Difference between revisions of "Mobile Communications/Characteristics of GSM"

From LNTwww
Line 23: Line 23:
  
  
More detailed information on GSM–system architecture and the individual network components can be found in the chapter  [[Examples_of_Communication_Systems/General_Description_of_GSM|General Description of GSM]]  of the book "Examples of Message Systems".
+
More detailed information on GSM–system architecture and the individual network components can be found in the chapter  [[Examples_of_Communication_Systems/Allgemeine Beschreibung von GSM|''' checkLink:_Buch_9 ⇒ ''' General Description of GSM]]  of the book "Examples of Communication Systems".
 
<br clear=all>
 
<br clear=all>
 
== Multiple access with GSM ==
 
== Multiple access with GSM ==
Line 38: Line 38:
 
The graphic and the following description is valid for the original system "GSM 900" (D&ndash;net). For "GSM/DCS 1800" (E&ndash;Netz) comparable statements apply.
 
The graphic and the following description is valid for the original system "GSM 900" (D&ndash;net). For "GSM/DCS 1800" (E&ndash;Netz) comparable statements apply.
  
*In the D&ndash;network, a bandwidth of&nbsp; $25\ \rm MHz$&nbsp; is provided for uplink and downlink respectively $($duplex spacing:&nbsp; $45\ \rm MHz)$. This is called <i>Frequency Division Duplex</i>&nbsp; (FDD). For the E&ndash;network, the bandwidth is&nbsp; $75\ \rm MHz$&nbsp; and the duplex spacing is&nbsp; $95\ \rm MHz$.<br>.
+
*In the D&ndash;network, a bandwidth of&nbsp; $25\ \rm MHz$&nbsp; is provided for uplink and downlink respectively $($duplex spacing:&nbsp; $45\ \rm MHz)$. This is called <i>Frequency Division Duplex</i>&nbsp; (FDD). For the E&ndash;network, the bandwidth is&nbsp; $75\ \rm MHz$&nbsp; and the duplex spacing is&nbsp; $95\ \rm MHz$.<br>
  
 
*Uplink and downlink bands are divided into frequency bands of width&nbsp; $200\ \rm kHz$. Taking into account the protection areas at the respective edges, there are &nbsp; $N_{\rm F} = 124$&nbsp; (in the D&ndash;net) or &nbsp; $N_{\rm F} = 374$&nbsp; (in the E&ndash;net) frequency channels.
 
*Uplink and downlink bands are divided into frequency bands of width&nbsp; $200\ \rm kHz$. Taking into account the protection areas at the respective edges, there are &nbsp; $N_{\rm F} = 124$&nbsp; (in the D&ndash;net) or &nbsp; $N_{\rm F} = 374$&nbsp; (in the E&ndash;net) frequency channels.
  
*Each cell is assigned a subset of the frequencies &nbsp; &#8658; &nbsp; <i>Cell Allocation</i>. Neighboring cells usually work at different frequencies, for example with the reuse&ndash;factor &nbsp;$3$, as in section&nbsp; [[Mobile_Communications/Similarities between GSM and UMTS#Cellular Architecture|Cellular Architecture]] indicated by the colors white, yellow, blue.<br>.
+
*Each cell is assigned a subset of the frequencies &nbsp; &#8658; &nbsp; <i>Cell Allocation</i>. Neighboring cells usually work at different frequencies, for example with the reuse&ndash;factor &nbsp;$3$, as in section&nbsp; [[Mobile_Communications/Similarities between GSM and UMTS#Cellular Architecture|Cellular Architecture]] indicated by the colors white, yellow, blue.<br>
  
 
*The&nbsp; $124$&nbsp; GSM&ndash;Frequency channels are further divided by time division multiplexing (TDMA). Each FDMA&ndash;channel is divided into so-called TDMA&ndash;frames, which in turn each comprise&nbsp; $N_{\rm T} = 8$&nbsp; time slots (<i>Time&ndash;Slots</i>).
 
*The&nbsp; $124$&nbsp; GSM&ndash;Frequency channels are further divided by time division multiplexing (TDMA). Each FDMA&ndash;channel is divided into so-called TDMA&ndash;frames, which in turn each comprise&nbsp; $N_{\rm T} = 8$&nbsp; time slots (<i>Time&ndash;Slots</i>).
  
