Difference between revisions of "Digital Signal Transmission/System Components of a Baseband Transmission System"

From LNTwww
 
(99 intermediate revisions by 6 users not shown)
Line 2: Line 2:
 
{{FirstPage}}
 
{{FirstPage}}
 
{{Header|
 
{{Header|
Untermenü=Digitalsignalübertragung bei idealisierten Bedingungen
+
Untermenü=Digital Signal Transmission under Idealized Conditions
 
|Nächste Seite=Fehlerwahrscheinlichkeit bei Basisbandübertragung
 
|Nächste Seite=Fehlerwahrscheinlichkeit bei Basisbandübertragung
 
}}
 
}}
  
Das Kapitel 1 führt in das weite Gebiet der Digitalsignalübertragung ein, wobei einige vereinfachende Annahmen getroffen werden: ein redundanzfreies binäres Sendesignal, keine Impulsinterferenzen. Obwohl die Beschreibung vorwiegend im Basisband erfolgt, lassen sich die Ergebnisse meist auch auf die digitalen Trägerfrequenzsysteme (Kapitel 1.5) übertragen. Im Einzelnen werden behandelt:
+
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
*der prinzipielle Aufbau und die Komponenten eines Basisbandübertragungssystems,
+
<br>
*die Definitionen von Bitfehlerwahrscheinlichkeit und Bitfehlerhäufigkeit (BER),
+
The first main chapter introduces the broad field of digital signal transmission,&nbsp; with some simplifying assumptions: &nbsp;a redundancy-free binary transmitted signal,&nbsp; no intersymbol interference.&nbsp; Although the description is mainly in baseband, most of the results can be applied to the digital carrier frequency systems as well.
*die Eigenschaften der Nyquistsysteme, die eine impulsinterferenzfreie Übertragung erlauben,
 
*die Optimierung der binären Basisbandsysteme bei Leistungs- und Spitzenwertbegrenzung,
 
*die Verallgemeinerung der Ergebnisse auf Trägerfrequenzsysteme,
 
*die weitgehend gemeinsame Beschreibung von ASK, BPSK und 4–QAM.
 
  
 +
In particular,&nbsp; the following are dealt with:
 +
#&nbsp; The&nbsp; &raquo;basic structure and components&laquo;&nbsp; of a baseband transmission system,
 +
#&nbsp; the definitions of&nbsp; &raquo;bit error probability&laquo;&nbsp; and&nbsp; &raquo;bit error rate&laquo;,
 +
#&nbsp; the characteristics of&nbsp; &raquo;Nyquist systems&laquo;&nbsp; that allow intersymbol interference-free transmission,
 +
#&nbsp; the&nbsp; &raquo;optimization of the binary baseband systems&laquo;&nbsp; under power and peak constraints,
 +
#&nbsp; the generalization of the results to&nbsp; &raquo;carrier frequency systems&laquo;, &nbsp;and
 +
#&nbsp; the largely common description of&nbsp; &raquo;ASK, BPSK, and 4-QAM&laquo;.
  
'''Geeignete Literatur:'''
 
  
*Benedetto, S.; Biglieri, E.; Castellani, V.: Digital Transmission Theory. Englewood Cliffs, New Jersey: Prentice Hall, 1987.
 
*Hänsler, E.: Statistische Signale: Grundlagen und Anwendungen. 2. Auflage. Berlin – Heidelberg: Springer, 1997.
 
*Hagenauer, J.: Nachrichtentechnik 1. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2002.
 
*Hanik, N.: Leitungsgebundene Übertragungstechnik. Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.
 
*Haykin, S.: Digital Communications. New York: John Wiley & Sons, 1988.
 
*Kammeyer, K.D.: Nachrichtenübertragung. Stuttgart: B.G. Teubner, 4. Auflage, 2004.
 
*Lüke, H. D.: Signalübertragung. 8. Auflage. Berlin – Heidelberg: Springer, 2004.
 
*Proakis, J. G.: Digital Communications. 5. Auflage. New York: McGraw-Hill, 2001.
 
*Proakis, J. G.; Salehi, M.: Grundlagen der Kommunikationstechnik. 2. Auflage. München: Pearson Education, 2004.
 
*Söder, G.: Simulationsmethoden in der Nachrichtentechnik. Anleitung zum gleichnamigen Praktikum. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2000.
 
*Söder, G.; Tröndle, K.: Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme. Berlin – Heidelberg: Springer, 1985.
 
*Tröndle, K.; Söder, G.: Optimization of Digital Transmission Systems. Boston – London: Artech House, 1987.<br><br>
 
  
== Vereinfachtes Systemmodell ==  
+
== Simplified system model ==  
 
<br>
 
<br>
 +
Throughout the first chapter,&nbsp; the following block diagram is assumed for the digital system as described in&nbsp; [TS87]<ref>Tröndle, K.; Söder, G.:&nbsp; Optimization of Digital Transmission Systems.&nbsp; Boston – London: Artech House, 1987.</ref>:
 +
 +
[[File:EN_Dig_T_1_1_S1xxx.png|right|frame|Simplified system model of a digital transmission system|class=fit]]
 +
 +
The block diagram is constructed in exactly the same way as an&nbsp; [[Modulation_Methods/Objectives_of_Modulation_and_Demodulation#The_communication_system_under_consideration|"analog transmission system"]]&nbsp; according to the description in the book&nbsp; "Modulation Methods",&nbsp; consisting of
 +
 +
#source &nbsp; &rArr; &nbsp; German:&nbsp; "Quelle",&nbsp; marking:&nbsp; "Q",
 +
#transmitter &nbsp; &rArr; &nbsp; German:&nbsp; "Sender",&nbsp; marking:&nbsp; "S",
 +
#channel &nbsp; &rArr; &nbsp; German:&nbsp; "Kanal",&nbsp; marking:&nbsp; "K",
 +
#interference/noise &nbsp; &rArr; &nbsp; German:&nbsp; "Störung",&nbsp; marking:&nbsp; "N",
 +
#receiver &nbsp; &rArr; &nbsp; German:&nbsp; "Empfänger",&nbsp; marking:&nbsp; "E",
 +
#sink&nbsp; &rArr; &nbsp; German:&nbsp; "Sinke",&nbsp; marking:&nbsp; "V".
  
Im gesamten ersten Kapitel wird für das Digitalsystem von folgendem Blockschaltbild ausgegangen:
 
  
[[File:P_ID1247__Dig_T_1_1_S1_v1.png|Blockschaltbild|class=fit]]
+
The corresponding signals are adapted to these labels,&nbsp; but use lower case letters,&nbsp; e.g. source signal&nbsp; $q(t)$, ... ,&nbsp; sink signal&nbsp; $v(t)$.  
  
