Difference between revisions of "Mobile Communications/Technical Innovations of LTE"

From LNTwww
 
(82 intermediate revisions by 8 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=LTE – Long Term Evolution
 
|Untermenü=LTE – Long Term Evolution
|Vorherige Seite=Allgemeines zum Mobilfunkstandard LTE
+
|Vorherige Seite=General Information on the LTE Mobile Communications Standard
|Nächste Seite=Die Anwendung von OFDMA und SC-FDMA in LTE
+
|Nächste Seite=The Application of OFDMA and SC-FDMA in LTE
 
}}
 
}}
  
== Zur Sprachübertragung bei LTE ==
+
== For speech transmission with LTE ==
 
<br>
 
<br>
Anders als die bisherigen Mobilfunkstandards unterstützt LTE nur eine paketorientierte Übertragung. Für die Sprachübertragung wäre jedoch eine verbindungsorientierte Übertragung mit fester Reservierung der Ressourcen besser, da eine &bdquo;gestückelte Übertragung&rdquo; &ndash; wie es beim paketorientierten Verfahren der Fall ist &ndash; relativ kompliziert ist.<br>
+
Unlike previous mobile phone standards, LTE only supports&nbsp; &raquo;'''packet-oriented transmission'''&laquo;.&nbsp; However, for speech transmission (sometimes the term "voice transmission" is used for this), a connection-oriented transmission with fixed reservation of resources would be better, since a "fragmented transmission", as is the case with the packet-oriented method, is relatively complicated.<br>
  
Das Problem der Einbindung von Sprachübertragungsverfahren war eine der großen Herausforderungen bei der Entwicklung von LTE, denn die Sprachübertragung ist für die Netzbetreiber weiterhin die größte Einnahmequelle. Es gab einige Ansätze, wie dem Internet&ndash;Artikel Gutt, E.: ''LTE – eine neue Dimension mobiler Breitbandnutzung''. [http://www.ltemobile.de/uploads/media/LTE_Einfuehrung_V1.pdf PDF-Dokument im Internet], 2010. entnommen werden kann.<br>
+
The problem of integrating speech transmission methods was one of the major challenges in the development of LTE, as speech transmission remains the largest source of revenue for network operators.&nbsp;  There were a number of approaches, as it can be seen in the internet article &nbsp; [Gut10]<ref name='Gut10'>Gutt, E.:&nbsp; LTE - a new dimension of mobile broadband use.&nbsp; [http://www.ltemobile.de/uploads/media/LTE_Einfuehrung_V1.pdf "PDF Internet document"], 2010.</ref>.
  
'''1''' &nbsp;Eine sehr einfache und nahe liegende Methode ist <i>Circuit Switched Fallback</i> (CSFB). Hier wird für die Sprachübertragung eine leitungsgebundene Übertragung verwendet. Das Prinzip ist:
+
'''(1)''' &nbsp; A very simple and obvious method is&nbsp; "Circuit Switched Fallback"&nbsp; $\rm (CSFB)$.&nbsp; Here a wireline transmission is used for the speech transmission.&nbsp; The principle is:
:* Das Endgerät meldet sich im LTE&ndash;Netz an und parallel dazu auch noch in einem GSM&ndash; oder UMTS&ndash;Netz. Bei eingehendem Anruf erhält das Endgerät von der <i>Mobile Management Entity</i> (MME, Kontrollknoten im LTE&ndash;Netz zur Nutzer&ndash;Authentifizierung) eine Nachricht, woraufhin eine leitungsgebundene Übertragung über das GSM&ndash; oder das UMTS&ndash;Netz aufgebaut wird.
+
#The terminal device logs on to the LTE network and in parallel also to a GSM or UMTS network.&nbsp; When an incoming call is received, the terminal device receives a message from the&nbsp; "Mobile Management Entity"&nbsp; $\text{(MME}$,&nbsp; control node in the LTE network for user authentication$)$, whereupon a wireline transmission via the GSM or the UMTS network is established.
:Ein Nachteil dieser Lösung (eigentlich ist es eine &bdquo;Problemverschleierung&rdquo;) ist der stark verzögerte Verbindungsaufbau. Außerdem verhindert CSFB die komplette Umstellung des Netzes auf LTE.
+
#A disadvantage of this solution&nbsp; (actually it is a "problem concealment")&nbsp; is the greatly delayed connection establishment.&nbsp; In addition,&nbsp; CSFB prevents the complete conversion of the network to LTE.
'''2''' &nbsp;Eine weitere Möglichkeit zur Integration von Sprache in ein paketorientes Übertragungssystem bietet <i>Voice over LTE via GAN</i> (VoLGA), die auf der von 3GPP entwickelten GAN-Technologie (<i>Generic Access Network</i>) basiert. In aller Kürze lässt sich das Prinzip wie folgt darstellen:
 
:* GAN ermöglicht leitungsbezogene Dienste über ein paketorientiertes Netzwerk (IP&ndash;Netzwerk), beispielsweise WLAN (<i>Wireless Local Area Network</i>). Mit kompatiblen Endgeräten kann man sich so im GSM&ndash;Netz über eine WLAN&ndash;Verbindung registrieren lassen und  leitungsbasierte Dienste nutzen. VoLGA nutzt diese Funktionalität, in dem es WLAN durch LTE ersetzt.<br>
 
:* Vorteilhaft ist die schnelle Implementierung von VoLGA, da keine langwierige Neuentwicklung und keine Änderungen am Kernnetz notwendig sind. Allerdings muss dem Netz als Hardware ein sogenannter <i>VoLGA Access Network Controller</i>  (VANC) hinzugefügt werden. Dieser sorgt für die Kommunikation zwischen Endgerät und <i>Mobile Management Entity</i> bzw. dem Kernnetz.<br><br>
 
  
Auch wenn VoLGA für Sprachverbindungen nicht auf ein GSM&ndash; oder UMTS&ndash;Netz zurückgreifen muss wie CSFB, wurde es auf Grund ihrer Benutzerunfreundlichkeit vom Großteil der Mobilfunkgemeinde auch nur als (unbefriedigende) Brückentechnologie betrachtet. T&ndash;Mobile war lange ein Verfechter der  VoLGA&ndash;Technologie, beendete im Februar 2011 jedoch ebenfalls die weitere Entwicklung.<br>
 
  
Auf der nächsten Seite beschreiben wir einen besseren Lösungsvorschlag. Stichworte sind <i>IP Multimedia Subsystem</i> (IMS) sowie <i>Voice over LTE</i> (VoLTE). Die Betreiber in Deutschland haben relativ spät auf diese Technologie umgestellt: Vodafone und O2 Telefonica Anfang 2015, die Telekom  Anfang 2016. Dies ist auch der Grund dafür, dass der Umstieg auf LTE in Deutschland (und in Europa allgemein) schleppender verlief als in den USA. Viele Kunden wollten nicht die höheren Preise für LTE zahlen, so lange es keine gut funktionierende Lösung für die Integration der Sprachübertragung gab.<br>
+
'''(2)''' &nbsp; Another possibility for the integration of speech/voice in a packet-oriented transmission system is offered by&nbsp; "Voice over LTE via GAN"&nbsp; $\rm (VoLGA)$, which is based on the &nbsp; [https://en.wikipedia.org/wiki/Generic_Access_Network "Generic Access Network"]&nbsp; developed by&nbsp; [[Mobile_Communications/General_Information_on_the_LTE_Mobile_Communications_Standard#3GPP_-_Third_Generation_Partnership_Project| $\text{3GPP}$]].&nbsp; In brief, the principle can be described as follows:
 +
# GAN enables line-based services via a packet-oriented network (IP network), for example $\rm WLAN$&nbsp; ("Wireless Local Area Network").&nbsp; With compatible end devices one can register oneself in the GSM network over a WLAN connection and use line-based services.&nbsp; VoLGA uses this functionality by replacing WLAN with LTE.
 +
# The fast implementation of VoLGA is advantageous, as no lengthy new development or changes to the core network are necessary.&nbsp; However, a so-called&nbsp; "VoLGA Access Network Controller"&nbsp; $\rm (VANC)$&nbsp; must be added to the network as hardware.&nbsp; This takes care of the communication between the end device and the&nbsp; "Mobile Management Entity"&nbsp; or the core network.<br><br>
  
== VoLTE Voice over LTE ==
+
Even though VoLGA does not need to use a GSM  or UMTS network for voice connections like CSFB, it was considered by the majority of the mobile community as an (unsatisfactory) bridge technology due to its user-friendliness.&nbsp; T&ndash;Mobile has long been a proponent of the VoLGA technology, but they also stopped further development in February 2011.<br>
 +
 
 +
In the following we describe a better solution proposal.&nbsp; Keywords are&nbsp; "IP Multimedia Subsystem"&nbsp; $\rm (IMS)$&nbsp; and&nbsp; "Voice over LTE"&nbsp; $\rm (VoLTE)$.&nbsp; The operators in Germany switched to this technology relatively late: &nbsp; Vodafone and O2 Telefonica at the beginning of 2015, Telekom at the beginning of 2016.
 +
 