*The slots are periodically assigned to the individual GSM&ndash;users and each contain a so-called&nbsp; [[Mobile_Communications/Characteristics_of_GSM#Data_and_frame_structure_for_GSM| ''Burst'']]. Each user has a time slot available in each TDMA&ndash;frame. A bundling (maximum six per user) is only possible with GPRS/EDGE.<br>.
+
*The slots are periodically assigned to the individual GSM&ndash;users and each contain a so-called&nbsp; [[Mobile_Communications/Characteristics_of_GSM#Data_and_frame_structure_for_GSM| ''Burst'']]. Each user has a time slot available in each TDMA&ndash;frame. A bundling (maximum six per user) is only possible with GPRS/EDGE.<br>
  
 
*The TDMA&ndash;frames of the uplink are sent delayed by three slots compared to the downlink: &nbsp; <i>Time Division Duplex</i> (TDD). The hardware of the mobile station can thus be used for sending and receiving a message in equal measure.
 
*The TDMA&ndash;frames of the uplink are sent delayed by three slots compared to the downlink: &nbsp; <i>Time Division Duplex</i> (TDD). The hardware of the mobile station can thus be used for sending and receiving a message in equal measure.
Line 60: Line 60:
 
*In each time slot a so-called <i>burst</i> is transmitted, whose duration corresponds to&nbsp; $156.25$&nbsp; bits. The bit duration is then&nbsp; $T_{\rm B} = 576.9\ \rm &micro; s/156.25 &asymp; 3.692 \ \rm &micro;s$&nbsp; and for the total bulk data rate:
 
*In each time slot a so-called <i>burst</i> is transmitted, whose duration corresponds to&nbsp; $156.25$&nbsp; bits. The bit duration is then&nbsp; $T_{\rm B} = 576.9\ \rm &micro; s/156.25 &asymp; 3.692 \ \rm &micro;s$&nbsp; and for the total bulk data rate:
  
::<math>R_{\rm ges} = {1}/{T_{\rm B}}}= 270,833\,{\rm kbit/s}\hspace{0.05cm}.</math>
+
::<math>R_{\rm ges} = {1}/{T_{\rm B}}= 270,833\,{\rm kbit/s}\hspace{0.05cm}.</math>
  
*The&nbsp; '''bulk data rate''' &nbsp; of each user is then&nbsp; $R_{\rm bulk} = 33,854 \ \rm kbit/s$. But since in every <i>normal burst</i> only&nbsp; $2 &middot; 57 = 114$&nbsp; data bits (highlighted blue in the graphic) are transmitted, it results in the lower &nbsp;'''net data rate''''&nbsp; $R_{\rm net} = 22.8 \ \rm kbit/s$.<br>
+
*The&nbsp; '''bulk data rate''' &nbsp; of each user is then&nbsp; $R_{\rm bulk} = 33,854 \ \rm kbit/s$. But since in every <i>normal burst</i> only&nbsp; $2 &middot; 57 = 114$&nbsp; data bits (highlighted blue in the graphic) are transmitted, it results in the lower &nbsp;'''net data rate'''&nbsp; $R_{\rm net} = 22.8 \ \rm kbit/s$.<br>
  
 
*This net data rate also takes the channel coding into account. In the case of a speech signal, for every&nbsp; $20\ \rm kbit/s$&ndash;speech frame&nbsp; $456$&nbsp; bits are transmitted, which results in exactly the rate&nbsp; $22.8 \ \rm kbit/s$&nbsp;. Without channel coding, the data rate would be only&nbsp; $13 \ \rm kbit/s$.<br>.
 