Im Vergleich zu einem analogen Übertragungssystem (siehe Buch [[Modulationsverfahren]]) erkennt man in diesem vereinfachten Systemmodell folgende Gemeinsamkeiten und Unterschiede:
+
In comparison to an analog transmission system,&nbsp; the following similarities and differences can be recognized in this simplified system model:
*Das Blockschaltbild ist in beiden Fällen in genau gleicher Weise aufgebaut – bestehend aus Quelle, Sender, Kanal, Empfänger und Sinke – und auch die Signale werden gleich bezeichnet.
+
*Auch beim digitalen Übertragungssystem ist das Empfangssignal $r(t)$ aufgrund der Störungen zeit– und wertkontinuierlich. Das Sendesignal $s(t)$ kann zeit– und wertdiskret sein, muss aber nicht.  
+
*Also in the digital transmission system,&nbsp; the received signal &nbsp;$r(t)$&nbsp; is continuous in time and value due to stochastic effects,&nbsp; e.g. noise.&nbsp; The transmitted signal &nbsp;$s(t)$&nbsp; can be discrete in time and value,&nbsp; but does not have to be.
*Im Unterschied zum Buch [[Modulationsverfahren]] sind aber nun das Quellensignal q(t) und das Sinkensignal υ(t) stets Digitalsignale. Sie sind dementsprechend sowohl zeit– als auch wertdiskret.  
+
*In contrast to the book&nbsp; "Modulation Methods",&nbsp; however,&nbsp; the source signal &nbsp;$q(t)$&nbsp; and the sink signal &nbsp;$v(t)$&nbsp; are always digital signals.&nbsp; Accordingly,&nbsp; they are both discrete-time and discrete-value.
*Alle Informationen über $q(t)$ und $υ(t)$ können somit auch durch die Quellensymbolfolge 〈$q$<sub>ν</sub>〉 und die Sinkensymbolfolge 〈$υ$<sub>ν</sub>〉 gemeinsam mit der Symboldauer $T$ ausgedrückt werden.  
+
*All information about &nbsp;$q(t)$&nbsp; and &nbsp;$v(t)$&nbsp; can thus also be expressed by the&nbsp; "source symbol sequence" &nbsp;$〈q_ν〉$&nbsp; and the&nbsp; "sink symbol sequence" &nbsp;$〈v_ν〉$&nbsp; together with the symbol duration &nbsp;$T$.&nbsp;
*Ein Digitalempfänger unterscheidet sich grundsätzlich vom Empfänger eines Analogsystems, da er zusätzlich eine Entscheidungskomponente zur Gewinnung des digitalen Sinkensignals $υ(t)$ aus dem analogen Empfangssignals $r(t)$ beinhalten muss.  
+
*A digital receiver differs fundamentally from the receiver of an analog system in that it must also include a &nbsp;'''decision component'''&nbsp; for obtaining the digital sink signal &nbsp;$v(t)$&nbsp; from the analog received signal &nbsp;$r(t)$.&nbsp;
*In den ersten drei Kapiteln dieses Buches betrachten wir die digitale Basisbandübertragung, was besagt, dass das Nachrichtensignal $q(t)$ ohne vorherige Frequenzumsetzung (Modulation mit einer Trägerschwingung) übertragen wird.  
+
*In the first three chapters of this book,&nbsp; we consider &nbsp;'''digital baseband transmission''',&nbsp; which means that the  signal &nbsp;$q(t)$&nbsp; is transmitted without prior frequency conversion&nbsp; (modulation with a carrier wave).
*Deshalb sind hier $s(t)$ und $r(t)$ Tiefpass–Signale und auch für den Kanal (inklusive der Störungen) muss stets von einer Tiefpass–Charakteristik ausgegangen werden.<br>
+
*Therefore, &nbsp;$s(t)$&nbsp; and &nbsp;$r(t)$&nbsp; are low-pass signals here,&nbsp; and the channel&nbsp; (including interferences)&nbsp; must always be assumed to have low-pass characteristics as well.<br>
 
<br>
 
<br>
Nachfolgend werden die Eigenschaften der einzelnen Systemkomponenten detailliert beschrieben, wobei die idealisierenden Voraussetzungen für Kapitel 1 geeignet berücksichtigt werden.
+
In the following,&nbsp; the characteristics of the individual system components are described in detail,&nbsp; suitably considering the idealizing assumptions for this chapter.
  
== Beschreibungsgrößen der digitalen Quelle (1) ==
+
== Descriptive variables of the digital source ==
 
<br>
 
<br>
 +
The &nbsp;'''digital source'''&nbsp; generates the source symbol sequence &nbsp;$〈q_ν〉$,&nbsp; which is to be transmitted to the sink as error-free as possible.&nbsp; In general,&nbsp; each symbol of the temporal sequence &nbsp;$〈q_ν〉$&nbsp; with &nbsp;$\nu = 1, 2,$ ...&nbsp; from a symbol set &nbsp;$\{q_\mu\}$&nbsp; with &nbsp;$\mu = 1$, ... , $M$,&nbsp; where &nbsp;$M$&nbsp; is called the&nbsp; "source symbol set size"&nbsp; or the&nbsp; "level number".&nbsp;
  
Die <font color="#cc0000"><span style="font-weight: bold;">digitale Quelle</span></font> erzeugt die Quellensymbolfolge &#9001;<i>q</i><sub><i>&nu;</i></sub>&#9002;, die möglichst fehlerfrei zur Sinke übertragen werden soll. Im Allgemeinen entstammt jedes Symbol der zeitlichen Folge &#9001;<i>q</i><sub><i>&nu;</i></sub>&#9002; mit <i>&nu;</i> = 1, 2, ... einem Symbolvorrat {<i>q</i><sub><i>&mu;</i></sub>} mit <i>&mu;</i> = 1, ... , <i>M</i>, wobei <i>M</i> als Quellensymbolumfang oder auch als <font color="#cc0000"><span style="font-weight: bold;">Stufenzahl</span></font> bezeichnet wird. Für das erste Kapitel dieses Buches wird von folgenden Voraussetzungen ausgegangen:
+
For the present first main chapter of this book,&nbsp; the following assumptions are made:
*Die Quelle ist <font color="#cc0000"><span style="font-weight: old;">binär</span></font> (<i>M</i> = 2) und die beiden möglichen Symbole sind <b>L</b> (&bdquo;Low&rdquo;) und <b>H</b> (&bdquo;High&rdquo;).
+
*The source is&nbsp; "binary" &nbsp;$(\hspace{-0.05cm}M= 2)$&nbsp; and the two possible symbols are &nbsp;$\rm L$&nbsp; ("Low")&nbsp; and &nbsp;$\rm H$&nbsp; ("High").&nbsp; We have chosen this somewhat unusual nomenclature in order to be able to describe both unipolar and bipolar signaling in the same way.&nbsp; Please see the note before &nbsp;$\text{Example 1}$.
*Die Quellensymbole sind <font color="#cc0000"><span style="font-weight: bold;">statistisch unabhängig</span></font> voneinander, das heißt, die Wahrscheinlichkeit Pr(<i>q</i><sub><i>&nu;</i></sub> = <i>q</i><sub><i>&mu;</i></sub>), dass das <i>&nu;</i>&ndash;te Symbol der Folge &#9001;<i>q</i><sub><i>&nu;</i></sub>&#9002; gleich dem <i>&mu;</i>&ndash;ten Symbol des Symbolvorrates {<i>q</i><sub><i>&mu;</i></sub>} ist, hängt nicht von <i>&nu;</i> ab.
+
*The source symbols are&nbsp; "statistically independent",&nbsp; that is,&nbsp; the probability &nbsp;${\rm Pr}(q_\nu = q_\mu)$,&nbsp; that the &nbsp;$\nu$&ndash;th symbol of the sequence &nbsp;$〈q_ν〉$&nbsp; is equal to the &nbsp;$\mu$&ndash;th symbol of the symbol set &nbsp;$\{q_\mu\}$&nbsp; does not depend on &nbsp;$\nu$.&nbsp;  
*Aufgrund dieser zwei Annahmen wird die digitale Quelle durch die <font color="#cc0000"><span style="font-weight: bold;">Symbolwahrscheinlichkeiten</span></font> <i>p</i><sub>L</sub> = Pr(<i>q</i><sub><i>&nu;</i></sub> = <b>L</b>) und <i>p</i><sub>H</sub> = Pr(<i>q</i><sub><i>&nu;</i></sub> = <b>H</b>) = 1&ndash; <i>p</i><sub>L</sub> vollständig beschrieben.
+
*Given these two assumptions,&nbsp; the digital source is completely described by the&nbsp; "'symbol probabilities" &nbsp;$p_{\rm L} = {\rm Pr}(q_\nu = {\rm L}) $&nbsp; and &nbsp;$p_{\rm H} = {\rm Pr}(q_\nu = {\rm H}) = 1- p_{\rm L}$.&nbsp; If &nbsp;$p_{\rm L} =p_{\rm H}= 0.5$&nbsp; is still valid,&nbsp; the source is&nbsp; "redundancy-free".&nbsp; Mostly &ndash; but not always &ndash; such a redundancy-free binary source is assumed in the present first chapter.
*Gilt weiterhin <i>p</i><sub>L</sub> = <i>p</i><sub>H</sub> = 0.5, so ist die Quelle <font color="#cc0000"><span style="font-weight: bold;">redundanzfrei</span></font>. Meist &ndash; jedoch nicht immer &ndash; wird im Kapitel 1  eine solche vorausgesetzt.
+
*Let the time interval between two symbols be &nbsp;$T$.&nbsp; This quantity is called the&nbsp; "symbol duration"&nbsp; and the reciprocal value is the&nbsp; "symbol rate" &nbsp;$R = 1/T$.&nbsp; For binary sources &nbsp;$(\hspace{-0.05cm}M= 2)$&nbsp; these quantities are also called&nbsp; "bit duration"&nbsp; and&nbsp; "bit rate",&nbsp; resp.
*Der zeitliche Abstand zweier Symbole sei <i>T</i>. Man bezeichnet diese Größe als die <font color="#cc0000"><span style="font-weight: bold;">Symboldauer</span></font> und den Kehrwert als die <font color="#cc0000"><b>Symbolrate</b></font> <i>R</i> = 1/<i>T</i>. Bei Binärquellen (<i>M</i> = 2) nennt man diese Größen auch Bitdauer bzw. Bitrate.
+
*With a system-theoretical view to digital baseband transmission,&nbsp; the source signal is best described by a sequence of weighted and shifted Dirac delta impulses:
*Bei <font color="#cc0000"><span style="font-weight: bold;">systemtheoretischer Betrachtungsweise</span></font> der digitalen Basisbandübertragung beschreibt man das Quellensignal am besten durch eine Folge gewichteter und verschobener Diracimpulse::
+
::<math>q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.05cm}. </math>
<math>q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.05cm}. </math>
+
*Here,&nbsp; we refer to &nbsp;$a_\nu$&nbsp; as the &nbsp;'''amplitude coefficients'''.&nbsp; In the case of&nbsp; "binary unipolar"&nbsp; digital signal transmission:
*Hierbei bezeichnet man <i>a</i><sub><i>&nu;</i></sub> als die <font color="#cc0000"><span style="font-weight: bold;">Amplitudenkoeffizienten</span></font>. Im Falle der <font color="#cc0000"><span style="font-weight: bold;">binären</span></font> unipolaren Digitalsignalübertragung gilt:
 