 +
This is also the reason why the switch to LTE in Germany&nbsp; (and in Europe in general)&nbsp; was slower than in the US.&nbsp;  Many customers did not want to pay the higher prices for LTE as long as there was no well functioning solution for integrating voice transmission.<br>
 +
 
 +
 
 +
 
 +
== VoLTE - Voice over LTE ==
 
<br>
 
<br>
Der aus heutiger Sicht (2016) erfolgversprechendste, teilweise bereits etablierte Ansatz zur Integration der Sprachdienste in das LTE&ndash;Netz ist <i>Voice over LTE</i> &ndash; kurz: VoLTE. Dieser offiziell von der [http://www.gsma.com/aboutus/ GSMA &ndash;] die weltweite Industrievereinigung von mehr als 800 Mobilfunkanbietern und  über 200 Herstellern von Mobiltelefonen  und Netzinfrastruktur &ndash; verabschiedete Standard ist ausschließlich IP&ndash;paketorientiert und basiert auf dem <i>IP Multimedia Subsystem</i> (IMS), das bereits 2010 in der UMTS&ndash;Release 9 definiert wurde. Die technischen Fakten zu IMS sind:
+
From today's point of view (2016), the most promising approach to integrating voice services into the LTE network, some of which are already established, is&nbsp; "Voice over LTE"&nbsp; $\rm (VoLTE)$.&nbsp; This standard, officially adopted by the&nbsp; [http://www.gsma.com/aboutus/ $\rm GSMA$],&nbsp; the worldwide industry association of more than 800 mobile network operators and over 200 manufacturers of cell phones and network infrastructure, is exclusively IP packet-oriented and is based on the&nbsp; "IP Multimedia Subsystem"&nbsp; $\rm (IMS)$, which was already defined in the UMTS Release 9 in 2010.&nbsp;  
*Das IMS&ndash;Basisprotokoll ist das von <i>Voice over IP</i> bekannte <i>Session Initiation Protocol</i> (SIP).  Es handelt sich dabei um ein Netzprotokoll, mit dem Verbindungen zwischen zwei Teilnehmern aufgebaut und  gesteuert werden können. Dieses Protokoll ermöglicht die Entwicklung zu einem vollständig  (für Daten <u>und</u> Sprache) IP&ndash;basierten Netzwerk und bietet damit Zukunftssicherheit.<br>
 
  
Der Grund, warum sich die Einführung von VoLTE gegenüber der LTE&ndash;Etablierung im Datenverkehr um  vier Jahre verzögert hat, liegt im schwierigen Zusammenspiel von 4G mit den älteren Vorgängerstandards <i>GSM</i> (2G) und <i>UMTS</i> (3G). Hierzu ein Beispiel:
+
The technical facts about IMS are:
*Verlässt ein Mobilfunknutzer seine LTE&ndash;Zelle und wechselt in ein Gebiet ohne 4G&ndash;Versorgung, so muss ein unmittelbarer Wechsel zum nächstbesten Standard (3G) erfolgen.<br>
+
*The IMS basic protocol is the one from&nbsp; "Voice over IP"&nbsp; known&nbsp; [https://de.wikipedia.org/wiki/Session_Initiation_Protocol "Session Initiation Protocol"]&nbsp; $\rm (SIP)$.&nbsp; This is a network protocol that can be used to establish and control connections between two users.
  
*Sprache wird hier technisch völlig anders übermittelt, nicht mehr durch viele kleine Datenpakete &nbsp;&#8658;&nbsp; &bdquo;paketvermittelt&rdquo;, sondern sequentiell in den eigens für den Teilnehmer reservierten logischen und physikalischen Kanälen &nbsp;&#8658;&nbsp; &bdquo;leitungsvermittelt&rdquo;.<br>
+
* This protocol enables the development of a completely&nbsp; (for data <u>and</u> voice)&nbsp; IP based network and is therefore future-proof.<br>
  
*Diese Umsetzung muss derart schnell und problemlos verlaufen, dass der Endkunde davon nichts merkt. Und diese Umsetzung muss für alle Mobilfunkstandards und Techniken funktionieren.<br><br>
 
  
Nach Ansicht aller Experten wird VoLTE das mobile Telefonieren ähnlich positiv beeinflussen, wie LTE das mobile Internet seit 2011 vorangebracht hat. Wesentliche Vorteile für die Nutzer sind:
+
The reason why the introduction of&nbsp; VoLTE&nbsp; has been delayed by four years compared to LTE establishment in data traffic is due to the difficult interaction of "4G" with the older predecessor standards&nbsp; GSM&nbsp; ("2G") and&nbsp; UMTS&nbsp; ("3G").&nbsp; Here is an example:
*Eine <i>höhere Sprachqualität</i>, da VoLTE [http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS#Sprachcodierung AMR&ndash;Wideband Codecs] mit 12.65 bzw. 23.85 kbit/s nutzt. Außerdem werden die VoLTE&ndash;Datenpakete für möglichst niedrige Latenzen priorisiert.<br>
+
*If a mobile phone user leaves his LTE cell and switches to an area without 4G coverage, an immediate switch to the next best standard (3G) must be made.
  
*Ein enorm <i>beschleunigter Verbindungaufbau</i> innerhalb von einer oder zwei Sekunden, während es bei <i>Circuit Switched Fallback</i> (CSFB) unangenehm lange  dauert,  bis eine  Verbindung steht.<br>
+
*Speech is transmitted here technically completely differently, no longer by many small data packets &nbsp; &#8658; &nbsp; "packet-switched" but sequentially in the logical and physical channels reserved especially for the user &nbsp; &#8658; &nbsp; "circuit-switched".<br>
  
*Ein <i>niedriger Akkuverbrauch</i>, deutlich geringer als bei 2G und 3G, damit verbunden eine längere Akkulaufzeit. Auch gegenüber gängigen VoIP&ndash;Diensten ist der Energiebedarf bis zu 40% geringer.<br><br>
+
*This implementation must be so fast and smooth that the end customer does not notice anything.&nbsp; And this implementation must work for all mobile phone standards and technologies.
  
Aus Sicht der Provider ergeben sich folgende Vorteile:
 
*Eine <i>bessere Spektraleffizienz</i>: Doppelt so viele Gespräche im gleichen Frequenzband als bei 3G. Oder: Bei gleichem Gesprächsaufkommen steht für Datendienste mehr Kapazität zur Verfügung.<br>
 
  
*Eine einfache Implementierung von <i>Rich Media Services</i> (RCS), etwa für Videotelefonie oder zukünftige Anwendungen, durch die neue Kunden geworben werden können.<br>
+
According to all the experts, VoLTE will have a positive impact on mobile telephony in the same way that LTE has driven the mobile Internet forward since 2011.&nbsp; Key benefits for users are:
 +
*A higher voice quality, as VoLTE uses&nbsp; [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS#Improvements_regarding_speech_coding| "AMR wideband codecs"]]&nbsp; with 12.65 or 23.85 kbit/s.&nbsp; Furthermore, the VoLTE data packets are prioritized for lowest possible latencies.<br>
  
*Eine <i>bessere Akzeptanz</i> der höheren Bereitstellungskosten durch LTE&ndash;Kunden, wenn man nicht zum Telefonieren in ein &bdquo;niederwertiges&rdquo; Netz wie 2G oder 3G ausgelagert werden muss.<br><br>
+
*An enormously accelerated connection setup  within one or two seconds, whereas with&nbsp; "Circuit Switched Fallback" (CSFB) it takes an unpleasantly long time to establish a connection.<br>
  
== Bandbreitenflexibilität ==
+
*A low battery consumption, significantly lower than "2G" and "3G", associated with a longer battery life.&nbsp; Also in comparison to the usual VoIP services the power consumption is up to 40% lower.<br><br>
 +
 
 +
From the provider's point of view, the following advantages result:
 +
*A better spectral efficiency: &nbsp; Twice as many calls are possible in the same frequency band than with "3G".&nbsp; In other words: &nbsp; More capacity is available for data services for the same number of calls.<br>
 +
 
 +
*An easy implementation of&nbsp; [https://en.ryte.com/wiki/Rich_Media "Rich Media Services"]&nbsp; $\rm (RCS)$, e.g. for video telephony or future applications that can be used to attract new customers.<br>
 +
 
 +
*A better acceptance of the higher provisioning costs by LTE customers if you don't need to outsource to a "low-value" network like "2G" or "3G" for telephony.
 +
 