*This net data rate also takes the channel coding into account. In the case of a speech signal, for every&nbsp; $20\ \rm kbit/s$&ndash;speech frame&nbsp; $456$&nbsp; bits are transmitted, which results in exactly the rate&nbsp; $22.8 \ \rm kbit/s$&nbsp;. Without channel coding, the data rate would be only&nbsp; $13 \ \rm kbit/s$.<br>.
Line 118: Line 118:
  
  
''Anmerkung:''&nbsp; Das GMSK&ndash;Signal beinhaltet deutlich mehr als nur zwei diskrete Frequenzen. Sein Leistungsdichtespektrum fällt sehr schnell ab, siehe&nbsp; [[Examples_of_Communication_Systems/Funkschnittstelle#Vor.E2.80.93_und_Nachteile_von_GMSK| Diagramm]]&nbsp; im Buch &bdquo;Beispiele von Nachrichtensystemen&rdquo;. Aus der obigen Zeitdarstellung  am Punkt $(5)$ des Blockschaltbildes ist dieser Sachverhalt allerdings nur schwer zu erkennen.
+
Note: &nbsp; The GMSK&ndash;signal contains much more than just two discrete frequencies. Its power spectral density decreases very fast, see&nbsp; [[Examples_of_Communication_Systems/Funkschnittstelle#Vor.E2.80.93_und_Nachteile_von_GMSK| ''' checkLink:_Buch_9 &rArr; ''' Diagram]]&nbsp; in the book "Examples of communication systems". From the above time representation at point $(5)$ of the block diagram this fact is difficult to recognize.
<br clear=all>}}
+
<br clear=all>}}}
  
== GSM–Erweiterungen ==
+
== GSM Extensions ==
 
<br>
 
<br>
GSM wurde als europäisches Mobilfunksystem für Telefongespräche konzipiert und entwickelt mit der Zusatzoption der Datenübertragung, aber nur mit geringer Datenrate&nbsp; $(9.6 \ \rm kbit/s)$. Die Standardisierung der &nbsp;'''GSM&ndash;Phase 2'''&nbsp; ab 1995 beinhaltete aber bereits erste Weiterentwicklungen und einige neue, bereits von ISDN bekannte und von den Nutzern geschätzte Zusatzdienste.<br>
+
GSM was designed and developed as a European mobile radio system for telephone calls with the additional option of data transmission, but only at a low data rate&nbsp; $(9.6 \ \rm kbit/s)$. The standardization of the &nbsp;'''GSM&ndash;Phase 2'''&nbsp; however, from 1995 on, already included first further developments and some new additional services, already known from ISDN and appreciated by the users.<br>
  
In den Jahren von 1997 bis 2000 wurden neue Datendienste mit höheren Bitraten entwickelt, die man der&nbsp; '''GSM&ndash;Phase 2+''' &nbsp; (bzw. '''GSM&ndash;Phase 2.5''') zurechnet:
+
In the years from 1997 to 2000 new data services with higher bit rates were developed, which are attributed to the&nbsp; '''GSM&ndash;Phase 2+''' &nbsp; (or '''GSM&ndash;Phase 2.5'''):
*[[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#High_Speed_Circuit.E2.80.93Switched_Data_.28HSCSD.29| '''High&ndash;Speed Circuit&ndash;Switched Data''']]&nbsp; (HSCSD) bietet bei ausreichend gutem Kanal durch eine höhere Coderate (Punktierung des Faltungscodes) eine leitungsorientierte Übertragung mit&nbsp; $14.4 \ \rm kbit/s$&nbsp; $($gegenüber $9.6 \ \rm kbit/s)$. Es ermöglicht zudem eine Kanalbündelung durch die Kombination mehrerer Zeitschlitze &nbsp; &#8658; &nbsp; &bdquo;<i>Multislot Capability</i>&rdquo;. Bei einer Bündelung von vier Zeitschlitzen kommt man so auf eine maximale Übertragungsrate von&nbsp; $57.6 \ \rm kbit/s$.<br>
+
*[[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#High_Speed_Circuit.E2.80.93Switched_Data_.28HSCSD.29|''' checkLink:_Buch_9 &rArr; '''  '''High&ndash;Speed Circuit&ndash;Switched Data'']]&nbsp; (HSCSD) offers a line-oriented transmission with&nbsp; $14.4 \ \rm kbit/s$&nbsp; $($against $9.6 \ \rm kbit/s)$ if the channel is sufficiently good due to a higher code rate (dotting of the convolutional code). It also enables channel bundling by combining several time slots &nbsp; &#8658; &nbsp; "<i>multislot capability</i>". With a bundling of four time slots, this results in a maximum transmission rate of&nbsp; $57.6 \ \rm kbit/s$.<br>.
  