 
::<math>a_\nu  =  \left\{ \begin{array}{c} 1  \\
 
::<math>a_\nu  =  \left\{ \begin{array}{c} 1  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
+
\begin{array}{*{1}c} {\rm{for}}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
\end{array}</math>
 
\end{array}</math>
:Entsprechend gilt bei einem <font color="#cc0000"><span style="font-weight: bold;">bipolaren</span></font> (oder antipodischen) System:
+
*Correspondingly,&nbsp; in the case of a&nbsp; "binary bipolar"&nbsp; system:
 
::<math>a_\nu  =  \left\{ \begin{array}{c} +1  \\
 
::<math>a_\nu  =  \left\{ \begin{array}{c} +1  \\
 
  -1 \\  \end{array} \right.\quad
 
  -1 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
+
\begin{array}{*{1}c} {\rm{for}}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
\end{array}</math>
 
\end{array}</math>
Die nachfolgende Beschreibung erfolgt meist für diesen zweiten Fall.
+
:The following description is mostly for this second case.<br>
<b>Hinweis zur Nomenklatur:</b> In der Literatur wird meist das Symbol <b>H</b> mit <b>0</b> bezeichnet. Bei unipolarer Signalisierung wird dann das Symbol <b>0</b> durch den Amplitudenkoeffizienten &bdquo;1&rdquo; und das Symbol <b>L</b> durch den Zahlenwert &bdquo;0&rdquo; dargestellt.  
+
 
Um diesen unschönen Sachverhalt zu vermeiden, wird in <i>LNTwww</i> das Symbol <b>0</b> mit <b>H</b> bezeichnet, wobei &bdquo;High&rdquo; den Sachverhalt richtig ausdrückt.
+
{{BlaueBox|TEXT= 
 +
$\text{Note on nomenclature:}$&nbsp;
 +
# In the literature,&nbsp; our symbol &nbsp;$\rm H$&nbsp; is often denoted by&nbsp; $\mathbf{0}$.  
 +
#In unipolar signaling,&nbsp; the symbol &nbsp;$\mathbf{0}$&nbsp; is then represented by the amplitude coefficient &nbsp;$a_\nu =1$&nbsp; and the symbol &nbsp;$\rm L$&nbsp; by the numerical value &nbsp;$a_\nu =0$.&nbsp;
 +
#To avoid this unattractive situation in our&nbsp; "LNTwww",&nbsp; the symbol &nbsp;$\mathbf{1}$&nbsp; is denoted by &nbsp;$\rm H$,&nbsp; where&nbsp; "High"&nbsp; expresses the situation correctly.}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; The graphic shows four binary Dirac-shaped source signals in the range from &nbsp;$-4 \ \rm  &micro; s$&nbsp; to &nbsp;$+4 \ \rm  &micro; s$,&nbsp; each based on the source symbol sequence
 +
[[File:P_ID127_8.png|right|frame|Description of&nbsp; "unipolar"&nbsp; and&nbsp; "bipolar"&nbsp; digital source signals]]
 +
:$$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm} \mathbf{L},\mathbf{L},
 +
\mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle \hspace{0.05cm} $$
 +
 
 +
The middle symbol &nbsp;$($marked in the equation by larger character spacing$)$&nbsp; refers in each case to the time &nbsp;$t = 0$.
  
== Beschreibungsgrößen der digitalen Quelle (2) ==
+
*The two upper signals are suitable for describing unipolar systems,&nbsp; the lower ones for bipolar (antipodal) digital signal transmission.
 +
*For the diagrams on the left, &nbsp;$T = 1\ \rm  &micro; s$&nbsp; is assumed.&nbsp; For the two right ones,&nbsp; however,&nbsp; &nbsp;$T = 2\ \rm  &micro; s$&nbsp; and thus half the symbol rate applies.}}
 +
 
 +
== Characteristics of the digital transmitter==
 
<br>
 
<br>
 +
The &nbsp;'''transmitter'''&nbsp; of a digital transmission system has the task of generating a suitable transmitted signal &nbsp;$s(t)$&nbsp; from the&nbsp; (Dirac-shaped)&nbsp; source signal,&nbsp; which contains the message of the source completely and is adapted to the characteristics of the transmission channel,&nbsp; the interferences as well as all technical receiving equipment.&nbsp; In addition,&nbsp; the transmitter ensures the provision of a sufficiently large transmission power.
 +
 +
As a descriptive quantity for the transmitter,&nbsp; we use the '''basic transmitter pulse''' &nbsp;$g_s(t)$.&nbsp; Due to the definition of the source signal &nbsp;$q(t)$&nbsp; as a sum of weighted and shifted Dirac delta functions,&nbsp; the transmitted signal can be represented with the amplitude coefficients &nbsp;$a_\nu$&nbsp; in the following way:
 +
 +
::<math>s(t) = q(t) \star g_s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.05cm}.</math>
 +
 +
Often the basic transmitter pulse &nbsp;$g_s(t)$&nbsp; is assumed to be rectangular with
 +
*the pulse height &nbsp;$s_0 = g_s(t = 0)$&nbsp; and
 +
*the&nbsp; (absolute)&nbsp; pulse duration &nbsp;$T_{\rm S}$.
 +
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; If &nbsp;$T_{\rm S} < T$&nbsp; applies,&nbsp; this is referred to as an  &nbsp;'''RZ pulse'''&nbsp; ("return&ndash;to&ndash;zero"),&nbsp; and if &nbsp;$T_{\rm S} = T$,&nbsp; this is referred to as an
 +
&nbsp;'''NRZ pulse'''&nbsp; ("non&ndash;return&ndash;to&ndash;zero").}}
  
{{Beispiel}}''':''' &nbsp; Die Grafik zeigt vier binäre diracförmige Quellensignale im Bereich von &ndash;4 &mu;s bis +4 &mu;s, wobei jeweils die folgende Quellensymbolfolge zugrundeliegt:
 
<math>\langle q_\nu \rangle = \langle ... \hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm}\mathbf{L},\mathbf{L},
 
\mathbf{H},\mathbf{L},\hspace{0.05cm} ... \rangle \hspace{0.05cm} .</math>
 
Das mittlere, etwas abgesetzte Symbol bezieht sich jeweils auf den Zeitpunkt <i>t</i> = 0.
 
