  \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) +
 +
  {\rm Pr}(\boldsymbol{ r } \in I_2  \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) $$
 +
:$$\Rightarrow \hspace{0.3cm} {\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 )  \le {\rm Q} \big [ d_{01}/(2{\sigma_n}) \big ]+
 +
  {\rm Q} \big [ d_{02}/(2{\sigma_n}) \big ]
 +
  \hspace{0.05cm}.$$
  
*Die Verfälschungswahrscheinlichkeiten für <i>m</i> = <i>m</i><sub>0</sub> bzw. <i>m</i> = <i>m</i><sub>1</sub> lauten:
+
*The&nbsp; "less/equal"&nbsp; sign takes into account that the blue&ndash;green hatched area belongs both to the area &nbsp;"$\boldsymbol{r} \in I_1$"&nbsp; and to the area &nbsp;"$\boldsymbol{r} \in I_2$",&nbsp; so that the sum returns a value that is too large.&nbsp; This means: &nbsp; The Union Bound always provides an upper bound.<br>
  
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \hspace{-0.1cm}  \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) + {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ),</math>
+
*The middle graph illustrates the calculation under the assumption that&nbsp; $m = m_1 \ \Leftrightarrow  \ \boldsymbol{s} =  \boldsymbol{s}_1$&nbsp; was sent.&nbsp; The figure on the right is based on&nbsp; $m = m_2 \  \Leftrightarrow \ \boldsymbol{s} = \boldsymbol{s}_2$.&nbsp; }}<br>
::<math> {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) \hspace{-0.1cm}  = \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 ) + {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 )
 
\hspace{0.05cm}.</math>
 
  
*Die größte Verfälschungswahrscheinlichkeit ergibt sich für <i>m</i> = <i>m</i><sub>0</sub>. Wegen
 
  
::<math>{\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \approx {\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 )
 
\hspace{0.05cm}, \hspace{0.2cm}
 
{\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ) >> {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 )
 
\hspace{0.05cm}</math>
 
  
:gelten folgende Relationen:
+
== Further effort reduction at Union Bound==
 +
<br>
 +
The estimation according to the&nbsp; "Union Bound"&nbsp; can be further improved by considering only those signal space points that are direct neighbors of the current transmitted vector&nbsp; $\boldsymbol{s}_i$:&nbsp;
 +
[[File:P ID2032 Dig T 4 3 S6b version1.png|right|frame|Definition of the neighboring sets &nbsp;$N(i)$]]
  
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) > {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) >{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\hspace{0.05cm}. </math>
+
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  \sum\limits_{k = 0,  \hspace{0.1cm} k \ne i}^{M-1}{\rm Q}\big [ d_{ik}/(2{\sigma_n}) \big ]
 +
\hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  \sum\limits_{k = 0,  \hspace{0.1cm} k \hspace{0.05cm}\in \hspace{0.05cm}N(i)}^{M-1}\hspace{-0.4cm}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ]
 +
\hspace{0.05cm}. </math>
  
Diese Ergebnisse lassen sich wie folgt zusammenfassen:
+
To do this,&nbsp; we define the&nbsp; "neighbors"&nbsp; of&nbsp; $\boldsymbol{s}_i$ as
*Zur Berechnung der (mittleren) Fehlerwahrscheinlichkeit muss auch bei gleichwahrscheinlichen Symbolen allgemein über alle <i>M</i> Terme gemittelt werden. Ausnahme: Symmetrische Anordnung.<br>
 
  
*Im Fall gleichwahrscheinlicher Symbole kann Pr(<i>m<sub>i</sub></i>) = 1/<i>M</i> vor die Summation gezogen werden, was allerdings den Rechengang nicht sonderlich vereinfacht.<br>
+
::<math>N(i) = \big \{ k \in \left \{ i = 0, 1, 2, \hspace{0.05cm}\text{...} \hspace{0.05cm}, M-1  \big \}\hspace{0.05cm}|\hspace{0.05cm} I_i  {\rm \hspace{0.15cm}is \hspace{0.15cm}directly \hspace{0.15cm}adjacent \hspace{0.15cm}to \hspace{0.15cm}}I_k \right \}
 +
\hspace{0.05cm}. </math>
 +
The graphic illustrates this definition using&nbsp; $M = 5$&nbsp; as an example.
 +
*Regions&nbsp; $I_0$&nbsp; and&nbsp; $I_3$&nbsp; each have only two direct neighbors,  
 +
*while&nbsp; $I_4$&nbsp; borders all other decision regions.
  
  
 +
The introduction of the neighboring sets&nbsp; $N(i)$&nbsp; improves the quality of the Union Bound approximation,&nbsp; which means that the limit is then closer to the actual error probability,&nbsp; i.e. it is shifted down.
  