*[[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#General_Packet_Radio_Service_.28GPRS.29| '''General Packet Radio Service''']]&nbsp; (GPRS) ermöglicht die Kommunikation mit anderen Netzen wie etwa dem Internet oder firmeninternen Intranets. Es ist paketorientiert (statt leitungsorientiert) und unterstützt viele Datenübertragungsprotokolle, zum Beispiel das Internet Protocol (IP), X.25 und Datex&ndash;P. Die Gebühren ergeben sich bei GPRS nicht aus der Verbindungsdauer, sondern aus der übertragenen Datenmenge. Ein GPRS&ndash;Nutzer profitiert von den kürzeren Zugriffszeiten und der höheren Datenrate bis&nbsp; $21.4 \ \rm kbit/s$. Durch die Bündelung von sechs Zeitschlitzen erreicht man so maximal&nbsp; $128.4 \ \rm kbit/s$.<br>
+
*[[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#General_Packet_Radio_Service_.28GPRS.29| ''' checkLink:_Buch_9 &rArr; ''' '''General Packet Radio Service'']]&nbsp; (GPRS) enables communication with other networks such as the Internet or company intranets. It is packet-oriented (instead of line-oriented) and supports many data transfer protocols, for example the Internet Protocol (IP), X.25 and Datex&ndash;P. The charges for GPRS are not based on the connection duration, but on the amount of data transmitted. A GPRS&ndash;P user benefits from the shorter access times and the higher data rate up to&nbsp; $21.4 \ \rm kbit/s$. By the bundling of six time slots one reaches so maximally&nbsp; $128.4 \ \rm kbit/s$.<br>.
  
*[[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#Enhanced_Data_Rates_for_GSM_Evolution| '''Enhanced Data Rates for GSM Evolution''']]&nbsp; (EDGE) benutzt neben dem GSM&ndash;Standard &bdquo;GMSK&rdquo; als weiteres Modulationsverfahren&nbsp; [[Modulation_Methods/Quadratur%E2%80%93Amplitudenmodulation#Weitere_Signalraumkonstellationen| '''8&ndash;PSK''']], so dass mit jedem Symbol drei Datenbit übertragen werden und auf diese Weise die Datenrate (theoretisch) verdreifacht werden kann.<br><br>
+
*[[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#Enhanced_Data_Rates_for_GSM_Evolution| ''' checkLink:_Buch_9 &rArr; ''' '''Enhanced Data Rates for GSM Evolution'']]&nbsp; (EDGE) used in addition to GSM&ndash;Standard "GMSK" as a further modulation method&nbsp; [[Modulation_Methods/Quadratur%E2%80%93Amplitudenmodulation#Weitere_Signalraumkonstellationen| ''' checkLink:_Buch_5 &rArr; '''  '''8&ndash;PSK''']]], so that with each symbol three data bits are transmitted and in this way the data rate can (theoretically) be tripled. <br><br>
  
Bei der Kombination aus GPRS und EDGE &ndash; man spricht dann von&nbsp; '''E&ndash;GPRS'''&nbsp; &ndash; gibt es neun verschiedene&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#Enhanced_Data_Rates_for_GSM_Evolution| Modulation and Coding Schemes]]&nbsp; (MCS), zwischen denen der Betreiber wählen kann:
+
With the combination of GPRS and EDGE &ndash; one speaks then of&nbsp; '''E&ndash;GPRS'''&nbsp; &ndash; there are nine different&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_des_GSM#Enhanced_Data_Rates_for_GSM_Evolution| ''' checkLink:_Buch_9 &rArr; ''' Modulation and Coding Schemes]]&nbsp; (MCS), between which the operator can choose:
*mit GMSK&ndash; oder mit 8&ndash;PSK&ndash;Modulation,<br>
+
*with GMSK&ndash; or with 8&ndash;PSK&ndash;Modulation,<br>
*resultierende Coderaten zwischen&nbsp; $0.37$&nbsp; und&nbsp; $1$, sowie<br>
+
*resulting code rates between&nbsp; $0.37$&nbsp; and&nbsp; $1$, and<br>
*Datenraten zwischen&nbsp; $8.8 \ \rm kbit/s$&nbsp; (für MCS&ndash;1) und&nbsp; $59.2 \ \rm kbit/s$&nbsp; (für MCS&ndash;9).<br><br>
+
*Data rates between&nbsp; $8.8 \ \rm kbit/s$&nbsp; (for MCS&ndash;1) and&nbsp; $59.2 \ \ \rm kbit/s$&nbsp; (for MCS&ndash;9).<br><br>
  