 +
 
 +
 
 +
== Bandwidth flexibility ==
 
<br>
 
<br>
LTE lässt sich durch die Verwendung von OFDM mit relativ wenig Aufwand an unterschiedlich breite Frequenzbänder anpassen. Diese Tatsache ist eine aus verschiedenen Gründen &ndash; siehe Meyer, M.: ''Siebenmeilenfunk.'' c't 2010, Heft 25, 2010 &ndash; wichtige Eigenschaft, insbesondere für die Netzbetreiber:
+
LTE can be adapted to frequency bands of different widths with relatively little effort by using&nbsp; [[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|$\rm OFDM$]]&nbsp; ("Orthogonal Frequency Division Multiplex").&nbsp; This fact is an important feature for various reasons, see&nbsp; [Mey10]<ref name='Mey10'>Meyer, M.:&nbsp; Siebenmeilenfunk.&nbsp; c't 2010, issue 25, 2010.</ref>, especially for network operators:
*Abhängig von den gesetzlichen Vorgaben in verschiedenen Ländern können die Frequenzbänder für LTE unterschiedlich groß sein. Auch der Ausgang der staatenspezifischen Versteigerungen der LTE&ndash;Frequenzen (getrennt nach FDD und TDD) hat die Breite der Spektren beeinflusst.<br>
+
*The frequency bands for LTE may vary in size depending on the legal requirements in different countries.&nbsp; The outcome of the state-specific auctions of LTE frequencies&nbsp; (separated into FDD and TDD)&nbsp; has also influenced the width of the spectrum.<br>
  
*Oft betreibt man LTE im Hinblick auf eine spätere Migration in der &bdquo;Frequenz&ndash;Nachbarschaft&rdquo; etablierter Funkübertragungssysteme, mit deren Abschaltung in Kürze gerechnet wird. Steigt die Nachfrage, so kann man LTE nach und nach auf den frei werdenden Frequenzbereich ausweiten.<br>
+
*Often LTE is operated in the "frequency neighborhood" of established radio transmission systems, which are expected to be switched off soon.&nbsp; If the demand increases, LTE can be gradually expanded to the frequency range that is becoming available.<br>
  
*Als Beispiel sei die Migration der Fernsehkanäle nach der Digitalisierung genannt: Im jetzt frei gewordenen VHF&ndash;Frequenzbereich um 800 MHz wird ein Teil des LTE&ndash;Netzwerks angesiedelt &ndash; siehe [http://en.lntwww.de/Mobile_Kommunikation/Allgemeines_zum_Mobilfunkstandard_LTE#LTE.E2.80.93Frequenzbandaufteilung Grafik] im Kapitel 4.1.<br>
+
*For example, the migration of television channels after digitalization: &nbsp; A part of the LTE network will be located in the VHF frequency range around 800 MHz, which has now been freed up, see&nbsp; [[Mobile_Communications/General_Information_on_the_LTE_Mobile_Communications_Standard#LTE_frequency_band_splitting|"frequency band splitting graphic"]].<br>
  
*Eigentlich könnten die Bandbreiten mit einem Feinheitsgrad von bis zu 15 kHz (entsprechend  einem OFDMA&ndash;Unterträger) gewählt werden. Da dies jedoch unnötig Overhead produzieren würde, hat man als kleinste adressierbare LTE&ndash;Ressource eine Dauer von einer Millisekunde und eine Bandbreite von 180 kHz festgelegt. Ein solcher Block entspricht zwölf Unterträgern (180 kHz geteilt durch 15 kHz).<br><br>
+
*Actually the bandwidths could be selected with a degree of fineness of up to 15 kHz&nbsp; (corresponding to an OFDMA subcarrier).&nbsp; However, since this would unnecessarily produce overhead, a duration of&nbsp; &raquo;'''one millisecond'''&laquo;&nbsp; and a bandwidth of&nbsp; &raquo;'''180 kHz'''&laquo;&nbsp; has been specified as the smallest addressable LTE resource.&nbsp; Such a block corresponds to twelve subcarriers (180 kHz divided by 15 kHz).<br><br>
  
Um die Komplexität und den Aufwand bei der Hardwarestandardisierung möglichst gering zu halten, hat man sich zudem auf eine ganze Reihe zulässiger Bandbreiten zwischen 1.4 MHz und 20 MHz geeinigt. Die folgende Auflistung &ndash; entnommen aus Gessner, C.: ''UMTS Long Term Evolution (LTE): Technology Introduction.'' Rohde&Schwarz, 2008 &ndash; gibt die standarisierten Bandbreiten, die Anzahl der verfügbaren Blöcke sowie den &bdquo;Overhead&rdquo; an:
+
In order to keep the complexity and effort of hardware standardization as low as possible, a whole range of permissible bandwidths between 1.4 MHz and 20 MHz has been agreed upon. The following list &ndash; taken from&nbsp; [Ges08]<ref name='Ges08'>Gessner, C.:&nbsp; UMTS Long Term Evolution (LTE): Technology Introduction.&nbsp; Rohde&Schwarz, 2008.</ref>&nbsp; &ndash; specifies the standardized bandwidths, the number of available blocks and the "overhead":
*6 verfügbare Blöcke in der Bandbreite 1.4 MHz &nbsp;&#8658;&nbsp; relativer Overhead ca. 22.8%,<br>
+
*6 available blocks in the bandwidth 1.4 MHz &nbsp; &#8658; &nbsp; relative overhead about 22.8%,<br>
  
*15 verfügbare Blöcke in der Bandbreite 3 MHz &nbsp;&#8658;&nbsp; relativer Overhead ca. 10%,<br>
+
*15 available blocks in the bandwidth 3 MHz &nbsp; &#8658; &nbsp; relative overhead about 10%,<br>
  
*25 verfügbare Blöcke in der Bandbreite 5 MHz &nbsp;&#8658;&nbsp; relativer Overhead ca. 10%,<br>
+
*25 available blocks in the bandwidth 5 MHz &nbsp; &#8658; &nbsp; relative overhead about 10%,<br>
  
*50 verfügbare Blöcke in der Bandbreite 10 MHz &nbsp;&#8658;&nbsp; relativer Overhead ca. 10%,<br>
+
*50 available blocks in the bandwidth 10 MHz &nbsp; &#8658; &nbsp; relative overhead about 10%,<br>
  
*75 verfügbare Blöcke in der Bandbreite 15 MHz &nbsp;&#8658;&nbsp; relativer Overhead ca. 10%,<br>
+
*75 available blocks in the bandwidth 15 MHz &nbsp; &#8658; &nbsp; relative overhead about 10%,<br>
  
*100 verfügbare Blöcke in der Bandbreite 20 MHz &nbsp;&#8658;&nbsp; relativer Overhead ca. 10%.<br><br>
+
*100 available blocks in the bandwidth 20 MHz &nbsp; &#8658; &nbsp; relative overhead about 10%.<br><br>
  
Da sonst einige LTE&ndash;spezifische Funktionen nicht funktionieren würden, müssen mindestens 6 Blöcke bereitgestellt werden. Der relative Overhead ist bei kleiner Kanalbandbreite (1.4 MHz) vergleichsweise hoch: (1.4 &ndash; 6 &middot; 0.18)/1.4 &asymp; 22.8%. Ab einer Bandbreite von 3 MHz beträgt der relative Overhead konstant 10%. Weiter gilt, dass alle Endgeräte auch die maximale Bandbreite von 20 MHz unterstützen müssen Gessner, C.: ''UMTS Long Term Evolution (LTE): Technology Introduction.'' Rohde&Schwarz, 2008.
+
Since otherwise some LTE specific functions would not work, at least six blocks must be provided.  
 +
*The relative overhead is comparatively high at small channel bandwidth (1.4 MHz): &nbsp; (1.4 &ndash; 6 &middot; 0.18)/1.4 &asymp; 22.8%.
 +
 +
*From a bandwidth of 3 MHz the relative overhead is constant 10%.
 +
 +
*It also applies that all end devices must also support the maximum bandwidth of 20 MHz &nbsp; [Ges08]<ref name='Ges08'></ref>
  
== FDD, TDD und Halb–Duplex–Verfahren (1) ==
+
== FDD, TDD and half-duplex method==
 
<br>
 
<br>
Eine weitere wichtige Neuerung von LTE ist das Halb&ndash;Duplex&ndash;Verfahren, welches eine Mischung aus den beiden bereits von UMTS bekannten Duplexverfahren darstellt:
+
Another important innovation of LTE is the half&ndash;duplex procedure, which is a mixture of the two from UMTS already known  [[Examples_of_Communication_Systems/General_Description_of_UMTS#Full_duplex|"duplex procedures"]]:
*[http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS#Vollduplexverfahren Frequency Division Duplex] (FDD), und<br>
+
 
 +
*&raquo;'''Frequency Division Duplex'''&laquo;&nbsp; $\rm (FDD)$, and<br>
 +
 
 +
*&raquo;'''Time Division Duplex'''&laquo;&nbsp; $\rm (TDD)$ .<br><br>
 +
 
 +
Such duplexing is necessary to ensure that uplink and downlink are clearly separated from each other and that transmission runs smoothly.&nbsp; The diagram illustrates the difference between FDD based and TDD based transmission.<br>
 +
 
 +
[[File:EN_Mob_T_4_2_S3a.png|right|frame|Transmission scheme for FDD (top) or TDD (bottom)|class=fit]]
 +
 
 +
Using the FDD and TDD methods, LTE can be operated in paired and unpaired frequency ranges.
 +
 