  
 +
Another and frequently used limit uses only the minimum distance&nbsp; $d_{\rm min}$&nbsp; between two signal space points.
 +
*In the above example,&nbsp; this occurs between&nbsp; $\boldsymbol{s}_1$&nbsp; and&nbsp; $\boldsymbol{s}_2$.&nbsp;
  
 +
*For equally probable symbols &nbsp; &#8658; &nbsp; ${\rm Pr}(m_i) =1/M$&nbsp; the following estimation then applies:
  
 +
::<math>{\rm Pr}({ \cal E} )  \le    \sum\limits_{i = 0 }^{M-1} \left [ {\rm Pr}(m_i) \cdot \sum\limits_{k \ne i }{\rm Q} \big [d_{ik}/(2{\sigma_n})\big ] \right ]
 +
\le  \frac{1}{M} \cdot \sum\limits_{i = 0 }^{M-1} \left [  \sum\limits_{k \ne i } {\rm Q} [d_{\rm min}/(2{\sigma_n})]  \right ] = \sum\limits_{k \ne i }{\rm Q} \big  [d_{\rm min}/(2{\sigma_n})\big ] = (M-1) \cdot
 +
{\rm Q} \big  [d_{\rm min}/(2{\sigma_n})\big  ]
 +
\hspace{0.05cm}. </math>
  
 +
It should be noted here:
 +
#This limit is also very easy to calculate for large&nbsp; $M$ values.&nbsp; In many applications,&nbsp; however,&nbsp; this results in a much too high value for the error probability.<br>
 +
#The limit is equal to the actual error probability if all regions are directly adjacent to all others and the distances of all&nbsp; $M$&nbsp; signal points from one another are&nbsp; $d_{\rm min}$.&nbsp; <br>
 +
#In the special case&nbsp; $M = 2$,&nbsp; these two conditions are often met,&nbsp; so that the&nbsp; "Union Bound"&nbsp; corresponds exactly to the actual error probability.<br>
  
 +
== Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_4.06:_Optimal_Decision_Boundaries|Exercise 4.6: Optimal Decision Boundaries]]
  
 +
[[Aufgaben:Exercise_4.06Z:_Signal_Space_Constellations|Exercise 4.6Z: Signal Space Constellations]]
  
 +
[[Aufgaben:Exercise_4.07:_Decision_Boundaries_once_again|Exercise 4.7: Decision Boundaries once again]]
  
 +
[[Aufgaben:Exercise_4.08:_Decision_Regions_at_Three_Symbols|Exercise 4.8: Decision Regions at Three Symbols]]
  
 +
[[Aufgaben:Exercise_4.08Z:_Error_Probability_with_Three_Symbols|Exercise 4.8Z: Error Probability with Three Symbols]]
  
 +
[[Aufgaben:Exercise_4.09:_Decision_Regions_at_Laplace|Exercise 4.9: Decision Regions at Laplace]]
  
 +
[[Aufgaben:Exercise_4.09Z:_Laplace_Distributed_Noise|Exercise 4.9Z: Laplace Distributed Noise]]
  
 +
[[Aufgaben:Exercise_4.10:_Union_Bound|Exercise 4.10: Union Bound]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 11:04, 17 November 2022


Optimal decision with binary transmission


We assume here a transmission system which can be characterized as follows:   $\boldsymbol{r} = \boldsymbol{s} + \boldsymbol{n}$.  This system has the following properties:

  • The vector space fully describing the transmission system is spanned by  $N = 2$  mutually orthogonal basis functions   $\varphi_1(t)$   and   $\varphi_2(t)$. 
  • Consequently,  the probability density function of the additive and white Gaussian noise is also to be set two-dimensional,  characterized by the vector  $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.
  • There are only two possible transmitted signals  $(M = 2)$,  described by the two vectors  $\boldsymbol{ s_0} = (s_{01},\hspace{0.05cm}s_{02})$  and  $\boldsymbol{ s_1} = (s_{11},\hspace{0.05cm}s_{12})$: 
Decision regions for equal  (left)  and unequal (right)  occurrence probabilities
$$s_0(t)= s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},$$
$$s_1(t) = s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.$$
  • The two messages  $m_0 \ \Leftrightarrow \ \boldsymbol{ s_0}$  and  $m_1 \ \Leftrightarrow \ \boldsymbol{ s_1}$  are not necessarily equally probable.
  • The task of the decision is to give an estimate for the current received vector  $\boldsymbol{r}$  according to the  "MAP decision rule".  In the present case,  this rule is with  $\boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2)$:
$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} \big[ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm}|\hspace{0.05cm} m_i )\big ] \hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}.$$
  • In the special case  $N = 2$  and  $M = 2$  considered here,  the decision partitions the two-dimensional space into the two disjoint areas  $I_0$  (highlighted in red)  and  $I_1$  (blue),  as the graphic on the right illustrates.
  • If the received value lies in  $I_0$,   $m_0$  is output as the estimated value,  otherwise  $m_1$.