In der Praxis maximal anwendbar sind  allerdings MCS&ndash;8&nbsp; $(54.4 \ \rm kbit/s)$&nbsp; und sieben Zeitschlitze. Damit erreicht man immerhin&nbsp; $380.8 \ \rm kbit/s$ und damit die Größenordnung von UMTS&nbsp; $(384 \ \rm kbit/s)$.<br>
+
In practice, however, MCS&ndash;8&nbsp; $(54.4 \ \rm kbit/s)$&nbsp; and seven time slots are the maximum applicable. With this, one reaches&nbsp; $380.8 \ \rm kbit/s$ and thus the order of magnitude of UMTS&nbsp; $(384 \ \rm kbit/s)$.<br>
  
Erwähnt werden soll noch&nbsp; [[Mobile_Communications/Allgemeines_zum_Mobilfunkstandard_LTE#Entwicklung_der_UMTS-Mobilfunkstandards_hin_zu_LTE|'''EDGE Evolution''']]&nbsp; oder &bdquo;Evolved EDGE&rdquo;, also die Weiterentwicklung der Weiterentwicklung von GSM in Release 7 (Dezember 2007). Hierfür werden von den Entwicklern Datenraten bis zu&nbsp; $1 \ \rm Mbit/s$&nbsp; und halbierte Latenzzeiten&nbsp; $(10 \ \rm ms$ statt $20 \ \rm ms)$&nbsp; angegeben. Man erreicht diese Werte unter Anderem
+
Mention should also be made of&nbsp; [[Mobile_Communications/General information on the LTE mobile communications standard#Entwicklung_der_UMTS-Mobilfunkstandards_hin_zu_LTE|''' checkLink:_Buch_6 &rArr; ''' '''EDGE Evolution''']]&nbsp; or "Evolved EDGE", i.e. the further development of the evolution of GSM in Release 7 (December 2007). For this, the developers specify data rates up to&nbsp; $1 \ \rm Mbit/s$&nbsp; and halved latency times&nbsp; $(10 \ \rm ms$ instead of $20 \ \rm ms)$&nbsp;. These values can be achieved among other things
*durch&nbsp; 32&ndash;QAM&ndash; oder &nbsp;16&ndash;QAM&ndash;Modulation anstelle von 8&ndash;PSK,
+
*by&nbsp; 32&ndash;QAM or &nbsp;16&ndash;QAM Modulation instead of 8&ndash;PSK,
* eine verbesserte Fehlerkorrektur durch den Einsatz von&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Turbocodes|Turbo&ndash;Codes]], und
+
* an improved error correction through the use of&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Turbocodes|''' checkLink:_Buch_5 &rArr; ''' Turbo&ndash;Codes]], and
* eine Erhöhung der Symbolrate von&nbsp; $270.833 \ \rm  ksymbol/s$&nbsp; um&nbsp; $20\%$&nbsp; auf&nbsp; $325\ \rm ksymbol/s$.<br>
+
* an increase of the symbol rate of&nbsp; $20\%$&nbsp; from&nbsp; $270.833 \ \rm ksymbol/s$&nbsp; to&nbsp; $325\ \rm ksymbol/s$.<br>
  
==Aufgaben zum Kapitel==
+
==Exercises to chapter==
 
<br>
 
<br>
[[Aufgaben:3.5_GMSK–Modulation|Aufgabe 3.5: GMSK–Modulation]]
+
[[Aufgaben:Exercise 3.5: GMSK Modulation]]
  