  
[[File:P_ID127_8.png|Blockschaltbild|class=fit]]
+
With a different basic transmitter pulse,&nbsp; for example
 +
*a &nbsp;[[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|"Gaussian pulse"]],
 +
*a &nbsp;[[Aufgaben:Exercise_3.4Z:_Trapezoid,_Rectangle_and_Triangle|"trapezoidal pulse"]],
 +
*a &nbsp;[[Aufgaben:Exercise_1.1:_Basic_Transmission_Pulses|"cosine&ndash;square pulse"]] or
 +
*a &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Root_Nyquist_systems|"root Nyquist pulse"]],
  
Die zwei oberen Signale eignen sich zur Beschreibung unipolarer Systeme, die unteren für die bipolare (antipodische) Digitalsignalübertragung. Für die jeweils linken Grafiken ist <i>T</i> = 1 &mu;s vorausgesetzt. Für die beiden rechten gilt dagegen <i>T</i> = 2 &mu;s und damit die halbe Symbolrate.
 
{{end}}
 
  
== Kenngrößen des digitalen Senders (1) ==
+
the&nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|"equivalent pulse duration"]]&nbsp; defined by the equal-area rectangle is usually used as description parameter instead of the absolute pulse duration &nbsp;$T_{\rm S}$:&nbsp;
<br>
+
:$$\Delta t_{\rm S} =   \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \le T_{\rm S} \hspace{0.05cm}.$$
  
Der Sender eines digitalen Übertragungssystems hat die Aufgabe, aus dem (diracförmigen) Quellensignal ein geeignetes Sendesignal <i>s</i>(<i>t</i>) zu erzeugen, das die Nachricht der Quelle vollständig beinhaltet und an die Eigenschaften von Übertragungskanal, Störungen sowie aller technischen Empfangseinrichtungen angepasst ist. Außerdem sorgt der Sender für die Bereitstellung einer hinreichend großen Sendeleistung.
+
Only in case of the rectangular basic transmitter pulse &nbsp;$\Delta t_{\rm S} = T_{\rm S}$&nbsp; is valid.
  
Als Beschreibungsgröße für den Sender verwenden wir den <font color="#cc0000"><span style="font-weight: bold;">Sendegrundimpuls</span></font> <i>g<sub>s</sub></i>(<i>t</i>). Aufgrund der Definition des Quellensignals <i>q</i>(<i>t</i>) als Summe von gewichteten und verschobenen Diracfunktionen
+
If the height of the basic transmitter pulse &nbsp;$g_s(t)$&nbsp; differs from the maximum value &nbsp;$s_0$&nbsp; of the transmitted signal &nbsp;$s(t)$,&nbsp; we denote the pulse amplitude by &nbsp;$A_{\rm S}$.&nbsp; This is true for the Gaussian pulse,&nbsp; for example.
lässt sich das Sendesignal mit den Amplitudenkoeffizienten <i>a</i><sub><i>&nu;</i></sub> in folgender Weise darstellen:
 
:<math>s(t) = q(t) \star g_s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.05cm}.</math>
 
Häufig wird der Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) als rechteckförmig mit
 
*der Impulshöhe <i>s</i><sub>0</sub> = <i>g<sub>s</sub></i>(<i>t</i> = 0) und
 
*der (absoluten) Impulsdauer <i>T</i><sub>S</sub>
 
angenommen. Gilt <i>T</i><sub>S</sub> < <i>T</i>, so spricht man von einem 
 
<font color="#cc0000"><span style="font-weight: bold;">RZ&ndash;Impuls</span></font> (&bdquo;return&ndash;to&ndash;zero&rdquo;), bei <i>T</i><sub>S</sub> = <i>T</i> von einem 
 
<font color="#cc0000"><span style="font-weight: bold;">NRZ&ndash;Impuls</span></font> (&bdquo;non&ndash;return&ndash;to&ndash;zero&rdquo;).
 
  
Bei anderem Sendegrundimpuls, z.B. einem Gauß&ndash;, Trapez&ndash;, cos<sup>2</sup>&ndash; oder Wurzel&ndash;Nyquist&ndash;Impuls, verwendet man als Beschreibungsparameter anstelle der absoluten Impulsdauer <i>T</i><sub>S</sub> meist die über das flächengleiche Rechteck definierte <font color="#cc0000"><span style="font-weight: bold;">äquivalente Impulsdauer</span></font> <nowiki>:</nowiki>
+
The interaction module &nbsp;[[Applets:Pulses_and_Spectra|"Pulses and Spectra"]]&nbsp; shows some common basic transmitter pulses &nbsp; $g_s(t)$&nbsp; and the corresponding spectra&nbsp; $G_s(f)$.
:<math>\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm
 
d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \le T_{\rm S} \hspace{0.05cm}.</math>
 
Nur bei rechteckförmigem Sendegrundimpuls gilt &Delta;<i>t</i><sub>S</sub> = <i>T</i><sub>S</sub>.
 
  
Unterscheidet sich die Amplitude des Sendegrundimpulses <i>g<sub>s</sub></i>(<i>t</i>) vom Maximalwert <i>s</i><sub>0</sub> des Sendesignals <i>s</i>(<i>t</i>), so bezeichnen wir die Impulsamplitude mit <i>A</i><sub>S</sub>. Dies trifft zum Beispiel beim Gaußimpuls zu.
+
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; The following graphic is always based on the source symbol sequence
 +
$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm}\mathbf{L},\mathbf{L}, \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle $.&nbsp; It shows three transmitted signals,
  
Das folgende Interaktionsmodul zeigt einige geläufige Grundimpulse und die dazugehörigen Spektren <nowiki>:</nowiki>
+
[[File:P_ID1251__Dig_T_1_1_S3_v3_80.png|right|frame|Binary transmitted signals with different pulse shapes]]
  
[https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1923&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross Impulse und deren Spektren]
+
*a bipolar transmitted signal &nbsp;$s_{\rm A}(t)$&nbsp; with NRZ rectangular pulses,
 +
*a bipolar transmitted signal &nbsp;$s_{\rm B}(t)$&nbsp; with RZ rectangular pulses, and
 +
*a unipolar transmitted signal &nbsp;$s_{\rm C}(t)$&nbsp; with Gaussian pulses.
  
