Difference between revisions of "Aufgaben:Exercise 4.10: Turbo Encoder for UMTS and LTE"
m (Noah moved page Exercise 4.10: Turbo Enccoder for UMTS and LTE to Exercise 4.10: Turbo Encoder for UMTS and LTE) |
|
(No difference)
|
Revision as of 22:49, 29 November 2022
The mobile communications standards "UMTS" and "LTE" each use a turbo code that is largely identical to the encoder described in the "The Basics of Turbo Codes" chapter.
- The $1/n$ convolutional code is systematic, meaning that the code sequence $\underline{x}$ includes the information sequence $\underline{u}$ as a component.
- The parity-check sequences $\underline{p}_1$ and $\underline{p}_2$ are based on the same transfer function:
- $$G_1(D) = G_2(D) = G(D).$$
- $\underline{p}_1$ and $\underline{p}_2$ however, use different input sequences $\underline{u}$ and $\underline{u}_{\pi}$, respectively. Here, ${\rm \Pi}$ marks the interleaver, for UMTS and LTE mostly a $S$ random interleaver.
The main difference compared to the description in the theory part results from a different transfer function $G(D)$ given by the recursive filter structure drawn on the left.
Hints:
- The exercise belongs to the chapter "Basics of Turbo Codes".
- Knowledge is expected about
- For further guidance on how to do this, see the "Exercise 4.8" and the "Exercise 4.9".
- The information sequence $\underline{u}$ is partially specified by its $D$–transform for easier description in the subtasks. For example:
- $$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} \text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^2\hspace{0.05cm},$$
- $$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} \text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^8\hspace{0.05cm}.$$
Questions
Solution
(1) The code parameters are $k = 1$ and $n = 3$ ⇒ Code rate $\underline{R = 1/3}$.
- The memory is $\underline{m = 3}$.
- The influence lengths result in $\nu = 1, \ \nu_2 = 4$ and $\nu_3 = 4$ ⇒ Total influence length $\underline{\nu = 9}$.
(2) As the comparison of the "recursive filter" on the data page with the "filter structure" in the theory section for fractional–rational $G(D)$, the suggested solution 1 is correct.
(3) Richtig sind die Lösungsvorschläge 2 und 3:
Die obere Grafik verdeutlicht die Polynomdivision $(1 + D + D^3) \ / \ (1 + D^2 + D^3)$. Zur Erläuterung:
- Abgebrochen ist die Darstellung mit dem Rest $D^8 + D^9 = D^7 \cdot (D + D^2)$.
- Damit gilt auch:
- $$(D^8 + D^9) \hspace{0.05cm} /\hspace{0.05cm} (1+ D^2+ D^3 ) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} D^7 \cdot (D+ D^2+ D^3 + D^6) + {\rm Rest_2}$$
- Nach Zusammenfassen:
- $$G(D) = 1 + D + D^2 + D^3 + D^6 + D^8+ D^9+ D^{10} + D^{13} + \hspace{0.05cm}\text{ ... }\hspace{0.05cm} \hspace{0.05cm}. $$
- Die $D$–Rücktransformierte ergibt den Lösungsvorschlag 2:
- $$\underline{g}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{ ... }\hspace{0.05cm})\hspace{0.05cm}. $$
- Die Impulsantwort setzt sich bis ins Unendliche fort ⇒ Lösungsvorschlag 3 ist ebenfalls richtig.
(4) Die Impulsantwort kann wie folgt ausgedrückt werden:
- $$\underline{g}= \Big (\hspace{0.03cm}1\hspace{0.03cm}, \big [ \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 0\hspace{0.03cm}, \hspace{0.03cm} 0\hspace{0.03cm}, \hspace{0.03cm} 1\hspace{0.03cm}, \hspace{0.03cm} 0\hspace{0.03cm} \big ]_{\rm per} \Big ) \hspace{0.15cm}\Rightarrow \hspace{0.15cm} \underline{P = 7} \hspace{0.05cm}. $$
Im Zustandsübergangsdiagramm (rechts) ist die Impulsantwort $\underline{g}$ gelb hinterlegt. Die Impulsantwort ergibt sich als die Paritysequenz $\underline{p}$ für die Informationssequenz $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, \text{ ... })$.
- Die Übergänge im Diagramm sind mit "$u_i\hspace{0.05cm}|\hspace{0.05cm}\underline{x}_i$" beschriftet, was gleichbedeutend ist mit "$u_i\hspace{0.05cm}|\hspace{0.05cm}u_i \hspace{0.05cm}p_i$".
- Die Paritysequenz $\underline{p} \ (=$ Impulsantwort $\underline{g})$ ergibt sich somit aus dem jeweiligen zweiten Coderausgangssymbol.
- $\underline{g}$ wird durch folgende Zustände repräsentiert:
- $$S_0 → [S_1 → S_2 → S_5 → S_3 → S_7 → S_6 → S_4 ] → [S_1 → \ ... \ → S_4] → \ \text{ ... } $$
(5) Die folgende Grafik zeigt die Lösung anhand der Generatormatrix $\mathbf{G}$. Es gilt $\underline{u} = (0, \, 1, \, 1, \, 0, \, 0, \, \text{ ... } )$.
Man erkennt, dass die Lösungsvorschläge 1, 2 und 3 richtig sind:
- Die vorliegende Paritysequenz $\underline{p}$ hat die gleiche Periode $P = 7$ wie die Impulsantwort $\underline{g}$.
- Das Hamming–Gewicht der (begrenzten) Eingangsfolge ist tatsächlich $w_{\rm H}(\underline{u}) = 2$.
- Der Vorschlag 4 ist falsch. Vielmehr gilt hier für die semi–infinite Ausgangssequenz: $w_{\rm H}(\underline{p}) → \infty$.
Im Übergangsdiagramm werden zunächst die Zustände $S_0 → S_0 → S_1 → S_3 → S_7 → S_6 → S_4 → S_1$ durchlaufen. Danach folgt (unendlich oft) der periodische Anteil $S_1 → S_2 → S_5 → S_3 → S_7 → S_6 → S_4 → S_1$.
(6) Die letzte Grafik zeigt die Lösung für $U(D) = D + D^8 \Rightarrow \underline{u} = (0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{ ... })$.
Richtig sind die Lösungsvorschläge 3 und 4:
- Die Eingangssequenz $\underline{u}$ beinhaltet zwei Einsen und die Ausgangssequenz $\underline{p}$ sechs Einsen.
- Ab der Position 10 ist nun die Ausgangssequenz $\underline{p} \equiv\underline{0}$
⇒ die Vorschläge 1 und 2 treffen also nicht zu.
Weitergehende Hinweise:
- Für einen Turbocode sind insbesondere solche Eingangsfolgen $\underline{u}$, deren $D$–Transformierte als $U(D) = f(D) \cdot [1 + D^{P}]$ darstellbar sind, äußerst ungünstig.
- Sie bewirken den Error Floor, wie er auf der Seite "Leistungsfähigkeit der Turbocodes" im Theorieteil zu erkennen ist.
- $P$ gibt dabei die Periode der Impulsantwort $\underline{g}$ an.
- In unserem Beispiel gilt $f(D) = D$ und $P = 7$.