$\text{Derivation and picture description:}$  For the AWGN channel and  $M = 2$,  the decision rule is thus:

⇒   Always choose message  $m_0$  if the following condition is satisfied:

$${\rm Pr}( m_0) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot \vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 \right ] > {\rm Pr}( m_1) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 \right ] \hspace{0.05cm}.$$

⇒   The boundary line between the two decision regions  $I_0$  and  $I_1$  is obtained by replacing the  "greater sign"  with the  "equals sign"  in the above equation and transforming the equation slightly:

$$\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_0)\big ] = \vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_1)\big ]$$
$$\Rightarrow \hspace{0.3cm} \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 - \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 + 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_0)}{ {\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$

From the plot above one can see:

  • The boundary curve between regions  $I_0$  and  $I_1$  is a straight line,  since the equation of determination is linear in the received vector  $\boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2)$. 
  • For equally probable symbols,  the boundary is exactly halfway between  $\boldsymbol{ s }_0$  and  $\boldsymbol{ s }_1$  and rotated by  $90^\circ$  with respect to the line connecting the transmission points:
$$\vert \hspace{-0.05cm} \vert \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert ^2 - \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert ^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  • For  ${\rm Pr}(m_0) > {\rm Pr}(m_1)$,  the decision boundary is shifted toward the less probable symbol  $\boldsymbol{ s }_1$,  and the more so the larger the AWGN standard deviation  $\sigma_n$. 
  • The green-dashed decision boundary in the right figure as well as the decision regions  $I_0$  (red)  and  $I_1$  (blue)  are valid for the  (normalized)  standard deviation  $\sigma_n = 1$  and the dashed boundary lines for  $\sigma_n = 0$  resp.  $\sigma_n = 2$.

The special case of equally probable binary symbols


We continue to assume a binary system  $(M = 2)$,  but now consider the simple case where this can be described by a single basis function  $(N = 1)$.  The error probability for this has already been calculated in the section  "Definition of the bit error probability"
With the nomenclature and representation form chosen for the fourth main chapter the following constellation results:

Conditional probability density functions for equally probable symbols
  • The received value  $r = s + n$  is now a scalar and is composed of the transmitted signal  $s \in \{s_0, \hspace{0.05cm}s_1\}$  and the noise term  $n$  additively. The abscissa  $\rho$  denotes a realization of  $r$.
  • In addition,  the abscissa is normalized to the reference quantity  $\sqrt{E}$,  whereas here the normalization energy  $E$  has no prominent,  physically interpretable meaning.
  • The noise term  $n$  is Gaussian distributed with mean  $m_n = 0$  and variance  $\sigma_n^2$.  The root of the variance  $(\sigma_n)$  is called the  "rms value"  or the  "standard deviation".
  • The decision boundary  $G$  divides the entire value range of  $r$  into the two subranges  $I_0$  $($in which  $s_0$  lies$)$ and  $I_1$  $($with the signal value  $s_1)$.
  • If  $\rho > G$,  the decision returns the estimated value  $m_0$, otherwise  $m_1$.  It is assumed that the message  $m_i$  is uniquely related to the signal  $s_i$:    $m_i \Leftrightarrow s_i$.


The graph shows the conditional  $($one-dimensional$)$  probability density functions   $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_0}$   and   $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_1}$   for the AWGN channel,  assuming equal symbol probabilities:   ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$.  Thus,  the  $($optimal$)$  decision boundary is  $G = 0$.  One can see from this plot:

  1. If  $m = m_0$  and thus  $s = s_0 = 2 \cdot E^{1/2}$,  an erroneous decision occurs only if  $\eta$,  the realization of the noise quantity  $n$,  is smaller than  $-2 \cdot E^{1/2}$.
  2. In this case,  $\rho < 0$, where  $\rho$  denotes a realization of the received value  $r$. 
  3. In contrast,  for  $m = m_1$   ⇒   $s = s_1 = -2 \cdot E^{1/2}$,  an erroneous decision occurs whenever  $\eta$  is greater than  $+2 \cdot E^{1/2}$.  In this case,  $\rho > 0$.