 +
The two methods are present opposing requirements:
 +
*$\rm FDD$&nbsp; requires a paired spectrum, i.e. one frequency band for transmission from the base station to the terminal ("downlink") and one for transmission in the opposite direction ("uplink").&nbsp; Downlink and uplink can be used at the same time.<br>
 +
 
 +
*$\rm TDD$&nbsp; was designed for unpaired spectra.&nbsp; Now only one band is needed for uplink and downlink.&nbsp; However, transmitter and receiver must now alternate during transmission.&nbsp; The main problem of TDD is the required synchronicity of the networks.<br><br>
  
*[http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS#Vollduplexverfahren Time Division Duplex] (TDD) .<br><br>
+
In the graph the differences between FDD and TDD can be seen: &nbsp;
  
Solche Duplexverfahren sind erforderlich, damit Uplink und Downlink klar voneinander getrennt sind und die Übertragung reibungslos funktioniert. Die Grafik illustriert den Unterschied zwischen FDD&ndash; und TDD&ndash;basierter Übertragung.<br>
+
:In TDD a&nbsp; "Guard Period"&nbsp; has to be inserted when changing from downlink to uplink (or vice versa) to avoid an overlapping of the signals.<br>
  
[[File:P ID2281 Mob T 4 2 S4a v1.png|Übertragungschema bei FDD (obenbzw. TDD (unten)|class=fit]]<br>
+
Although FDD is likely to be used more in practice&nbsp; (and FDD frequencies were much more expensive for the providers), there are several reasons for TDD:
 +
*Frequencies are a rare and expensive commodity, as the 2010 auction has shown.&nbsp; But TDD needs only half of the frequency bandwidth.<br>
  
Mit Hilfe der beiden Methoden FDD und TDD kann LTE sowohl in gepaarten, als auch in ungepaarten Frequenzbereichen betrieben werden. Die beiden Verfahren stellen gewissermaßen einen Gegensatz dar:
+
*The TDD technique allows different modes, which determine how much time should be used for downlink or uplink and can be adjusted to individual requirements.<br><br>
*FDD benötigt ein gepaartes Spektrum, also jeweils ein Frequenzband für die Übertragung von der Basisstation in Richtung Endgerät (Downlink) und eines für die Übertragung in umgekehrter Richtung (Uplink). Downlink sowie Uplink können dabei aber gleichzeitig übertragen werden.<br>
 
  
*TDD wurde für ungepaarte Spektren konzipiert. Zwar benötigt man nun für Uplink und Downlink nur noch ein einziges Band. Sender und Empfänger müssen sich nun allerdings bei der Übertragung abwechseln. Das Hauptproblem von TDD ist die erforderliche Synchronität der Netze.<br><br>
+
For the actual innovation, the&nbsp; $\text{half&ndash;duplex}$&nbsp; method, you need a paired spectrum as with FDD&nbsp; (see the following graphic):
 +
[[File:P ID2276 Mob T 4 2 S4b v1.png|right|frame|Transmission scheme for half-duplex|class=fit]]
 +
*Base station transmitter and receiver still alternate like TDD.&nbsp;  Each terminal device can either transmit or receive at a given time.
 +
*Through a second connection to another end device with swapped downlink/uplink grid, the entire available bandwidth can still be fully used.<br>
  
== FDD, TDD und Halb–Duplex–Verfahren (2)  ==
+
*The main advantage of the half&ndash;duplex process is that the use of the TDD concept reduces the demands on the end devices and thus allows them to be produced at a lower cost.<br><br>
 +
 
 +
 
 +
The fact that this aspect was of great importance in the standardization can also be seen in the use of&nbsp; "OFDMA"&nbsp; in the downlink and of&nbsp; "SC&ndash;FDMA"&nbsp; in the uplink:
 +
*This results in a longer battery life of the end devices and allows the use of cheaper components.
 +
 +
*More about this can be found in chapter&nbsp; [[Mobile_Communications/The_Application_of_OFDMA_and_SC-FDMA_in_LTE | "The Application of OFDMA and SC-FDMA in LTE"]].
 +
 
 +
== Multiple Antenna Systems==
 
<br>
 
<br>
In der [http://en.lntwww.de/Mobile_Kommunikation/Technische_Neuerungen_von_LTE#FDD.2C_TDD_und_Halb.E2.80.93Duplex.E2.80.93Verfahren_.281.29 Grafik] auf der vorherigen Seite sind die Unterschiede zwischen FDD und TDD zu erkennen. Man sieht, dass man bei TDD beim Wechsel von Downlink zu Uplink (bzw. umgekehrt) eine Guard Period einfügen muss, damit es nicht zu einer Überlagerung der Signale kommt.<br>
+
If a radio system uses several transmitting and receiving antennas, one speaks of&nbsp; &raquo;'''Multiple Input Multiple Output'''&raquo;&nbsp; $\rm (MIMO)$.&nbsp; This is not an LTE specific development.&nbsp; WLAN, for example, also uses this technology.  
  
Obwohl FDD in der Praxis voraussichtlich stärker genutzt werden wird (und die FDD&ndash;Frequenzen für die Provider auch sehr viel teuerer waren), gibt es durchaus auch einige Gründe, die für TDD sprechen:
+
{{GraueBox|TEXT= 
*Frequenzen sind &ndash; wie sich bei der Versteigerung 2010 wieder gezeigt hat &ndash; ein rares und teures Gut. TDD benötigt aber nur die halbe Frequenzbandbreite.<br>
+
$\text{Example 1:}$&nbsp; The principle of multiple antenna systems is illustrated in the following graphic using the example of 2&times;2&ndash;MIMO (two transmitting and two receiving antennas).<br>
  
*Die TDD&ndash;Technik ermöglicht verschiedene Modi, die festlegen, wie viel Zeit für Downlink bzw. Uplink verwendet werden soll und kann so auf individuelle Anforderungen abgestimmt werden.<br><br>
+
[[File:EN_Mob_T_4_2_S3b.png|right|frame|The difference between SISO and MIMO|class=fit]]
 +
*The new thing about LTE is not the actual use of&nbsp; "Multiple Input Multiple Output", but the particularly intensive one, namely&nbsp; 2&times;2 MIMO&nbsp; in the uplink and maximum&nbsp; 4&times;4 MIMO&nbsp; in the downlink.  
  
Für die eigentliche Neuerung, das Halb&ndash;Duplex&ndash;Verfahren, benötigt man zwar wie bei FDD auch ein gepaartes Spektrum. Sender und Empfänger der Basisstation wechseln sich aber trotzdem wie bei TDD ab:  Jedes Endgerät kann gleichzeitig entweder nur Senden oder nur Empfangen.<br>
+
*In the successor&nbsp; [[Mobile_Communications/LTE-Advanced - a Further Development of LTE|"LTE Advanced"]]&nbsp; the use of MIMO is even more pronounced, namely "4&times;4" in the uplink and "8&times;8" in the opposite direction.}}
  
[[File:P ID2276 Mob T 4 2 S4b v1.png|Übertragungsschema bei Halb–Duplex|class=fit]]<br>
 
  
Man erkennt aus dieser Grafik:
+
A MIMO system has advantages compared to&nbsp; "Single Input Single Output"&nbsp; (SISO, only one transmitting and one receiving antenna).&nbsp; A distinction is made between several gains depending on the channel:
*Durch eine zweite Verbindung zu einem anderen Endgerät mit vertauschtem Downlink/Uplink&ndash;Raster kann trotzdem das gesamte zur Verfügung stehende Band voll genutzt werden.<br>
+
*&raquo;<b>Power gain</b>&laquo;&nbsp; according to the number of receiving antennas: &nbsp; <br>If the radio signals arriving via several antennas are combined in a suitable way &nbsp; &rArr; &nbsp; [https://en.wikipedia.org/wiki/Maximal-ratio_combining "Maximal-ratio combining"], the  received power is increased and the radio connection is improved.&nbsp; By doubling the antennas, a power gain of maximum 3 dB is achieved.<br>  
  
*Wesentlicher Vorteil des Halb&ndash;Duplex&ndash;Verfahrens besteht aber darin, dass durch die Verwendung des TDD&ndash;Konzepts die Anforderungen an die Endgeräte stark sinken und sich diese einfacher und billiger produzieren lassen.<br><br>
+
*&raquo;<b>Diversity gain</b>&laquo; through&nbsp; [https://en.wikipedia.org/wiki/Antenna_diversity "Spatial Diversity"]:&nbsp; <br>If several spatially separated receiving antennas are used in an environment with strong multipath propagation, the fading at the individual antennas is mostly independent from each other and the probability that all antennas are affected by fading at the same time is very low.<br>
  
Dass diesem Aspekt in der Standardisierung große Bedeutung zugemessen wurde, lässt sich auch an der Verwendung von OFDMA im Downlink und SC&ndash;FDMA im Uplink erkennen: Dadurch erreicht man eine längere Batterielaufzeit der Endgeräte und es können günstigere Bauteile verwendet werden. Mehr dazu finden Sie im Kapitel 4.3.
+
*&raquo;<b>Data rate gain</b>&laquo;: &nbsp; <br> This increases the efficiency of MIMO, especially in an environment with increased multipath propagation, especially when transmitter and receiver do not have a direct line of sight and the transmission is done via reflections.&nbsp; Tripling the number of antennas for the transmitter and receiver results in approximately twice the data rate.<br><br>
 +
 