[[Aufgaben:3.5Z_GSM–Netzkomponenten|Zusatzaufgabe 3.5Z: GSM–Netzkomponenten]]
+
[[Aufgaben:Exercise 3.5Z: GSM Network Components]]
  
 
{{Display}}
 
{{Display}}

Revision as of 14:35, 26 August 2020

System architecture and basic units of GSM


GSM  (Global System for Mobile Communication)  is a strongly hierarchically structured system of different network components. You can see from the graphic:

GSM system architecture
  • The mobile station (MS) communicates via the radio interface with the nearest Base Transceiver Station  (BTS, transmit and receive base station).
  • Several such BTS are grouped together area by area and are jointly subordinate to a  Base Station Controller  (BSC, control station).
  • The  Base Station Subsystem  (BSS) consists of a multitude of BTS and several BSC. In the graphic such a BSS is framed in blue.
  • Each BSC is connected to a  Mobile Switching Center  (MSC, switching computer), whose function is comparable to a switching node in the fixed network.
  • Das  Gateway Mobile Switching Center  (GMSC) is responsible for the connection between the fixed and mobile networks. For example, if a mobile subscriber is called from the fixed network, the GMSC determines the responsible MSC and transfers the call.
  • Das  Operation and Maintenance Center  (OMC) monitors a part of the mobile network. It also takes on organizational tasks such as traffic flow control, charging, security management, etc.


More detailed information on GSM–system architecture and the individual network components can be found in the chapter  checkLink:_Buch_9 ⇒ General Description of GSM  of the book "Examples of Communication Systems".

Multiple access with GSM


Realization of FDMA and TDMA with „GSM 900”

GSM uses two multiple access methods in parallel:

  • Frequency Division Multiple Access  (FDMA),
  • Time Division Multiple Access (TDMA).



The graphic and the following description is valid for the original system "GSM 900" (D–net). For "GSM/DCS 1800" (E–Netz) comparable statements apply.

  • In the D–network, a bandwidth of  $25\ \rm MHz$  is provided for uplink and downlink respectively $($duplex spacing:  $45\ \rm MHz)$. This is called Frequency Division Duplex  (FDD). For the E–network, the bandwidth is  $75\ \rm MHz$  and the duplex spacing is  $95\ \rm MHz$.
  • Uplink and downlink bands are divided into frequency bands of width  $200\ \rm kHz$. Taking into account the protection areas at the respective edges, there are   $N_{\rm F} = 124$  (in the D–net) or   $N_{\rm F} = 374$  (in the E–net) frequency channels.
  • Each cell is assigned a subset of the frequencies   ⇒   Cell Allocation. Neighboring cells usually work at different frequencies, for example with the reuse–factor  $3$, as in section  Cellular Architecture indicated by the colors white, yellow, blue.
  • The  $124$  GSM–Frequency channels are further divided by time division multiplexing (TDMA). Each FDMA–channel is divided into so-called TDMA–frames, which in turn each comprise  $N_{\rm T} = 8$  time slots (Time–Slots).
  • The slots are periodically assigned to the individual GSM–users and each contain a so-called  Burst. Each user has a time slot available in each TDMA–frame. A bundling (maximum six per user) is only possible with GPRS/EDGE.
  • The TDMA–frames of the uplink are sent delayed by three slots compared to the downlink:   Time Division Duplex (TDD). The hardware of the mobile station can thus be used for sending and receiving a message in equal measure.


Data and frame structure for GSM


The mapping of logical channels to physical channels is done using the GSM–frame structure. Here we restrict ourselves to traffic channels and to the mapping in time. In this case, each multiframe of duration   $120 \ \rm ms$  is divided in  $26$  TDMA–frames (two of them for control channels) of duration  $4,615\ \rm ms$ . Thus, the duration of a time slot is approximately  $T_{\rm Z} = 576.9\ \rm µ s$.
.