Error probability for symbols with equal probability


Let  ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$.  For AWGN noise with standard deviation  $\sigma_n$,  as already calculated in the section  "Definition of the bit error probability"  with different nomenclature,  we obtain for the probability of a wrong decision  $(\cal E)$  under the condition that message  $m_0$  was sent:

$${\rm Pr}({ \cal E}\hspace{0.05cm} \vert \hspace{0.05cm} m_0) = \int_{-\infty}^{G = 0} p_{r \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \rho } \hspace{0.05cm} \vert \hspace{0.05cm}m_0 ) \,{\rm d} \rho = \int_{-\infty}^{- s_0 } p_{{ n} \hspace{0.05cm}\vert\hspace{0.05cm}m_0 } ({ \eta } \hspace{0.05cm}|\hspace{0.05cm}m_0 ) \,{\rm d} \eta = \int_{-\infty}^{- s_0 } p_{{ n} } ({ \eta } ) \,{\rm d} \eta = \int_{ s_0 }^{\infty} p_{{ n} } ({ \eta } ) \,{\rm d} \eta = {\rm Q} \left ( {s_0 }/{\sigma_n} \right ) \hspace{0.05cm}.$$

In deriving the equation,  it was considered that the AWGN noise  $\eta$  is independent of the signal  $(m_0$  or  $m_1)$  and has a symmetric PDF.  The complementary Gaussian error integral was also used:

$${\rm Q}(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \hspace{0.05cm}.$$

Correspondingly,  for  $m = m_1$   ⇒   $s = s_1 = -2 \cdot E^{1/2}$:

$${\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) = \int_{0}^{\infty} p_{{ r} \hspace{0.05cm}\vert\hspace{0.05cm}m_1 } ({ \rho } \hspace{0.05cm}\vert\hspace{0.05cm}m_1 ) \,{\rm d} \rho = \int_{- s_1 }^{\infty} p_{{ n} } (\boldsymbol{ \eta } ) \,{\rm d} \eta = {\rm Q} \left ( {- s_1 }/{\sigma_n} \right ) \hspace{0.05cm}.$$

$\text{Conclusion:}$  With the distance  $d = s_1 - s_0$  of the signal space points, we can summarize the results, still considering  ${\rm Pr}(m_0) + {\rm Pr}(m_1) = 1$: 

$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0) = {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) = {\rm Q} \big ( {d}/(2{\sigma_n}) \big )$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_0) + {\rm Pr}(m_1) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1)= \big [ {\rm Pr}(m_0) + {\rm Pr}(m_1) \big ] \cdot {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] \hspace{0.05cm}.$$

Notes:

  1. This equation is valid under the condition  $G = 0$  quite generally,  thus also for  ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$.
  2. For  "non-equally probable symbols",  however,  the error probability can be reduced by a different decision threshold.
  3. The equation mentioned here is also valid if the signal space points are not scalars but are described by the vectors  $\boldsymbol{ s}_0$  and  $\boldsymbol{ s}_1$. 
  4. The distance  $d$  results then as the norm of the difference vector:   $d = \vert \hspace{-0.05cm} \vert \hspace{0.05cm} \boldsymbol{ s}_1 - \boldsymbol{ s}_0 \hspace{0.05cm} \vert \hspace{-0.05cm} \vert \hspace{0.05cm}.$


$\text{Example 1:}$  Let's look again at the signal space constellation from the  "first chapter section"  $($lower graphic$)$  with the values

Two signal space constellations
  • $\boldsymbol{ s}_0/E^{1/2} = (3.6, \hspace{0.05cm}0.8)$,
  • $\boldsymbol{ s}_1/E^{1/2} = (0.4, \hspace{0.05cm}3.2)$.


Here the distance of the signal space points is

$$d = \vert \hspace{-0.05cm} \vert s_1 - s_0 \vert \hspace{-0.05cm} \vert = \sqrt{E \cdot (0.4 - 3.6)^2 + E \cdot (3.2 - 0.8)^2} = 4 \cdot \sqrt {E}\hspace{0.05cm}.$$

This results in exactly the same value as for the upper constellation with

  • $\boldsymbol{ s}_0/E^{1/2} = (2, \hspace{0.05cm}0)$,
  • $\boldsymbol{ s}_1/E^{1/2} = (-2, \hspace{0.05cm}0)$.


The figures show these two constellations and reveal the following similarities and differences,  assuming the AWGN noise variance  $\sigma_n^2 = N_0/2$  in each case.  The circles in the graph illustrate the circular symmetry of the two-dimensional AWGN noise.