 +
However, it is not possible for all advantages to occur simultaneously.&nbsp; Depending on the nature of the channel, it can also happen that one does not even have the choice of which advantage one wants to use.<br>
 +
 
 +
In addition to the MIMO systems there are also the following intermediate stages:
 +
*MISO systems&nbsp; (only one receiving antenna, therefore no power gain is possible), and<br>
 +
 
 +
*SIMO systems&nbsp; (only one transmitting antenna, therefore only small diversity gain).<br>
  
== Mehrantennensysteme (1) ==
 
<br>
 
Verwendet ein Funksystem mehrere Sende&ndash; und Empfangsantennen, so spricht man von  Multiple Input Multiple Output (MIMO). Dabei handelt es sich nicht um eine LTE&ndash;spezifische Entwicklung. So nutzt beispielweise auch WLAN diese Technologie. Das Prinzip der Mehrantennensysteme wird in der folgenden Grafik am Beispiel von 2&times;2&ndash;MIMO (zwei Sende&ndash; und zwei Empfangsantennen) verdeutlicht.<br>
 
  
Das Neue an LTE ist nicht die eigentliche  Nutzung von <i>Multiple Input Multiple Output</i>, sondern die besonders intensive, nämlich 2&times;2&ndash;MIMO im Uplink und maximal 4&times;4&ndash;MIMO im Downlink. Beim Nachfolger LTE&ndash;Advanced ist die Nutzung von MIMO noch ausgeprägter, nämlich  &bdquo;4&times;4&rdquo; im Uplink und &bdquo;8&times;8&rdquo; in Gegenrichtung.<br>
+
{{GraueBox|TEXT=  
 +
$\text{Example 2:}$&nbsp; The term&nbsp; "MIMO"&nbsp; summarizes multi-antenna techniques with different properties, each of which can be useful in certain situations.&nbsp; The following description is based on the four diagrams shown here.<br>
  
[[File:P ID2277 Mob T 4 2 S5a v1.png|Der Unterschied zwischen SISO und MIMO|class=fit]]<br>
+
[[File:EN_Mob_T_4_2_S5b_v2.png|right|frame|Four multi-antenna procedures with different properties|class=fit]]
  
Ein MIMO&ndash;System weist gegenüber Single Input Single Output (SISO, nur eine Sende&ndash; und eine Empfangsantennen) Vorteile auf. Man unterscheidet je nach Kanal zwischen mehreren Gewinnen:
+
*If the mostly independent channels of a MIMO system are assigned to a single user (top left diagram), one speaks of&nbsp; "Single&ndash;User MIMO".&nbsp; With 2&times;2 MIMO, the data rate is doubled compared to SISO operation and with four transmitting and receiving antennas each, the data rate can be doubled again under good channel conditions.<br>
*<b>Leistungsgewinn</b> gemäß der Anzahl von Empfangsantennen: Kombiniert man die über mehrere Antennen  eintreffenden Funksignale in geeigneter Weise  (<i>Spatial Combining</i>), so erhöht man die Empfangsleistung und verbessert so die Funkverbindung. Mit einer Verdoppelung der Antennen erreicht man einen Leistungsgewinn von maximal 3 dB.<br>
 
  
*<b>Diversitätsgewinn</b> durch Raumdiversität (englisch: <I>Spatial Diversity</i>): Verwendet man mehrere räumlich getrennte Empfangsantennen in einer Umgebung mit starker Mehrwegeausbreitung, so ist das Fading an den einzelnen Antennen meist unabhängig voneinander und die Wahrscheinlichkeit, dass alle Antennen gleichzeitig von Fading betroffen sind, ist sehr gering.<br>
+
::LTE allows maximum 4&times;4 MIMO but only in the downlink.&nbsp; Due to the complexity of multi-antenna systems, only laptops with LTE modems can be used as receivers (end devices) for 4&times;4 MIMO.&nbsp; For a mobile phone, the use is generally limited to 2&times;2 MIMO.
  
*<b>Datenratengewinn</b>: Dieser steigert die Effizienz von MIMO vor allem in einer Umgebung mit erhöhter Mehrwegeausbreitung, insbesondere dann, wenn Sender und Empfänger keine direkte Sichtverbindung haben und die Übertragung über Reflexionen erfolgt. Die Verdreifachung der Antennenzahl bei Sender und Empfänger führt zu einer Verdoppelung der Datenrate.<br><br>
+
*Contrary to Single&ndash;User MIMO, the goal with the&nbsp; &raquo;'''Multi&ndash;User MIMO'''&laquo;&nbsp; is not the maximum data rate for a receiver, but the maximization of the number of end devices that can use the network simultaneously&nbsp; (top right diagram).
 +
::This involves transmitting different data streams to different users.&nbsp; This is particularly useful in places with high demand, such as airports or soccer stadiums.<br>
  
Nicht möglich ist jedoch, dass alle Vorteile gleichzeitig eintreten. Abhängig von der Kanalbeschaffenheit kann es auch passieren, dass man nicht einmal die Wahl hat, welchen Vorteil man nutzen will.<br>
+
*Multi-antenna operation is not only used to maximize the number of users or data rate, but also in the event of poor transmission conditions, multiple antennas can combine their power to transmit data to a single user to improve the quality of reception.&nbsp; One then speaks of&nbsp; &raquo;'''Beamforming'''&laquo; &nbsp; (diagram below left), which also increases the range of a transmitting station.<br>
  
Neben den MIMO-Systemen gibt es auch noch folgende Zwischenstufen:
+
*The fourth possibility is&nbsp; &raquo;'''Antenna diversity'''&laquo; &nbsp; (diagram below right).&nbsp; This increases the redundancy (regarding the system design) and makes the transmission more robust against interferences.
*MISO&ndash;Systeme (nur eine Empfangsantenne, somit ist kein Leistungsgewinn möglich), und<br>
+
::A simple example: &nbsp; There are four channels that all transmit the same data.&nbsp; If one channel fails, there are still three channels for information transport.}}
  
*SIMO&ndash;Systeme  (nur eine Sendeantenne, nur kleiner Diversitätsgewinn).<br>
 
  
== Mehrantennensysteme (2) ==
+
== System Architecture==
 
<br>
 
<br>
Der Begriff &bdquo;MIMO&rdquo; fasst Mehrantennenverfahren mit unterschiedlichen Eigenschaften zusammen, die jeweils in gewissen Situationen von Nutzen sein können. Vier davon sind in der Grafik veranschaulicht.<br>
+
The LTE architecture enables a transmission system based entirely on the IP protocol.&nbsp; In order to achieve this goal, the system architecture specified for UMTS not only had to be changed in detail, but in some cases completely redesigned.&nbsp; In the process, other IP based technologies such as&nbsp; "mobile WiMAX"&nbsp; or&nbsp; "WLAN"&nbsp; were also integrated in order to be able to switch to these networks without any problems.<br>
  
[[File:P ID2484 Mob T 4 2 S5b v1.png|Vier Mehrantennenverfahren mit unterschiedlichen Eigenschaften|class=fit]]<br>
+
[[File:EN_Mob_T_4_2_S6.png|right|frame|System Architecture for UMTS&nbsp; $\rm (UTRAN)$&nbsp; and LTE&nbsp; $\rm  (EUTRAN)$|class=fit]]
  
Die folgende Beschreibung ist auf die vier hier gezeigten Schaubildern abgestimmt.
+
In UMTS networks (left graphic), the&nbsp; "Radio Network Controller"&nbsp; $\rm (RNC)$&nbsp; is inserted between a base station ("NodeB") and the core network, which is mainly responsible for switching between different cells and which can lead to latency times of up to 100 milliseconds.<br>
*Werden die weitgehend unabhängigen Kanäle eines MIMO&ndash;Systems einem einzigen Teilnehmer zugeteilt (Schaubild links oben), so spricht man von Single&ndash;User MIMO. Durch 2&times;2&ndash;MIMO verdoppelt sich die Datenrate gegenüber dem SISO&ndash;Betrieb und mit jeweils vier Sende&ndash; und Empfangsantennen kann die Datenrate bei guten Kanalbedingungen nochmals verdoppelt werden.<br>
 
  
*LTE ermöglicht maximal 4&times;4&ndash;MIMO allerdings  nur im Downlink. Als Empfänger (Endgeräte) kommen bei 4&times;4&ndash;MIMO aufgrund der Komplexität von Mehrantennensystemen nur Laptops mit LTE&ndash;Modems in Frage. Bei einem Handy beschränkt man sich auf 2&times;2&ndash;MIMO.<br>
+
*The redesign of the base stations&nbsp; ("eNodeB"&nbsp; instead of&nbsp; "NodeB")&nbsp; and the interface&nbsp; "X2"&nbsp; are the decisive further developments from UMTS towards LTE.&nbsp;  
  
*Im Gegensatz zum Single&ndash;User MIMO ist das Ziel beim Multi&ndash;User MIMO nicht die maximale Datenrate für einen Empfänger, sondern die Maximierung der Anzahl der Endgeräte, die das Netz gleichzeitig nutzen können (Schaubild oben rechts). Dabei werden verschiedene Datenströme zu unterschiedlichen Nutzern übertragen. Dies ist besonders an Orten mit hoher Nachfrage nützlich, wie zum Beispiel an Flughäfen oder in Fußballstadien.<br>
+
*The graphic on the right illustrates in particular the reduction in complexity compared to UMTS that goes hand in hand with the new technology (left graphic).  
  