Data and frame structure for GSM

You can see from this graphic:

  • In each time slot a so-called burst is transmitted, whose duration corresponds to  $156.25$  bits. The bit duration is then  $T_{\rm B} = 576.9\ \rm µ s/156.25 ≈ 3.692 \ \rm µs$  and for the total bulk data rate:
\[R_{\rm ges} = {1}/{T_{\rm B}}= 270,833\,{\rm kbit/s}\hspace{0.05cm}.\]
  • The  bulk data rate   of each user is then  $R_{\rm bulk} = 33,854 \ \rm kbit/s$. But since in every normal burst only  $2 · 57 = 114$  data bits (highlighted blue in the graphic) are transmitted, it results in the lower  net data rate  $R_{\rm net} = 22.8 \ \rm kbit/s$.
  • This net data rate also takes the channel coding into account. In the case of a speech signal, for every  $20\ \rm kbit/s$–speech frame  $456$  bits are transmitted, which results in exactly the rate  $22.8 \ \rm kbit/s$ . Without channel coding, the data rate would be only  $13 \ \rm kbit/s$.
    .
  • In addition to the traffic data, a normal burst also contains
–   twice three tailbits (red, during this time the channel is remeasured),
–   two signaling bits (green),
–   the Guard Period  (GP) with  $8.25$  bit duration $($grey, ca.  $30.5 \ \rm µ s)$, and
–   $26$  bit for training sequence (for channel estimation and synchronization),

which increases the data rate from  $22.8$  to  $33.854 \ \rm kbit/s$ .

Note:

  • In GSM, besides the normal burst there are other bursts playing  types of bursts  (Frequency Correction Burst, Synchronization Burst, Dummy Burst, Access Burst ) a role.
  • All these bursts have a uniform length of  $156.25$  bit durations. This is discussed in more detail in the  Excercise 3.2 .

Modulation method for GSM


With GSM, only a bandwidth of  $B = 200 \ \rm kHz$  is available per frequency channel, in which a total data rate (for eight users) of  $R_{\rm ges} = 270,833 \ \rm kbit/s$  must be transmitted. A modulation method with a bandwidth efficiency of at least

\[\beta \ge {R_{\rm ges}}/{B} \approx 1.35 \,\,{\rm bit/s/Hz}.\]

GSM uses the very bandwidth-efficient modulation method  checkLink:_Buch_5 ⇒ Gaussian Minimum Shift Keying  (GMSK). It should again be expressly mentioned that this modulation procedure, just like the FDMA/TDMA–Multiple Access, is exclusively based on the air interface between the  Mobile Station  (MS) and the  Base Transceiver Station   (BTS), which is highlighted in yellow in the  System_architecture graphic  at the beginning of the chapter.

GMSK has already been described in chapter  checkLink:_Buch_5 ⇒ Properties of nonlinear procedures  of the book "Modulation Methods". The most important properties are briefly summarized here.

  • GMSK is a special form of binary  checkLink:_Buch_5 ⇒ Frequency Shift Keying  (FSK). A prerequisite for the orthogonality between the two waveforms is that the modulation index  $h$  is a multiple of  $0.5$ . For integer values of  $h$  the demodulation can also be performed non-coherently.
  • For GSM you use the smallest possible modulation index  $h = 0.5$. A higher value would require a much larger bandwidth. Such an FSK with  $h = 0.5$  is also called checkLink:_Buch_5 ⇒ Minimum Shift Keying  (MSK). However, a coherent demodulation is then required.

Regarding the topic treated here (coherent or non-coherent demodulation of FSK) we refer to two Exercises in the book "Digital Signal Transmission":

$\text{Example 1:}$  The following graphic is to clarify the previous statements:

block diagram and signals with GMSK
  • Starting from a dirac-shaped source signal  $q_\delta(t)$  at point $(1)$ you pass through a filter with the rectangular impulse response  $g_{\rm R}(t)$  to the rectangular signal  $q_{\rm R}(t)$  at point $(2)$.
  • If the Gaussian low pass with the impulse response  $h_{\rm G}(t)$  were to be omitted   ⇒   $q_{\rm G}(t) = q_{\rm R}(t)$, a sectionwise linear phase function  $\phi(t)$ would result at point $(4)$. All phase values would be multiples of  $π/2$ at multiples of the symbol duration  $T$ .
  • After the phase modulator, a binary FSK–signal  $s(t)$  would appear at point $(5)$ with only two frequencies. This signal is at the same time a MSK–signal due to the minimum modulation index  $h = 0.5$  in case of orthogonality.
  • Through the Gaussian low pass  $H_{\rm G}(f)$  with the cutoff frequency  $f_{\rm G}= 0.45/T$  (valid for GSM) the frequency pulse  $g(t)$  is no longer rectangular but corresponds to the rectangular response of  $H_{\rm G}(f)$. According to the Fourier transformation,  $g(t) = g_{\rm R}(t) \star h_{\rm G}(t)$ applies.
  • Thus, the phase function  $\phi(t)$  is no longer linear in sections but the corners are rounded, as can be seen from the phase function at point $(4)$. The violet–dotted curve applies to the data sequence assumed at point $(1)$.
  • The signal  $s(t)$  at point $(5)$ of the block diagram is the GMSK–signal.