  • As said before,  both the distance of the signal points from the decision line  $(d/2 = 2 \cdot \sqrt {E})$  and the AWGN characteristic value  $\sigma_n$  are the same in both cases.
  • It follows:   The two arrangements lead to the same error probability if the parameter  $E$  $($a kind of normalization energy$)$  is kept constant:
$${\rm Pr} ({\rm symbol\hspace{0.15cm} error}) = {\rm Pr}({ \cal E} ) = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ]\hspace{0.05cm}.$$
  • The  "mean energy per symbol"  $(E_{\rm S})$  for the upper constellation is given by
$$E_{\rm S} = 1/2 \cdot \vert \hspace{-0.05cm} \vert s_0 \vert \hspace{-0.05cm} \vert^2 + 1/2 \cdot \vert \hspace{-0.05cm} \vert s_1 \vert \hspace{-0.05cm} \vert^2 = E/2 \cdot \big[(+2)^2 + (-2)^2\big] = 4 \cdot {E}\hspace{0.05cm}.$$
  • With the lower constellation one receives in the same way:
$$E_{\rm S} = \ \text{...} \ = E/2 \cdot \big[(3.6)^2 + (0.8)^2\big] + E/2 \cdot \big[(0.4)^2 + (3.2)^2 \big] = 12 \cdot {E}\hspace{0.05cm}.$$
  • For a given mean energy per symbol   ⇒   $E_{\rm S}$,  the upper constellation is therefore clearly superior to the lower one:   The same error probability results with one third of the energy per symbol.  This issue will be discussed in detail in  "Exercise 4.6Z"


Optimal threshold for non-equally probable symbols


If  ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$  holds,  a slightly smaller error probability can be obtained by shifting the decision threshold  $G$.  The following results are derived in detail in the solution to  "Exercise 4.7"

  • For unequal symbol probabilities, the optimal decision threshold  $G_{\rm opt}$  between regions  $I_0$  and  $I_1$  is closer to the less probable symbol.  The normalized optimal shift with respect to the value  $G = 0$  for equally probable symbols is
\[\gamma_{\rm opt} = \frac{G_{\rm opt}}{s_0 } = 2 \cdot \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm}.\]
  • The error probability is then
$${\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Q} \big[ {d}/(2{\sigma_n}) \cdot (1 - \gamma_{\rm opt}) \big ] + {\rm Pr}(m_1) \cdot {\rm Q} \big [ {d}/(2{\sigma_n}) \cdot (1 + \gamma_{\rm opt}) \big ]\hspace{0.05cm}.$$

$\text{Example 2:}$  The formal parameter  $\rho$  (abscissa)  denotes a realization of the AWGN random variable  $r = s + n$.  For the following further holds:

Density functions for equal/unequal symbol probabilities
$$\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}, \hspace{0.1cm} 0)$$
$$ \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}, \hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.$$
  • For equally probable symbols   ⇒   ${\rm Pr}( m_0) = {\rm Pr}( m_1) = 1/2$,  the optimal decision threshold is  $G_{\rm opt} = 0$   ⇒   see upper sketch.  This gives us for the error probability:
$${\rm Pr}({ \cal E} ) = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} (2) \approx 2.26\% \hspace{0.05cm}.$$
  • Now let the probabilities be  ${\rm Pr}( m_0) = 3/4\hspace{0.05cm},\hspace{0.1cm}{\rm Pr}( m_1) = 1/4\hspace{0.05cm}$   ⇒   see lower sketch.  Let the other system variables be unchanged from the upper graph.  In this case the optimal  (normalized)  shift factor is
\[\gamma = 2 \cdot \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_1)}{ {\rm Pr}( m_0)} = 2 \cdot \frac{ E}{16 \cdot E} \cdot {\rm ln} \hspace{0.15cm} \frac{1/4}{3/4 } \approx - 0.14 \hspace{0.05cm}.\]
  • This is a  $14\%$  shift toward the less probable symbol  $\boldsymbol {s}_1$  (i.e., to the left).  This makes the error probability slightly smaller than for equally probable symbols:
\[{\rm Pr}({ \cal E} )= 0.75 \cdot {\rm Q} \left ( 2 \cdot 1.14 \right ) + 0.25 \cdot {\rm Q} \left ( 2 \cdot 0.86 \right ) = 0.75 \cdot 0.0113 + 0.25 \cdot 0.0427 \approx 1.92\% \hspace{0.05cm}.\]

One recognizes from these numerical values:

  1. Due to the threshold shift,  the symbol $\boldsymbol  {s}_1$  is now more distorted,  but the more probable symbol  $\boldsymbol {s}_0$  is distorted disproportionately less.
  2. However,  the result should not lead to misinterpretations.  In the asymmetrical case   ⇒   ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$  there is a smaller error probability than for  ${\rm Pr}( m_0) ={\rm Pr}( m_1) = 0.5$,  but then only less information can be transmitted with each symbol.
  3. With the selected numerical values   "$0.81 \ \rm bit/symbol$"   instead of   "$1\ \rm bit/symbol$". 
  4. From an information theoretic point of view,  ${\rm Pr}( m_0) ={\rm Pr}( m_1)$  would be optimal.


$\text{Conclusion:}$ 

  • In the symmetric case   ⇒   ${\rm Pr}( m_0) ={\rm Pr}( m_1)$,  the conventional conditional PDF values  $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$  can be used for decision.
  • In the asymmetric case   ⇒   ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$,  these functions must be weighted beforehand:   ${\rm Pr}(m_i) \cdot p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m_i } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$.