*Ein Mehrantennenbetrieb dient aber nicht nur der Maximierung von Nutzerzahl oder Datenrate, sondern im Falle von schlechten Übertragungsbedingungen können mehrere Antennen auch ihre Leistung bündeln und so gezielt Daten zu einem Nutzer übertragen, um dessen Empfangsqualität zu verbessern. Man spricht dann von Beamforming  (Schaubild unten links), wodurch auch die Reichweite einer Sendestation erhöht wird.<br>
 
  
*Die vierte Möglichkeit ist Antennendiversität (Schaubild unten rechts). Dadurch erhöht man die Redundanz (hinsichtlich Systemauslegung) und macht die Übertragung robuster gegen Störungen. Ein einfaches Beispiel: Es gibt vier Kanäle, die alle die gleichen Daten übertragen. Fällt ein Kanal aus, so sind immer noch drei Kanäle vorhanden, die die Information transportieren können.<br><br>
+
The&nbsp; $\text{LTE system architecture}$&nbsp; can be divided into two major areas, too:
 +
*the LTE core network&nbsp; "Evolved Packet Core"&nbsp; $\rm (EPC)$,<br>
  
 +
*the air interface&nbsp; "Evolved UMTS Terrestrial Radio Access Network"&nbsp; $\rm (EUTRAN)$, a further development of&nbsp; [[Examples_of_Communication_Systems/UMTS_Network_Architecture#Access_level_architecture|"UMTS Terrestrial Radio Access Network"]]&nbsp; $\rm (UTRAN)$.<br><br>
  
 +
EUTRAN transmits the data between the terminal and the LTE base station&nbsp; ("eNodeB")&nbsp; via the so-called&nbsp; "S1"&nbsp; interface with two connections, one for the transmission of user data and a second for the transmission of signalling data.&nbsp;  You can see from the above graphic:
 +
*The base stations are connected not only to the EPC but also to the neighboring base stations.&nbsp; These connections&nbsp; ("X2"&nbsp; interfaces)&nbsp; have the effect that as few packets as possible are lost when the terminal device moves from the vicinity of one base station towards another.<br>
  
 +
*For this purpose, the base station whose service area the user is just leaving can pass on any cached data directly and quickly to the "new" base station.&nbsp; This ensures (largely) continuous transmission.<br>
  
 +
*The functionality of the&nbsp; "RNC"&nbsp; is partly transferred to the base station and partly to the&nbsp; "Mobility Management Entity"&nbsp; $\rm (MME)$&nbsp; in the core network.&nbsp; This reduction of the interfaces significantly shortens the signal throughput time in the network and the handover to 20 milliseconds.<br>
  
 +
*The LTE system architecture is also designed so that future&nbsp; "Inter&ndash;NodeB procedures"&nbsp; (such as&nbsp; "Soft Handover"&nbsp; or&nbsp; "Cooperative Interference Cancellation")&nbsp; can be easily integrated.<br>
  
 +
== LTE core network:&nbsp; Backbone and Backhaul ==
 +
<br>
 +
The LTE core network&nbsp; "Evolved Packet Core"&nbsp; $\rm (EPC)$&nbsp; of a network operator&nbsp; (in the technical language&nbsp; "Backbone")&nbsp; consists of various network components.&nbsp; The EPC is connected to the base stations via the&nbsp; "Backhaul".&nbsp; This means the connection of an upstream, usually hierarchically subordinated network node to a central network node.<br>
  
 +
Currently, the&nbsp; "Backhaul"&nbsp; consists mainly of directional radio and so-called&nbsp; "E1" lines.&nbsp; These are copper lines and allow a throughput of about 2 Mbit/s.&nbsp; For GSM  and UMTS networks these connections were still sufficient, however, for the large-scale conceived&nbsp; [[Examples_of_Communication_Systems/Further Developments_of_UMTS#High.E2.80.93Speed_Downlink_Packet_Access| $\rm HSDPA$]]&nbsp; such data rates are no longer adequate.&nbsp; For LTE such a&nbsp; "Backhaul"&nbsp; is completely unusable:
 +
*The slow cable network would slow down the fast wireless connections;&nbsp; overall, there would be no increase in speed.<br>
  
 +
*Due to the low capacities of the lines with "E1" standard, an expansion with further lines of the same construction would not be economical.
  
  
 +
In the course of the introduction of LTE, the backhaul had to be redesigned.&nbsp; It was important to keep an eye on future security, since the next generation&nbsp; "LTE Advanced"&nbsp; was already in place before the introduction.&nbsp; If one believes the experts' propaganda&nbsp; "Moore's Law" for mobile phone bandwidths, the most important factor for future security is the expensive new installation of better cables.<br>
  
 +
Due to the purely packet-oriented transmission technology, the Ethernet standard, which is also IP based, is suitable for the LTE backhaul, which is realized with the help of optical fibers.&nbsp; In 2009, the company Fujitsu presented in the study&nbsp; [Fuj09]<ref name='Fuj09'>Fujitsu Network Communications Inc.:&nbsp; 4G Impacts to Mobile Backhaul.&nbsp; [http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/4Gimpacts.pdf "PDF Internet document"].</ref>,&nbsp; also the thesis that the current infrastructure will continue to play an important role for LTE backhaul for the next ten to fifteen years.<br>
  
 +
There are two approaches for the generation change to an Ethernet based&nbsp; backhaul</i>&nbsp;:
 +
*the parallel operation of the lines with&nbsp; "E1" and Ethernet standard,<br>
  
 +
*the immediate migration to an Ethernet based&nbsp; backhaul.<br><br>
 +
 +
The former would have the advantage that the network operators could continue to run voice traffic over the old lines and would only have to handle bandwidth-intensive data traffic over the more powerful lines.
 +
 +
The second option raises some technical problems:
 +
*The services previously transported through the slow "E1" standard lines would have to be switched immediately to a packet-based procedure.
 +
 +
*Ethernet does not offer&nbsp; (unlike the current standard)&nbsp; any&nbsp; end&ndash;to&ndash;end&nbsp; synchronization, which can lead to severe delays or even service interruptions when changing radio cells, thus a huge loss of service quality.
 +
 +
* However, in the concept&nbsp; [https://en.wikipedia.org/wiki/Synchronous_Ethernet "Synchronous Ethernet"]&nbsp; $\rm (SyncE)$, the Cisco company has already made suggestions as to how synchronization could be realized.<br>
 +
 +
 +
For conurbations, a direct conversion of the backhaul would certainly be worthwhile, as relatively few new cables would have to be laid for a comparatively high number of new users.
 +
 +
In rural areas, however, major excavation work would quickly result in high costs.&nbsp; However, this is exactly the area which must be covered first, according to the&nbsp; [[Mobile_Communications/General Information on the LTE Mobile Communications Standard#LTE frequency band splitting|"agreement reached"]]&nbsp; between the federal government and the (German) mobile phone operators.&nbsp; Here, the mostly existing microwave radio link would have to be (and probably will be) extended to high data rates.<br>
 +
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise 4.2: FDD, TDD and Half-Duplex]]
  
 +
[[Aufgaben:Exercise 4.2Z: MIMO Applications in LTE]]
  
 +
==References==
  
 +
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:48, 20 February 2023

For speech transmission with LTE


Unlike previous mobile phone standards, LTE only supports  »packet-oriented transmission«.  However, for speech transmission (sometimes the term "voice transmission" is used for this), a connection-oriented transmission with fixed reservation of resources would be better, since a "fragmented transmission", as is the case with the packet-oriented method, is relatively complicated.

The problem of integrating speech transmission methods was one of the major challenges in the development of LTE, as speech transmission remains the largest source of revenue for network operators.  There were a number of approaches, as it can be seen in the internet article   [Gut10][1].

(1)   A very simple and obvious method is  "Circuit Switched Fallback"  $\rm (CSFB)$.  Here a wireline transmission is used for the speech transmission.  The principle is:

  1. The terminal device logs on to the LTE network and in parallel also to a GSM or UMTS network.  When an incoming call is received, the terminal device receives a message from the  "Mobile Management Entity"  $\text{(MME}$,  control node in the LTE network for user authentication$)$, whereupon a wireline transmission via the GSM or the UMTS network is established.
  2. A disadvantage of this solution  (actually it is a "problem concealment")  is the greatly delayed connection establishment.  In addition,  CSFB prevents the complete conversion of the network to LTE.