Note:   The GMSK–signal contains much more than just two discrete frequencies. Its power spectral density decreases very fast, see  checkLink:_Buch_9 ⇒ Diagram  in the book "Examples of communication systems". From the above time representation at point $(5)$ of the block diagram this fact is difficult to recognize.

}

GSM Extensions


GSM was designed and developed as a European mobile radio system for telephone calls with the additional option of data transmission, but only at a low data rate  $(9.6 \ \rm kbit/s)$. The standardization of the  GSM–Phase 2  however, from 1995 on, already included first further developments and some new additional services, already known from ISDN and appreciated by the users.

In the years from 1997 to 2000 new data services with higher bit rates were developed, which are attributed to the  GSM–Phase 2+   (or GSM–Phase 2.5):

  • ' checkLink:_Buch_9 ⇒ High–Speed Circuit–Switched Data  (HSCSD) offers a line-oriented transmission with  $14.4 \ \rm kbit/s$  $($against $9.6 \ \rm kbit/s)$ if the channel is sufficiently good due to a higher code rate (dotting of the convolutional code). It also enables channel bundling by combining several time slots   ⇒   "multislot capability". With a bundling of four time slots, this results in a maximum transmission rate of  $57.6 \ \rm kbit/s$.
    .
  • ' checkLink:_Buch_9 ⇒ General Packet Radio Service  (GPRS) enables communication with other networks such as the Internet or company intranets. It is packet-oriented (instead of line-oriented) and supports many data transfer protocols, for example the Internet Protocol (IP), X.25 and Datex–P. The charges for GPRS are not based on the connection duration, but on the amount of data transmitted. A GPRS–P user benefits from the shorter access times and the higher data rate up to  $21.4 \ \rm kbit/s$. By the bundling of six time slots one reaches so maximally  $128.4 \ \rm kbit/s$.
    .

With the combination of GPRS and EDGE – one speaks then of  E–GPRS  – there are nine different  checkLink:_Buch_9 ⇒ Modulation and Coding Schemes  (MCS), between which the operator can choose:

  • with GMSK– or with 8–PSK–Modulation,
  • resulting code rates between  $0.37$  and  $1$, and
  • Data rates between  $8.8 \ \rm kbit/s$  (for MCS–1) and  $59.2 \ \ \rm kbit/s$  (for MCS–9).

In practice, however, MCS–8  $(54.4 \ \rm kbit/s)$  and seven time slots are the maximum applicable. With this, one reaches  $380.8 \ \rm kbit/s$ and thus the order of magnitude of UMTS  $(384 \ \rm kbit/s)$.

Mention should also be made of  checkLink:_Buch_6 ⇒ EDGE Evolution  or "Evolved EDGE", i.e. the further development of the evolution of GSM in Release 7 (December 2007). For this, the developers specify data rates up to  $1 \ \rm Mbit/s$  and halved latency times  $(10 \ \rm ms$ instead of $20 \ \rm ms)$ . These values can be achieved among other things

  • by  32–QAM or  16–QAM Modulation instead of 8–PSK,
  • an improved error correction through the use of  checkLink:_Buch_5 ⇒ Turbo–Codes, and
  • an increase of the symbol rate of  $20\%$  from  $270.833 \ \rm ksymbol/s$  to  $325\ \rm ksymbol/s$.

Exercises to chapter


Exercise 3.5: GMSK Modulation

Exercise 3.5Z: GSM Network Components