In the following, we consider this issue.

Decision regions in the non-binary case


In general,  the decision regions  $I_i$  partition the  $N$–dimensional real space into  $M$  mutually disjoint regions. 

  • Here,  the decision region  $I_i$  with  $i = 0$, ... , $M-1$  is defined as the set of all points leading to the estimate  $m_i$: 
\[\boldsymbol{ \rho } \in I_i \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \hat{m} = m_i, \hspace{0.3cm}{\rm where}\hspace{0.3cm}I_i = \left \{ \boldsymbol{ \rho } \in { \cal R}^N \hspace{0.05cm} | \hspace{0.05cm} {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm} m_i ) > {\rm Pr}( m_k) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm}m_k )\hspace{0.15cm} \forall k \ne i \right \} \hspace{0.05cm}.\]
  • The shape of the decision regions  $I_i$  in the  $N$–dimensional space depend on the conditional probability density functions  $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m }$,  i.e. on the considered channel.
  • In many cases – including the AWGN channel – the decision boundaries between every two signal points are straight lines,  which simplifies further considerations.


$\text{Example 3:}$  The graph shows the decision regions  $I_0$,  $I_1$  and  $I_2$  for a transmission system with the parameters  $N = 2$  and  $M = 3$.

AWGN decision regions 
$(N = 2$,  $M = 3)$

The normalized transmission vectors here are

$$\boldsymbol{ s }_0 = (2,\hspace{0.05cm} 2),$$
$$ \boldsymbol{ s }_1 = (1,\hspace{0.05cm} 3),$$
$$ \boldsymbol{ s }_2 = (1,\hspace{0.05cm} -1) \hspace{0.05cm}.$$

Now two cases have to be distinguished:

  • For equally probable symbols   ⇒   ${\rm Pr}( m_0) = {\rm Pr}( m_1) ={\rm Pr}( m_2) = 1/3 $,  the boundaries between two regions are always straight,  centered and perpendicular to the connecting lines.


  • In the case of unequal symbol probabilities,  the decision boundaries are to be shifted  $($parallel$)$  in the direction of the more improbable symbol in each case  –  the further the greater the AWGN standard deviation  $\sigma_n$.


Error probability calculation in the non-binary case


After the decision regions  $I_i$  are fixed,  we can compute the symbol error probability of the overall system.  We use the following names,  although we sometimes have to use different names in continuous text than in equations because of the limitations imposed by our character set:

  1. Symbol error probability:   ${\rm Pr}({ \cal E} ) = {\rm Pr(symbol\hspace{0.15cm} error)} \hspace{0.05cm},$
  2. Probability of correct decision:   ${\rm Pr}({ \cal C} ) = 1 - {\rm Pr}({ \cal E} ) = {\rm Pr(correct \hspace{0.15cm} decision)} \hspace{0.05cm},$
  3. Conditional probability of a correct decision under the condition  $m = m_i$:     ${\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) \hspace{0.05cm}.$
  • With these definitions,  the probability of a correct decision is:
$${\rm Pr}({ \cal C} ) \hspace{-0.1cm} = \hspace{-0.1cm} \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho } \hspace{0.05cm}.$$
\[{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) = \frac{1}{(\sqrt{2\pi} \cdot \sigma_n)^N} \cdot \int_{I_i} {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_i ||^2 \right ] \,{\rm d} \boldsymbol {\rho }\hspace{0.05cm}.\]
  1. This integral must be calculated numerically in the general case.
  2. Only for a few,  easily describable decision regions  $\{I_i\}$  an analytical solution is possible.


$\text{Example 4:}$  For the AWGN channel,  there is a two-dimensional Gaussian bell around the transmission point  $\boldsymbol{ s }_i$,  recognizable in the left graphic by the concentric contour lines.

To calculate the error probability for AWGN
  1. In addition,  the decision line  $G$  is drawn somewhat arbitrarily.
  2. Shown alone on the right in a different coordinate system  (shifted and rotated)  is the PDF of the noise component.


The graph can be interpreted as follows:

  • The probability that the received vector does not fall into the blue  "target area"  $I_i$,  but into the red highlighted area  $I_k$, is  $ {\rm Q} (A/\sigma_n)$;  ${\rm Q}(x)$  is the Gaussian error function.
  • $A$  denotes the distance between  $\boldsymbol{ s }_i$  and  $G$.  $\sigma_n$  indicates the  "rms value"  (root of the variance)  of the AWGN noise.
  • Correspondingly,  the probability for the event  $r \in I_i$  is equal to the complementary value
\[{\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) = {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) = 1 - {\rm Q} (A/\sigma_n)\hspace{0.05cm}.\]


We now consider the equations given above,

\[{\rm Pr}({ \cal C} ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) \hspace{0.3cm}{\rm with} \hspace{0.3cm} {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho } \hspace{0.05cm},\]

in a little more detail,  where we again assume two basis functions  $(N = 2)$  and three signal space points  $(M = 3)$  at  $\boldsymbol{ s }_0$,  $\boldsymbol{ s }_1$,  $\boldsymbol{ s }_2$.