(2)   Another possibility for the integration of speech/voice in a packet-oriented transmission system is offered by  "Voice over LTE via GAN"  $\rm (VoLGA)$, which is based on the   "Generic Access Network"  developed by  $\text{3GPP}$.  In brief, the principle can be described as follows:

  1. GAN enables line-based services via a packet-oriented network (IP network), for example $\rm WLAN$  ("Wireless Local Area Network").  With compatible end devices one can register oneself in the GSM network over a WLAN connection and use line-based services.  VoLGA uses this functionality by replacing WLAN with LTE.
  2. The fast implementation of VoLGA is advantageous, as no lengthy new development or changes to the core network are necessary.  However, a so-called  "VoLGA Access Network Controller"  $\rm (VANC)$  must be added to the network as hardware.  This takes care of the communication between the end device and the  "Mobile Management Entity"  or the core network.

Even though VoLGA does not need to use a GSM or UMTS network for voice connections like CSFB, it was considered by the majority of the mobile community as an (unsatisfactory) bridge technology due to its user-friendliness.  T–Mobile has long been a proponent of the VoLGA technology, but they also stopped further development in February 2011.

In the following we describe a better solution proposal.  Keywords are  "IP Multimedia Subsystem"  $\rm (IMS)$  and  "Voice over LTE"  $\rm (VoLTE)$.  The operators in Germany switched to this technology relatively late:   Vodafone and O2 Telefonica at the beginning of 2015, Telekom at the beginning of 2016.

This is also the reason why the switch to LTE in Germany  (and in Europe in general)  was slower than in the US.  Many customers did not want to pay the higher prices for LTE as long as there was no well functioning solution for integrating voice transmission.


VoLTE - Voice over LTE


From today's point of view (2016), the most promising approach to integrating voice services into the LTE network, some of which are already established, is  "Voice over LTE"  $\rm (VoLTE)$.  This standard, officially adopted by the  $\rm GSMA$,  the worldwide industry association of more than 800 mobile network operators and over 200 manufacturers of cell phones and network infrastructure, is exclusively IP packet-oriented and is based on the  "IP Multimedia Subsystem"  $\rm (IMS)$, which was already defined in the UMTS Release 9 in 2010. 

The technical facts about IMS are:

  • The IMS basic protocol is the one from  "Voice over IP"  known  "Session Initiation Protocol"  $\rm (SIP)$.  This is a network protocol that can be used to establish and control connections between two users.
  • This protocol enables the development of a completely  (for data and voice)  IP based network and is therefore future-proof.


The reason why the introduction of  VoLTE  has been delayed by four years compared to LTE establishment in data traffic is due to the difficult interaction of "4G" with the older predecessor standards  GSM  ("2G") and  UMTS  ("3G").  Here is an example:

  • If a mobile phone user leaves his LTE cell and switches to an area without 4G coverage, an immediate switch to the next best standard (3G) must be made.
  • Speech is transmitted here technically completely differently, no longer by many small data packets   ⇒   "packet-switched" but sequentially in the logical and physical channels reserved especially for the user   ⇒   "circuit-switched".
  • This implementation must be so fast and smooth that the end customer does not notice anything.  And this implementation must work for all mobile phone standards and technologies.


According to all the experts, VoLTE will have a positive impact on mobile telephony in the same way that LTE has driven the mobile Internet forward since 2011.  Key benefits for users are:

  • A higher voice quality, as VoLTE uses  "AMR wideband codecs"  with 12.65 or 23.85 kbit/s.  Furthermore, the VoLTE data packets are prioritized for lowest possible latencies.
  • An enormously accelerated connection setup within one or two seconds, whereas with  "Circuit Switched Fallback" (CSFB) it takes an unpleasantly long time to establish a connection.
  • A low battery consumption, significantly lower than "2G" and "3G", associated with a longer battery life.  Also in comparison to the usual VoIP services the power consumption is up to 40% lower.

From the provider's point of view, the following advantages result:

  • A better spectral efficiency:   Twice as many calls are possible in the same frequency band than with "3G".  In other words:   More capacity is available for data services for the same number of calls.
  • An easy implementation of  "Rich Media Services"  $\rm (RCS)$, e.g. for video telephony or future applications that can be used to attract new customers.
  • A better acceptance of the higher provisioning costs by LTE customers if you don't need to outsource to a "low-value" network like "2G" or "3G" for telephony.


Bandwidth flexibility


LTE can be adapted to frequency bands of different widths with relatively little effort by using  $\rm OFDM$  ("Orthogonal Frequency Division Multiplex").  This fact is an important feature for various reasons, see  [Mey10][2], especially for network operators:

  • The frequency bands for LTE may vary in size depending on the legal requirements in different countries.  The outcome of the state-specific auctions of LTE frequencies  (separated into FDD and TDD)  has also influenced the width of the spectrum.
  • Often LTE is operated in the "frequency neighborhood" of established radio transmission systems, which are expected to be switched off soon.  If the demand increases, LTE can be gradually expanded to the frequency range that is becoming available.
  • For example, the migration of television channels after digitalization:   A part of the LTE network will be located in the VHF frequency range around 800 MHz, which has now been freed up, see  "frequency band splitting graphic".
  • Actually the bandwidths could be selected with a degree of fineness of up to 15 kHz  (corresponding to an OFDMA subcarrier).  However, since this would unnecessarily produce overhead, a duration of  »one millisecond«  and a bandwidth of  »180 kHz«  has been specified as the smallest addressable LTE resource.  Such a block corresponds to twelve subcarriers (180 kHz divided by 15 kHz).

In order to keep the complexity and effort of hardware standardization as low as possible, a whole range of permissible bandwidths between 1.4 MHz and 20 MHz has been agreed upon. The following list – taken from  [Ges08][3]  – specifies the standardized bandwidths, the number of available blocks and the "overhead":

  • 6 available blocks in the bandwidth 1.4 MHz   ⇒   relative overhead about 22.8%,
  • 15 available blocks in the bandwidth 3 MHz   ⇒   relative overhead about 10%,
  • 25 available blocks in the bandwidth 5 MHz   ⇒   relative overhead about 10%,
  • 50 available blocks in the bandwidth 10 MHz   ⇒   relative overhead about 10%,
  • 75 available blocks in the bandwidth 15 MHz   ⇒   relative overhead about 10%,
  • 100 available blocks in the bandwidth 20 MHz   ⇒   relative overhead about 10%.

Since otherwise some LTE specific functions would not work, at least six blocks must be provided.

  • The relative overhead is comparatively high at small channel bandwidth (1.4 MHz):   (1.4 – 6 · 0.18)/1.4 ≈ 22.8%.
  • From a bandwidth of 3 MHz the relative overhead is constant 10%.
  • It also applies that all end devices must also support the maximum bandwidth of 20 MHz   [Ges08][3]

FDD, TDD and half-duplex method


Another important innovation of LTE is the half–duplex procedure, which is a mixture of the two from UMTS already known "duplex procedures":

  • »Frequency Division Duplex«  $\rm (FDD)$, and
  • »Time Division Duplex«  $\rm (TDD)$ .

Such duplexing is necessary to ensure that uplink and downlink are clearly separated from each other and that transmission runs smoothly.  The diagram illustrates the difference between FDD based and TDD based transmission.

Transmission scheme for FDD (top) or TDD (bottom)

Using the FDD and TDD methods, LTE can be operated in paired and unpaired frequency ranges.

The two methods are present opposing requirements:

  • $\rm FDD$  requires a paired spectrum, i.e. one frequency band for transmission from the base station to the terminal ("downlink") and one for transmission in the opposite direction ("uplink").  Downlink and uplink can be used at the same time.
  • $\rm TDD$  was designed for unpaired spectra.  Now only one band is needed for uplink and downlink.  However, transmitter and receiver must now alternate during transmission.  The main problem of TDD is the required synchronicity of the networks.

In the graph the differences between FDD and TDD can be seen:  

In TDD a  "Guard Period"  has to be inserted when changing from downlink to uplink (or vice versa) to avoid an overlapping of the signals.

Although FDD is likely to be used more in practice  (and FDD frequencies were much more expensive for the providers), there are several reasons for TDD:

  • Frequencies are a rare and expensive commodity, as the 2010 auction has shown.  But TDD needs only half of the frequency bandwidth.
  • The TDD technique allows different modes, which determine how much time should be used for downlink or uplink and can be adjusted to individual requirements.

For the actual innovation, the  $\text{half–duplex}$  method, you need a paired spectrum as with FDD  (see the following graphic):

Transmission scheme for half-duplex
  • Base station transmitter and receiver still alternate like TDD.  Each terminal device can either transmit or receive at a given time.
  • Through a second connection to another end device with swapped downlink/uplink grid, the entire available bandwidth can still be fully used.
  • The main advantage of the half–duplex process is that the use of the TDD concept reduces the demands on the end devices and thus allows them to be produced at a lower cost.


The fact that this aspect was of great importance in the standardization can also be seen in the use of  "OFDMA"  in the downlink and of  "SC–FDMA"  in the uplink:

  • This results in a longer battery life of the end devices and allows the use of cheaper components.