== Kenngrößen des digitalen Senders (2)==
 
<br>
 
  
{{Beispiel}}''':''' Die folgende Grafik zeigt drei Sendesignale. Zugrunde liegt stets die Quellensymbolfolge
+
In the following descriptions,&nbsp; the bipolar NRZ rectangular&nbsp; ("square-wave")&nbsp; signal &nbsp;$s_{\rm A}(t)$&nbsp; is usually assumed. The duration &nbsp;$T_{\rm S}$&nbsp; of the basic transmitter pulse &nbsp;$g_s(t)$&nbsp; shown in red in the diagram is equal to the distance &nbsp;$T$&nbsp; between two successive pulses.
<math>\langle q_\nu \rangle = \langle ... \hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm}\mathbf{L},\mathbf{L},
 
\mathbf{H},\mathbf{L},\hspace{0.05cm} ... \rangle \hspace{0.05cm}.</math><br>
 
  
[[File:P_ID1251__Dig_T_1_1_S3_v3_80.png|thumb|right|1700px]]
+
From the additional diagrams one recognizes:
<br><br><br><br>
+
*For the RZ transmitted signal &nbsp;$s_{\rm B}(t)$,&nbsp; the pulse duration &nbsp;$T_{\rm S}$&nbsp; differs from the pulse spacing &nbsp;$T$.&nbsp; The diagram applies to the duty cycle &nbsp;$T_{\rm S}/T = 0.5$.&nbsp; Although &nbsp;$s_{\rm B}(t)$&nbsp; is also a binary signal,&nbsp; there are three possible signal values here,&nbsp; namely &nbsp;$+s_0$, &nbsp;$-s_0$&nbsp; and &nbsp;$0$.  
Die Grafik berücksichtigt<br><br>
+
*An advantage is that even with a long &nbsp;$\rm H$&nbsp; or &nbsp;$\rm L$&nbsp; sequence there is no DC signal,&nbsp; which makes clock synchronization easier.&nbsp; A disadvantage of RZ signaling is the wider spectrum as well as the lower energy per symbol,&nbsp; which leads to a higher bit error rate.
*ein bipolares Sendesignal  <b><i>s</i><sub>A</sub>(<i>t</i>)</b> mit NRZ&ndash;Rechteckimpulsen,<br><br>
+
*The signal &nbsp;$s_{\rm C}(t)$&nbsp; is unipolar and uses a Gaussian basic pulse &nbsp;$g_s(t)$.&nbsp; Such a signal is found,&nbsp; for example,&nbsp; in optical systems with intensity modulation,&nbsp; since a laser or an LED &nbsp;("Light Emitting Diode")&nbsp; cannot generate negative pulses in principle and a rectangular pulse is technologically more difficult to achieve than the Gaussian form.
*ein bipolares Sendesignal <b><i>s</i><sub>B</sub>(<i>t</i>)</b> mit RZ&ndash;Rechteckimpulsen, und<br><br>
+
*In case of a&nbsp; "real Gaussian pulse"&nbsp; the absolute pulse duration is always &nbsp;$T_{\rm S} \to \infty$.&nbsp; The&nbsp; (normalized)&nbsp; equivalent pulse duration is chosen here with &nbsp;$\Delta t_{\rm S} /T = 0.3$&nbsp; relatively small,&nbsp; so that the maximum value &nbsp;$s_0$&nbsp; of the transmitted signal is approximately equal to the pulse amplitude &nbsp;$A_{\rm S}$.&nbsp;
*ein unipolares Sendesignal <b><i>s</i><sub>C</sub>(<i>t</i>)</b> mit Gaußimpulsen.<br><br>
+
*For wider Gaussian pulses these overlap;&nbsp; the approximation &nbsp;$s_0 \approx A_{\rm S}$&nbsp; no longer applies in this case.}}
<br><br><br><br><br><br><br><br><br><br>
 
Bei den folgenden Beschreibungen wird meist das bipolare NRZ&ndash;Rechtecksignal <i>s</i><sub>A</sub>(<i>t</i>) vorausgesetzt. Die Dauer <i>T</i><sub>S</sub> des in der Grafik rot eingezeichneten Sendegrundimpulses <i>g</i><sub>s</sub>(<i>t</i>) ist hier gleich dem Abstand <i>T</i> zweier aufeinanderfolgender Impulse. Aus den weiteren Skizzen erkennt man:
 
*Beim RZ&ndash;Sendesignal <i>s</i><sub>B</sub>(<i>t</i>)  unterscheidet sich die Impulsdauer <i>T</i><sub>S</sub> vom Impulsabstand <i>T</i>. Die Skizze gilt für das Tastverhältnis <i>T</i><sub>S</sub>/<i>T</i> = 0.5. Obwohl <i>s</i><sub>B</sub>(<i>t</i>) ebenfalls ein Binärsignal ist, gibt es hier drei mögliche Signalwerte, nämlich +<i>s</i><sub>0</sub>, &ndash;<i>s</i><sub>0</sub> und 0. Von Vorteil ist, dass sich auch bei einer langen <b>H</b>&ndash; oder <b>L</b>&ndash;Folge kein Gleichsignal ergibt, wodurch die Taktsynchronisierung einfacher wird. Nachteilig bei RZ&ndash;Signalisierung ist das breitere Spektrum sowie die niedrigere Energie pro Symbol, was zu einer höheren Bitfehlerrate führt.
 
*Das Signal <i>s</i><sub>C</sub>(<i>t</i>) ist unipolar und verwendet einen gaußförmigen Grundimpuls <i>g<sub>s</sub></i>(<i>t</i>). Ein solches Signal findet man zum Beispiel bei optischen Systemen mit Intensitätsmodulation, da ein Laser oder eine LED prinzipiell keine negativen Impulse erzeugen kann und ein Rechteckimpuls technologisch schwieriger zu erreichen ist als die Gaußform.
 
*Im Falle eines &bdquo;echten Gaußimpulses&rdquo; gilt für die absolute Impulsdauer stets <i>T</i><sub>S</sub> &#8594; &#8734;. Die (normierte) äquivalente Impulsdauer ist hier mit &Delta;<i>t</i><sub>S</sub>/<i>T</i> = 0.3 relativ klein gewählt, so dass der Maximalwert <i>s</i><sub>0</sub> des Sendesignals etwa gleich der Impulsamplitude <i>A</i><sub>S</sub> ist. Bei breiteren Gaußimpulsen überlappen sich diese; die Näherung <i>s</i><sub>0</sub> &asymp; <i>A</i><sub>S</sub> trifft in diesem Fall nicht mehr zu.
 
{{end}}
 
  
== Übertragungskanal und Störungen (1) ==
+
== Transmission channel and interference==
 
<br>
 
<br>
 +
The &nbsp;'''transmission channel'''&nbsp; includes all the equipment located between the transmitter and the receiver.&nbsp; The main component of the channel is the transmission medium,&nbsp; which can be,&nbsp; for example,&nbsp;
 +
*a symmetrical double line,
 +
*a coaxial cable,
 +
*an optical fiber&nbsp; ("glass fiber"),&nbsp; or
 +
*a radio field.
 +
  
Der Übertragungskanal umfasst alle Einrichtungen, die zwischen dem Sender und dem Empfänger liegen. Hauptbestandteil ist das <font color="#cc0000"><span style="font-weight: bold;">Übertragungsmedium</span></font>, das zum Beispiel eine symmetrische Doppelleitung, ein Koaxialkabel, ein Lichtwellenleiter (eine Glasfaser) oder ein Funkfeld sein kann. Daneben beinhaltet der Übertragungskanal verschiedene aus Betriebsgründen notwendige Einrichtungen wie Stromversorgung, Blitzschutz und Fehlerortung.<br>
+
In addition,&nbsp; the transmission channel includes various equipment necessary for operational reasons,&nbsp; such as power supply,&nbsp; lightning protection and fault location.<br>
Im allgemeinsten Fall müssen folgende physikalischen Effekte berücksichtigt werden:
 
*Die Übertragungseigenschaften können <font color="#cc0000"><span style="font-weight: bold;">zeitabhängig</span></font> sein, insbesondere bei sich bewegendem Sender und/oder Empfänger, wie es im Buch &bdquo;Mobilkommunikation&rdquo; im Detail beschrieben wird. In diesem Grundlagenbuch wird der Kanal stets als linear und zeitinvariant (LZI) angenommen.
 