Error probability calculation for AWGN,  $M = 3$
  1. The decision regions  $I_0$,  $I_1$  and  $I_2$  are chosen  "best as possible"
  2. The AWGN noise is indicated in the sketch by three circular contour lines each.


One can see from this plot:

  • Assuming that  $m = m_i \ \Leftrightarrow \ \boldsymbol{ s } = \boldsymbol{ s }_i$  was sent,  a correct decision is made only if the received value  $\boldsymbol{ r } \in I_i$. 
  • The conditional probability  ${\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm}m_2)$  is  (by far)  largest for  $i = 2$   ⇒   correct decision. 
  • ${\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm}m_2)$  is much smaller.  Almost negligible is  ${\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm}m_2)$.
  • Thus,  the falsification probabilities for  $m = m_0$  and  $m = m_1$  are:
\[{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) + {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ),\]
\[ {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) ={\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 ) + {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 ) \hspace{0.05cm}.\]
  • The largest falsification probability is obtained for  $m = m_0$.  Because of
\[{\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \approx {\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 ) \hspace{0.05cm}, \]
\[{\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \gg {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 ) \hspace{0.05cm}\]
the following relations hold:  
$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) > {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) >{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\hspace{0.05cm}. $$

$\text{Conclusion:}$  These results can be summarized as follows:

  1. To calculate the  (average)  error probability,  it is necessary to average over all  $M$  terms in general,  even in the case of equally probable symbols.
  2. In the case of equally probable symbols,  ${\rm Pr}(m_i) = 1/M$  can be drawn in front of the summation,  but this does not simplify the calculation very much.
  3. Only in the case of symmetrical arrangement the averaging can be omitted.

Union Bound - Upper bound for the error probability


For arbitrary values of  $M$,  the following applies to the falsification probability under the condition that the message  $m_i$  $($or the signal  $\boldsymbol{s}_i)$  has been sent:

\[{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = {\rm Pr} \left [ \bigcup_{k \ne i} { \cal E}_{ik}\right ] \hspace{0.05cm},\hspace{0.5cm}{ \cal E}_{ik}\hspace{-0.1cm}: \boldsymbol{ r }{\rm \hspace{0.15cm}is \hspace{0.15cm}closer \hspace{0.15cm}to \hspace{0.15cm}}\boldsymbol{ s }_k {\rm \hspace{0.15cm}than \hspace{0.15cm}to \hspace{0.15cm}the \hspace{0.15cm}nominal \hspace{0.15cm}value \hspace{0.15cm}}\boldsymbol{ s }_i \hspace{0.05cm}. \]

$\text{Definition:}$  An upper bound can be specified for this expression with a Boolean inequality – the so-called  Union Bound:

\[{\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) \le \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1} {\rm Pr}({ \cal E}_{ik}) = \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ]\hspace{0.05cm}. \]

Remarks:

  1. $d_{ik} = \vert \hspace{-0.05cm} \vert \boldsymbol{s}_i - \boldsymbol{s}_k \vert \hspace{-0.05cm} \vert$  is the distance between the signal space points $\boldsymbol{s}_i$ and $\boldsymbol{s}_k$.
  2. $\sigma_n$  specifies the rms value of the AWGN noise.
  3. The  "Union Bound"  can only be used for equally probable symbols   ⇒   ${\rm Pr}(m_i) = 1/M$. 
  4. But also in this case,  an average must be taken over all  $m_i$ in order to calculate the  (average)  error probability.


$\text{Example 5:}$  The graphic illustrates the  Union Bound  using the example of  $M = 3$  with equally probable symbols:   ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) =1/3$.

To clarify the "Union Bound"

The following should be noted about these representations:

  • The following applies to the symbol error probability:
$${\rm Pr}({ \cal E} ) = 1 - {\rm Pr}({ \cal C} ) \hspace{0.05cm},$$
$${\rm Pr}({ \cal C} ) = {1}/{3} \cdot \big [ {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_1 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_2 ) \big ]\hspace{0.05cm}.$$
  • The first term  ${\rm Pr}(\boldsymbol{r} \in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$  in the expression in brackets under the assumption  $m = m_0 \ \Leftrightarrow \ \boldsymbol{s} = \boldsymbol{s}_0$  is visualized in the left graphic by the red region  $I_0$. 
  • The complementary region  ${\rm Pr}(\boldsymbol{r} \not\in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$  is marked on the left with either blue or green or blue–green hatching. It applies  ${\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) = 1 - {\rm Pr}({ \cal E}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 )$  with
$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) = {\rm Pr}(\boldsymbol{ r } \in I_1 \hspace{0.05cm}\cup \hspace{0.05cm} \boldsymbol{ r } \in I_2 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) $$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) \le {\rm Pr}(\boldsymbol{ r } \in I_1 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) + {\rm Pr}(\boldsymbol{ r } \in I_2 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) $$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) \le {\rm Q} \big [ d_{01}/(2{\sigma_n}) \big ]+ {\rm Q} \big [ d_{02}/(2{\sigma_n}) \big ] \hspace{0.05cm}.$$
  • The  "less/equal"  sign takes into account that the blue–green hatched area belongs both to the area  "$\boldsymbol{r} \in I_1$"  and to the area  "$\boldsymbol{r} \in I_2$",  so that the sum returns a value that is too large.  This means:   The Union Bound always provides an upper bound.
  • The middle graph illustrates the calculation under the assumption that  $m = m_1 \ \Leftrightarrow \ \boldsymbol{s} = \boldsymbol{s}_1$  was sent.  The figure on the right is based on  $m = m_2 \ \Leftrightarrow \ \boldsymbol{s} = \boldsymbol{s}_2$. 



Further effort reduction at Union Bound


The estimation according to the  "Union Bound"  can be further improved by considering only those signal space points that are direct neighbors of the current transmitted vector  $\boldsymbol{s}_i$: 

Definition of the neighboring sets  $N(i)$
\[{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{k = 0, \hspace{0.1cm} k \ne i}^{M-1}{\rm Q}\big [ d_{ik}/(2{\sigma_n}) \big ] \hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{k = 0, \hspace{0.1cm} k \hspace{0.05cm}\in \hspace{0.05cm}N(i)}^{M-1}\hspace{-0.4cm}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ] \hspace{0.05cm}. \]

To do this,  we define the  "neighbors"  of  $\boldsymbol{s}_i$ as

\[N(i) = \big \{ k \in \left \{ i = 0, 1, 2, \hspace{0.05cm}\text{...} \hspace{0.05cm}, M-1 \big \}\hspace{0.05cm}|\hspace{0.05cm} I_i {\rm \hspace{0.15cm}is \hspace{0.15cm}directly \hspace{0.15cm}adjacent \hspace{0.15cm}to \hspace{0.15cm}}I_k \right \} \hspace{0.05cm}. \]

The graphic illustrates this definition using  $M = 5$  as an example.

  • Regions  $I_0$  and  $I_3$  each have only two direct neighbors,
  • while  $I_4$  borders all other decision regions.


The introduction of the neighboring sets  $N(i)$  improves the quality of the Union Bound approximation,  which means that the limit is then closer to the actual error probability,  i.e. it is shifted down.


Another and frequently used limit uses only the minimum distance  $d_{\rm min}$  between two signal space points.

  • In the above example,  this occurs between  $\boldsymbol{s}_1$  and  $\boldsymbol{s}_2$. 
  • For equally probable symbols   ⇒   ${\rm Pr}(m_i) =1/M$  the following estimation then applies:
\[{\rm Pr}({ \cal E} ) \le \sum\limits_{i = 0 }^{M-1} \left [ {\rm Pr}(m_i) \cdot \sum\limits_{k \ne i }{\rm Q} \big [d_{ik}/(2{\sigma_n})\big ] \right ] \le \frac{1}{M} \cdot \sum\limits_{i = 0 }^{M-1} \left [ \sum\limits_{k \ne i } {\rm Q} [d_{\rm min}/(2{\sigma_n})] \right ] = \sum\limits_{k \ne i }{\rm Q} \big [d_{\rm min}/(2{\sigma_n})\big ] = (M-1) \cdot {\rm Q} \big [d_{\rm min}/(2{\sigma_n})\big ] \hspace{0.05cm}. \]

It should be noted here:

  1. This limit is also very easy to calculate for large  $M$ values.  In many applications,  however,  this results in a much too high value for the error probability.
  2. The limit is equal to the actual error probability if all regions are directly adjacent to all others and the distances of all  $M$  signal points from one another are  $d_{\rm min}$. 
  3. In the special case  $M = 2$,  these two conditions are often met,  so that the  "Union Bound"  corresponds exactly to the actual error probability.

Exercises for the chapter


Exercise 4.6: Optimal Decision Boundaries

Exercise 4.6Z: Signal Space Constellations

Exercise 4.7: Decision Boundaries once again

Exercise 4.8: Decision Regions at Three Symbols

Exercise 4.8Z: Error Probability with Three Symbols

Exercise 4.9: Decision Regions at Laplace

Exercise 4.9Z: Laplace Distributed Noise

Exercise 4.10: Union Bound