Multiple Antenna Systems


If a radio system uses several transmitting and receiving antennas, one speaks of  »Multiple Input Multiple Output»  $\rm (MIMO)$.  This is not an LTE specific development.  WLAN, for example, also uses this technology.

$\text{Example 1:}$  The principle of multiple antenna systems is illustrated in the following graphic using the example of 2×2–MIMO (two transmitting and two receiving antennas).

The difference between SISO and MIMO
  • The new thing about LTE is not the actual use of  "Multiple Input Multiple Output", but the particularly intensive one, namely  2×2 MIMO  in the uplink and maximum  4×4 MIMO  in the downlink.
  • In the successor  "LTE Advanced"  the use of MIMO is even more pronounced, namely "4×4" in the uplink and "8×8" in the opposite direction.


A MIMO system has advantages compared to  "Single Input Single Output"  (SISO, only one transmitting and one receiving antenna).  A distinction is made between several gains depending on the channel:

  • »Power gain«  according to the number of receiving antennas:  
    If the radio signals arriving via several antennas are combined in a suitable way   ⇒   "Maximal-ratio combining", the received power is increased and the radio connection is improved.  By doubling the antennas, a power gain of maximum 3 dB is achieved.
  • »Diversity gain« through  "Spatial Diversity"
    If several spatially separated receiving antennas are used in an environment with strong multipath propagation, the fading at the individual antennas is mostly independent from each other and the probability that all antennas are affected by fading at the same time is very low.
  • »Data rate gain«:  
    This increases the efficiency of MIMO, especially in an environment with increased multipath propagation, especially when transmitter and receiver do not have a direct line of sight and the transmission is done via reflections.  Tripling the number of antennas for the transmitter and receiver results in approximately twice the data rate.

However, it is not possible for all advantages to occur simultaneously.  Depending on the nature of the channel, it can also happen that one does not even have the choice of which advantage one wants to use.

In addition to the MIMO systems there are also the following intermediate stages:

  • MISO systems  (only one receiving antenna, therefore no power gain is possible), and
  • SIMO systems  (only one transmitting antenna, therefore only small diversity gain).


$\text{Example 2:}$  The term  "MIMO"  summarizes multi-antenna techniques with different properties, each of which can be useful in certain situations.  The following description is based on the four diagrams shown here.

Four multi-antenna procedures with different properties
  • If the mostly independent channels of a MIMO system are assigned to a single user (top left diagram), one speaks of  "Single–User MIMO".  With 2×2 MIMO, the data rate is doubled compared to SISO operation and with four transmitting and receiving antennas each, the data rate can be doubled again under good channel conditions.
LTE allows maximum 4×4 MIMO but only in the downlink.  Due to the complexity of multi-antenna systems, only laptops with LTE modems can be used as receivers (end devices) for 4×4 MIMO.  For a mobile phone, the use is generally limited to 2×2 MIMO.
  • Contrary to Single–User MIMO, the goal with the  »Multi–User MIMO«  is not the maximum data rate for a receiver, but the maximization of the number of end devices that can use the network simultaneously  (top right diagram).
This involves transmitting different data streams to different users.  This is particularly useful in places with high demand, such as airports or soccer stadiums.
  • Multi-antenna operation is not only used to maximize the number of users or data rate, but also in the event of poor transmission conditions, multiple antennas can combine their power to transmit data to a single user to improve the quality of reception.  One then speaks of  »Beamforming«   (diagram below left), which also increases the range of a transmitting station.
  • The fourth possibility is  »Antenna diversity«   (diagram below right).  This increases the redundancy (regarding the system design) and makes the transmission more robust against interferences.
A simple example:   There are four channels that all transmit the same data.  If one channel fails, there are still three channels for information transport.


System Architecture


The LTE architecture enables a transmission system based entirely on the IP protocol.  In order to achieve this goal, the system architecture specified for UMTS not only had to be changed in detail, but in some cases completely redesigned.  In the process, other IP based technologies such as  "mobile WiMAX"  or  "WLAN"  were also integrated in order to be able to switch to these networks without any problems.

System Architecture for UMTS  $\rm (UTRAN)$  and LTE  $\rm (EUTRAN)$

In UMTS networks (left graphic), the  "Radio Network Controller"  $\rm (RNC)$  is inserted between a base station ("NodeB") and the core network, which is mainly responsible for switching between different cells and which can lead to latency times of up to 100 milliseconds.

  • The redesign of the base stations  ("eNodeB"  instead of  "NodeB")  and the interface  "X2"  are the decisive further developments from UMTS towards LTE. 
  • The graphic on the right illustrates in particular the reduction in complexity compared to UMTS that goes hand in hand with the new technology (left graphic).


The  $\text{LTE system architecture}$  can be divided into two major areas, too:

  • the LTE core network  "Evolved Packet Core"  $\rm (EPC)$,

EUTRAN transmits the data between the terminal and the LTE base station  ("eNodeB")  via the so-called  "S1"  interface with two connections, one for the transmission of user data and a second for the transmission of signalling data.  You can see from the above graphic:

  • The base stations are connected not only to the EPC but also to the neighboring base stations.  These connections  ("X2"  interfaces)  have the effect that as few packets as possible are lost when the terminal device moves from the vicinity of one base station towards another.
  • For this purpose, the base station whose service area the user is just leaving can pass on any cached data directly and quickly to the "new" base station.  This ensures (largely) continuous transmission.
  • The functionality of the  "RNC"  is partly transferred to the base station and partly to the  "Mobility Management Entity"  $\rm (MME)$  in the core network.  This reduction of the interfaces significantly shortens the signal throughput time in the network and the handover to 20 milliseconds.
  • The LTE system architecture is also designed so that future  "Inter–NodeB procedures"  (such as  "Soft Handover"  or  "Cooperative Interference Cancellation")  can be easily integrated.

LTE core network:  Backbone and Backhaul


The LTE core network  "Evolved Packet Core"  $\rm (EPC)$  of a network operator  (in the technical language  "Backbone")  consists of various network components.  The EPC is connected to the base stations via the  "Backhaul".  This means the connection of an upstream, usually hierarchically subordinated network node to a central network node.

Currently, the  "Backhaul"  consists mainly of directional radio and so-called  "E1" lines.  These are copper lines and allow a throughput of about 2 Mbit/s.  For GSM and UMTS networks these connections were still sufficient, however, for the large-scale conceived  $\rm HSDPA$  such data rates are no longer adequate.  For LTE such a  "Backhaul"  is completely unusable:

  • The slow cable network would slow down the fast wireless connections;  overall, there would be no increase in speed.
  • Due to the low capacities of the lines with "E1" standard, an expansion with further lines of the same construction would not be economical.


In the course of the introduction of LTE, the backhaul had to be redesigned.  It was important to keep an eye on future security, since the next generation  "LTE Advanced"  was already in place before the introduction.  If one believes the experts' propaganda  "Moore's Law" for mobile phone bandwidths, the most important factor for future security is the expensive new installation of better cables.

Due to the purely packet-oriented transmission technology, the Ethernet standard, which is also IP based, is suitable for the LTE backhaul, which is realized with the help of optical fibers.  In 2009, the company Fujitsu presented in the study  [Fuj09][4],  also the thesis that the current infrastructure will continue to play an important role for LTE backhaul for the next ten to fifteen years.

There are two approaches for the generation change to an Ethernet based  backhaul :

  • the parallel operation of the lines with  "E1" and Ethernet standard,
  • the immediate migration to an Ethernet based  backhaul.

The former would have the advantage that the network operators could continue to run voice traffic over the old lines and would only have to handle bandwidth-intensive data traffic over the more powerful lines.

The second option raises some technical problems:

  • The services previously transported through the slow "E1" standard lines would have to be switched immediately to a packet-based procedure.
  • Ethernet does not offer  (unlike the current standard)  any  end–to–end  synchronization, which can lead to severe delays or even service interruptions when changing radio cells, thus a huge loss of service quality.
  • However, in the concept  "Synchronous Ethernet"  $\rm (SyncE)$, the Cisco company has already made suggestions as to how synchronization could be realized.


For conurbations, a direct conversion of the backhaul would certainly be worthwhile, as relatively few new cables would have to be laid for a comparatively high number of new users.

In rural areas, however, major excavation work would quickly result in high costs.  However, this is exactly the area which must be covered first, according to the  "agreement reached"  between the federal government and the (German) mobile phone operators.  Here, the mostly existing microwave radio link would have to be (and probably will be) extended to high data rates.

Exercises for the chapter


Exercise 4.2: FDD, TDD and Half-Duplex

Exercise 4.2Z: MIMO Applications in LTE

References

  1. Gutt, E.:  LTE - a new dimension of mobile broadband use.  "PDF Internet document", 2010.
  2. Meyer, M.:  Siebenmeilenfunk.  c't 2010, issue 25, 2010.
  3. 3.0 3.1 Gessner, C.:  UMTS Long Term Evolution (LTE): Technology Introduction.  Rohde&Schwarz, 2008.
  4. Fujitsu Network Communications Inc.:  4G Impacts to Mobile Backhaul.  "PDF Internet document".