*Die Eigenschaften des LZI&ndash;Kanals können <font color="#cc0000"><span style="font-weight: bold;">frequenzabhängig</span></font> sein, gekennzeichnet durch den Frequenzgang <i>H</i><sub>K</sub>(<i>f</i>). Bei leitungsgebundener Übertragung gilt stets <i>H</i><sub>K</sub>(<i>f</i>) &ne; const. und es kommt zu Verzerrungen, wie in Kapitel 3.1 behandelt.
 
*Dem Nutzsignal überlagern sich <font color="#cc0000"><span style="font-weight: bold;">stochastische Störungen</span></font> <i>n</i>(<i>t</i>), zum Beispiel das unvermeidbare thermische Rauschen, Impulsstörungen und Nebensprechstörungen anderer Teilnehmer.<br>
 
  
 +
In the most general case,&nbsp; the following physical effects must be taken into account:
 +
*The transmission characteristics may be&nbsp; "time-dependent",&nbsp; especially in the case of a moving transmitter and/or receiver,&nbsp; as described in detail in the first main chapter&nbsp; "Time-Variant Transmission Channels"&nbsp; of the book &nbsp;[[Mobile_Communications/Distance_Dependent_Attenuation_and_Shading#Physical_description_of_the_mobile_communication_channel|"Mobile Communications"]].&nbsp; In this book,&nbsp; the channel is always assumed to be&nbsp; '''linear and time-invariant''' &nbsp; $\rm (LTI)$.
 +
*The characteristics of the LTI channel can be frequency dependent,&nbsp; characterized by the frequency response &nbsp;$H_{\rm K}(f)$.&nbsp; In conducted transmission,&nbsp; &nbsp;$H_{\rm K}(f) \ne \rm const.$&nbsp; always holds and distortion occurs,&nbsp; as discussed in the section&nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Definition_of_the_term_.22Intersymbol_Interference.22|"Definition of the term Intersymbol Interference"]].
 +
*Stochastic interference &nbsp;$n(t)$ is superimposed on the deterministic signal,&nbsp; for example the unavoidable thermal noise,&nbsp; pulse interference,&nbsp; and crosstalk interference from other subscribers.<br>
  
Für Kapitel 1 wird stets <i>H</i><sub>K</sub>(<i>f</i>) = 1 vorausgesetzt, das heißt, dass die beiden erstgenannten Punkte vorerst ausgeschlossen werden. Somit gilt im Folgenden für das Signal am Kanalausgang stets::
 
<math>r(t) = s(t) + n(t) </math>
 
Die einfachste realistische Annahme für den Übertragungskanal eines Nachrichtenübertragungssystems ist <font color="#cc0000"><span style="font-weight: bold;"> Additive White Gaussian Noise</span></font>, wie bereits im Kapitel 3.5 des Buches &bdquo;Stochastische Signaltheorie&rdquo; und im  Kapitel 1.2 des Buches &bdquo;Modulationsverfahren&rdquo; ausgeführt wurde.
 
[[File:P_ID3131__Dig_T_1_1_S4_v1.png|thumb|center|600px]]
 
Auf der nächsten Seite wird dieses Modell im Detail erklärt.
 
  
== Übertragungskanal und Störungen (2)==
+
For this first main chapter, &nbsp;$H_{\rm K}(f) =1$&nbsp; is always assumed,&nbsp; which means that the first two points mentioned are excluded for the time being.
<br>
+
[[File:P_ID3131__Dig_T_1_1_S4_v1.png|right|frame|Center:&nbsp; AWGN channel model, &nbsp; &nbsp; on the left:&nbsp; Power-spectral density&nbsp; $\rm (PSD)$, &nbsp; &nbsp;on the right:&nbsp; Probability density function&nbsp; $\rm (PDF)$]]
 +
Thus,&nbsp; in the following, for the signal at the channel output always holds:
 +
:$$r(t) = s(t) + n(t).$$
  
Das [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Systemkomponenten_eines_Basisband%C3%BCbertragungssystems#.C3.9Cbertragungskanal_und_St.C3.B6rungen_.281.29 AWGN&ndash;Modell] lässt sich wie folgt zusammenfassen:
+
The simplest realistic assumption for the transmission channel of a communication system is &nbsp;'''Additive White Gaussian Noise'''&nbsp; $\rm (AWGN)$,&nbsp; as already stated in other LNTwww books,
*Der Buchstabe &bdquo;N&rdquo; weist darauf hin, dass durch das AWGN&ndash;Modell ausschließlich <font color="#cc0000"><span style="font-weight: bold;">Rauschen</span></font> (&bdquo;Noise&rdquo;) berücksichtigt wird. Verzerrungen werden durch dieses einfache Modell nicht erfasst.
+
*in the book &nbsp;[[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#General_description|"Theory of Stochastic Signals"]],
*Obwohl Rauschstörungen im Allgemeinen durch eine Vielzahl von Rauschquellen entlang der gesamten Übertragungsstrecke hervorgerufen werden, können diese bei linearen Systemen durch einen einzigen <font color="#cc0000"><span style="font-weight: bold;">additiven</span></font> Rauschterm  am Kanalausgang berücksichtigt werden (Buchstabe &bdquo;A&rdquo;).
+
*in the section &nbsp;[[Modulation_Methods/Quality_Criteria|"Quality Criteria"]]&nbsp; in&nbsp; "Modulation Methods".
*Das Rauschen beinhaltet alle Frequenzen gleichermaßen; es besitzt ein konstantes, <font color="#cc0000"><span style="font-weight: bold;">weißes</span></font> (&bdquo;W&rdquo;) [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=buchseite&due=inhalt&buch_id=7&ki_id=328&block_id=588 Leistungsdichtespektrum] (LDS) und eine diracförmige [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=buchseite&due=inhalt&buch_id=7&ki_id=303&block_id=530 Autokorrelationsfunktion] (AKF):
+
<br clear=all>
::<math>{\it \Phi}_n(f) = \frac{N_0}{2}\hspace{0.15cm}
+
{{BlaueBox|TEXT=
 +
$\text{The AWGN channel model&nbsp; can be summarized as follows:}$&nbsp;
 +
*The letter&nbsp; $\rm N$&nbsp; indicates that only noise is considered by the AWGN model.&nbsp; Distortions of the useful signal&nbsp; $s(t)$&nbsp;  are not accounted for by this simple model.
 +
*Although noise is generally caused by a variety of noise sources along the entire transmission path,&nbsp; for linear systems it can be accounted for by a single additive noise term at the channel output&nbsp; $($letter&nbsp; $\rm A)$.
 +
*The noise includes all frequencies equally. &nbsp;It has a constant white &nbsp;$\rm (W)$&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Wiener-Khintchine_Theorem|"power-spectral density"]]&nbsp; $\rm (PSD)$&nbsp; and a Dirac-shaped  &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function|"auto-correlation function"]]&nbsp; $\rm (ACF)$:
 +
:$${\it \Phi}_n(f) = {N_0}/{2}\hspace{0.15cm}
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}
\varphi_n(\tau) = \frac{N_0}{2} \cdot \delta
+
\varphi_n(\tau) = {N_0}/{2} \cdot \delta
(\tau)\hspace{0.05cm}.</math>
+
(\tau)\hspace{0.05cm}.$$
:Der Faktor 1/2 in diesen Gleichungen berücksichtigt die zweiseitige Spektraldarstellung.
+
:The factor&nbsp; $1/2$&nbsp; on both sides of this Fourier transform equation accounts for the two-sided spectral representation.
*Beispielsweise gilt bei thermischem Rauschen für die physikalische Rauschleistungsdichte (das heißt: einseitige Betrachtungsweise) mit der Rauschzahl <i>F</i> &#8805; 1 und der absoluten Temperatur &theta;:
+
*For example,&nbsp; in the case of thermal noise,&nbsp; for the physical noise power density &nbsp;$($that is: &nbsp; one-sided view)&nbsp; with noise figure &nbsp;$F \ge 1$&nbsp; and absolute temperature &nbsp;$\theta$:
 
::<math>{N_0}= F \cdot k_{\rm B} \cdot \theta , \hspace{0.3cm}k_{\rm B} =
 
::<math>{N_0}= F \cdot k_{\rm B} \cdot \theta , \hspace{0.3cm}k_{\rm B} =
1.38 \cdot 10^{-23} \hspace{0.2cm}{{\rm Ws}}/{{\rm K}}\hspace{0.2cm}{\rm
+
1.38 \cdot 10^{-23} \hspace{0.2cm}{ \rm Ws}/{\rm K}\hspace{0.2cm}{\text{(Boltzmann constant)} }\hspace{0.05cm}.</math>
(Boltzmann-Konstante)}\hspace{0.05cm}.</math>
+
*True white noise would result in infinitely large power.&nbsp; Therefore,&nbsp; a band limit on &nbsp;$B$&nbsp; must always be considered.&nbsp; The following applies to the effective noise power:
*Bei echt weißem Rauschen würde sich eine unendliche große Leistung ergeben. Deshalb ist stets eine Bandbegrenzung auf <i>B</i> zu berücksichtigen, und es gilt für die wirksame Rauschleistung:
 
 
::<math>N = \sigma_n^2 = {N_0} \cdot B \hspace{0.05cm}.</math>
 
::<math>N = \sigma_n^2 = {N_0} \cdot B \hspace{0.05cm}.</math>
*Das Rauschsignal <i>n</i>(<i>t</i>)  besitzt eine <font color="#cc0000"><span style="font-weight: bold;">Gaußsche</span></font> Wahrscheinlichkeitsdichtefunktion (kurz: WDF), was durch den Buchstaben &bdquo;G&rdquo; zum Ausdruck gebracht wird::
+
*The noise signal &nbsp;$n(t)$&nbsp; has a &nbsp;[[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.E2.80.93_Cumulative_density_function|"Gaussian probability density function"]]&nbsp; $\rm (PDF)$,&nbsp; which is expressed by the letter&nbsp; $\rm G$:
<math>f_n(n) = \frac{1}{\sqrt{2\pi}\cdot\sigma_n}\cdot {\rm e}^{-{\it
+
::<math>f_n(n) = \frac{1}{\sqrt{2\pi}\cdot\sigma_n}\cdot {\rm e}^{ - {\it
n^{\rm 2}}/{(2\sigma_n^2)}}.</math>
+
n^{\rm 2} }/{(2\sigma_n^2)} }.</math>
Wir möchten Sie hier gerne auf ein dreiteiliges Lernvideo aus dem Buch &bdquo;Stochastische Signaltheorie&rdquo; hinweisen, in dem die Eigenschaften des AWGN&ndash;Kanals ausführlich beschrieben werden:<br><br>
+
We would like to refer you here to the&nbsp; (German language)&nbsp; three-part learning video &nbsp;[[Der_AWGN-Kanal_(Lernvideo)|"AWGN Channel"]],&nbsp; in which the AWGN properties are clarified  again.}}
[https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1906&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross Der AWGN&ndash;Kanal &ndash; Teil 1] (Dauer 6:00) <br>
 
[https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1907&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross Der AWGN&ndash;Kanal &ndash; Teil 2] (Dauer 5:15)<br>
 
[https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1908&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross Der AWGN&ndash;Kanal &ndash; Teil 3] (Dauer 6:15)<br>
 
  
  
== Empfangsfilter und Schwellenwertentscheider (1) ==
+
== Receiver filter and threshold decision==
 
<br>
 
<br>
Der einfachste Empfänger bei Binärübertragung über den AWGN&ndash;Kanal besteht aus
+
The simplest receiver for binary transmission via the AWGN channel consists of
*einem <font color="#cc0000"><span style="font-weight: bold;">Empfangsfilter</span></font> mit dem Frequenzgang <i>H</i><sub>E</sub>(<i>f</i>) und
+
[[File:EN_Dig_T_1_1_S5a_v2.png|right|frame|Receiver of a binary baseband transmission system]]
*einem <font color="#cc0000"><span style="font-weight: bold;">Schwellenwertentscheider</span></font> zur Gewinnung des Binärsignals.
+
*a&nbsp; '''receiver filter'''&nbsp; (German:&nbsp; "Empfangsfilter" &nbsp; &rArr; &nbsp; subscript:&nbsp; "E")&nbsp; with frequency response &nbsp;$H_{\rm E}(f)$,
:[[File:P_ID1253__Dig_T_1_1_S5a_v1.png]]<br>
+
*and a&nbsp; '''threshold decision'''&nbsp; for obtaining the binary signal.
Diese Empfängerstruktur ist wie folgt zu begründen:
+
 
*Das Signal <i>d</i>(<i>t</i>) nach dem Empfangsfilter kann zumindest gedanklich wie folgt aufgeteilt werden: Der Anteil <i>d</i><sub>S</sub>(<i>t</i>) ist auf das Nutzsignal <i>s</i>(<i>t</i>) zurückzuführen, der Anteil <i>d</i><sub>N</sub>(<i>t</i>) auf das Rauschen <i>n</i>(<i>t</i>). Die beiden Indizes stehen hierbei für <b><i>S</i>: Signal</b> und <b><i>N</i>: Noise</b>. Mit der Impulsantwort <i>h</i><sub>E</sub>(<i>t</i>) als die Fourierrücktransformierte des Frequenzgangs <i>H</i><sub>E</sub>(<i>f</i>) gilt:
+
 
::<math>d_S (t) = s(t) \star h_E (t)\hspace{0.05cm},</math>
+
This receiver structure can be justified as follows:&nbsp; The signal &nbsp;$d(t)$&nbsp; after the receiver filter &nbsp; &rArr; &nbsp; "detection signal"&nbsp; can be divided at least mentally in two parts: &nbsp;
::<math>d_N (t) = n(t) \star h_E (t)\hspace{0.05cm}.</math>
+
:$$d(t) = d_{\rm S}(t)+d_{\rm N}(t).$$
*Das weiße Rauschen <i>n</i>(<i>t</i>) am Empfängereingang besitzt theoretisch eine unendliche große Leistung (praktisch: eine unnötig große Leistung). Durch den Tiefpass mit dem Frequenzgang <i>H</i><sub>E</sub>(<i>f</i>) wird diese auf den quadratischen Erwartungswert des Detektionsstörsignals (&bdquo;Varianz&rdquo;) begrenzt:
+
::<math>\sigma_d^2 = {\rm E}[d_{\rm N}(t)^2] \hspace{0.05cm}.</math>
+
*The portion &nbsp;$d_{\rm S}(t)$&nbsp; is due solely to the receiver input signal &nbsp;$r(t)=s(t)$&nbsp; &nbsp; &rArr; &nbsp; $n(t)= 0$.&nbsp; The subscript&nbsp; "S"&nbsp; stands for "signal".&nbsp; In the following,&nbsp; we also refer to&nbsp; $d_{\rm S}(t)$&nbsp; as the&nbsp; "signal component"&nbsp; of&nbsp; $d(t)$.&nbsp;
*Allerdings ist zu beachten, dass der Tiefpass <i>H</i><sub>E</sub>(<i>f</i>) nicht nur das Störsignal <i>n</i>(<i>t</i>), sondern auch das Nutzsignal <i>s</i>(<i>t</i>) verändert. Dadurch werden die einzelnen Sendeimpulse verbreitert und in ihrer Amplitude vermindert. Nach den Voraussetzungen für dieses Kapitel muss sichergestellt werden, dass es nicht zu Impulsinterferenzen kommt.
+
*With the impulse response &nbsp;$h_{\rm E}(t)$&nbsp; as the Fourier retransform of the frequency response &nbsp;$H_{\rm E}(f)$&nbsp; holds:
*Aufgabe des Entscheiders ist es, aus dem wert&ndash; und zeitkontinuierlichen Detektionssignal <i>d</i>(<i>t</i>) das wert&ndash; und zeitdiskrete Sinkensignal <i>&upsilon;</i>(<i>t</i>) zu erzeugen, das die Nachricht des Sendesignals <i>s</i>(<i>t</i>) &bdquo;möglichst gut&rdquo; wiedergeben sollte. Die Funktionsweise des (binären) Schwellenwertentscheiders wird im Beispiel auf der nächsten Seite beschrieben.
+
:$$d_{\rm S}(t) = s(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$ 
 +
*For the second part &nbsp;$d_{\rm N}(t)$,&nbsp; on the other hand,&nbsp; one assumes the receiver input signal &nbsp;$r(t)=n(t)$&nbsp; &nbsp; &rArr; &nbsp; $s(t)= 0$.<br>We also refer to this portion&nbsp; $d_{\rm N}(t)$&nbsp; as the&nbsp; "noise component"&nbsp; of&nbsp; $d(t)$.&nbsp; The following convolution operation applies to it:
 +
:$$d_{\rm N}(t) = n(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$
 +
 
 +
*The white noise &nbsp;$n(t)$&nbsp; at the receiver input has theoretically an infinitely large power&nbsp; $($practically:&nbsp; an unnecessarily large power$)$.&nbsp; The low-pass filter with frequency response &nbsp;$H_{\rm E}(f)$&nbsp; limits this to the squared expected value of the "noise component"&nbsp; $d_{\rm N}(t)$ &nbsp; &rArr; &nbsp; "variance" &nbsp; &rArr; &nbsp; "noise power":
 +
::<math>\sigma_d^2 = {\rm E}\big[d_{\rm N}(t)^2\big] \hspace{0.05cm}.</math>
 +
*However,&nbsp; it should be noted that the low-pass &nbsp;$H_{\rm E}(f)$&nbsp; alters not only the noise&nbsp; $n(t)$,&nbsp; but also the transmitted signal &nbsp;$s(t)$.&nbsp; As a result,&nbsp; the individual transmission pulses are broadened and reduced in amplitude.&nbsp; According to the prerequisites for this chapter,&nbsp; it must be ensured that &nbsp;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|"intersymbol interference"]]&nbsp; does not occur.
 +
*The decider's task is to generate the discrete&ndash;value and discrete&ndash;time sink signal &nbsp;$v(t)$&nbsp; from the continuous&ndash;value and continuous&ndash;time detection signal &nbsp;$d(t)$,&nbsp; which should reproduce the message of the transmitted signal &nbsp;$s(t)$&nbsp; as well as possible.&nbsp; The operation of the&nbsp; (binary)&nbsp; threshold decision is described in $\text{Example 3}$.
 +
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; The upper graphic
 +
[[File:EN_Dig_T_1_1_S5b_neu_sat2.png|right|frame|Signals in an optimal binary system|class=fit]] 
 +
*shows in red the rectangular transmitted signal &nbsp;$s(t)$&nbsp; normalized to &nbsp;$\pm 1$,&nbsp;
 +
*which is superimposed by additive noise &nbsp;$n(t)$.&nbsp;
 +
*Shown in blue is the received signal &nbsp;$r(t) = s(t) + n(t)$.
  
== Empfangsfilter und Schwellenwertentscheider (2) ==
 
<br>
 
{{Beispiel}}''':''' Die obere Grafik zeigt rot das rechteckförmige, auf &plusmn;1 normierte Sendesignal <i>s</i>(<i>t</i>), das von additivem Rauschen <i>n</i>(<i>t</i>) überlagert ist. Blau dargestellt ist das Empfangssignal <i>r</i>(<i>t</i>) = <i>s</i>(<i>t</i>) + <i>n</i>(<i>t</i>).<br>
 
  
[[File:P_ID1254__Dig_T_1_1_S5b_v2.png]]<br><br>
+
To this graphic it is to be noted further:
Zu dieser Grafik ist weiter anzumerken:
+
#After the receiver filter with a rectangular impulse response of duration &nbsp;$T$,&nbsp; the signal&nbsp; $d(t)$&nbsp; shown in the middle figure&nbsp; (green curve)&nbsp; is obtained.  
*Nach dem Empfangsfilter mit rechteckförmiger Impulsantwort der Dauer <i>T</i> ergibt sich das im mittleren Bild dargestellte Signal <i>d</i>(<i>t</i>). Der Anteil <i>d</i><sub>S</sub>(<i>t</i>), der ausschließlich auf das Sendesignal <i>s</i>(<i>t</i>) zurückgeht, hat in diesem Sonderfall den in der mittleren Grafik rot gepunktet dargestellten, abschnittsweise linearen Verlauf. Die Differenz <i>d</i>(<i>t</i>) &ndash; <i>d</i><sub>S</sub>(<i>t</i>) ist der Rauschanteil <i>d</i><sub>N</sub>(<i>t</i>), der vom AWGN&ndash;Term <i>n</i>(<i>t</i>) herrührt.
+
#In this special case&nbsp; ("matched filter"),&nbsp; the part &nbsp;$d_{\rm S}(t)$,&nbsp; which is exclusively due to the transmitted signal &nbsp;$s(t)$,&nbsp; has the section&ndash;wise linear course shown in red dots.&nbsp;
*Der anschließende Schwellenwertentscheider wertet das Detektionssignal <i>d</i>(<i>t</i>) aus. Dazu vergleicht er die Detektionsabtastwerte zu den äquidistanten Detektionszeitpunkten &ndash; in der Grafik durch gelbe Pfeile markiert &ndash; mit dem Schwellenwert <i>E</i> = 0 und setzt entsprechend das Sinkensignal <i>&upsilon;</i>(<i>t</i>) im Bereich <i>&nu;</i> &middot; <i>T</i> ... (<i>&nu;</i> + 1) &middot; <i>T</i> auf +1 oder &ndash;1, je nachdem, ob der Detektionsabtastwert <i>d</i>(<i>&nu;</i><i>T</i>) größer oder kleiner ist als die Entscheiderschwelle <i>E</i>.
+
#The difference&nbsp; $d(t) - d_{\rm S}(t)$&nbsp; is the noise component &nbsp;$d_{\rm N}(t)$,&nbsp; which originates from the AWGN term &nbsp;$n(t)$.&nbsp;
*Trifft wie im dargestellten Beispiel der Entscheider stets die richtige Entscheidung, so ist sein Ausgangssignal <nobr><i>&upsilon;</i>(<i>t</i>) = <i>s</i>(<i>t</i> &ndash; <i>T</i>/2).</nobr> Die Laufzeit von einer halben Symboldauer (<i>T</i>/2) ist darauf zurückzuführen, dass das Detektionssignal <i>d</i>(<i>t</i>) stets in Symbolmitte entschieden wird, die Bereitstellung des Sinkensignals <i>&upsilon;</i>(<i>t</i>) aber aus Kausalitätsgründen erst danach erfolgen kann.<br> {{end}}
+
#The subsequent threshold decision evaluates the detection signal &nbsp;$d(t)$.&nbsp; For this purpose, it compares its samples at the equidistant detection times &ndash; marked by yellow arrows in the graphic &ndash; with the threshold value &nbsp;$E = 0$.&nbsp;
 +
#Accordingly,&nbsp; the decider  sets the sink signal &nbsp;$v(t)$&nbsp; in the range &nbsp;$\nu \cdot T$ ... $(\nu + 1) \cdot T$&nbsp; to &nbsp;$+1$&nbsp; or &nbsp;$-1$,&nbsp; depending on whether the detection sample &nbsp;$d(t)$&nbsp; is larger or smaller than the decision threshold &nbsp;$E$.
 +
#If the decision unit makes always the correct decision,&nbsp; as in the example shown,&nbsp; its output signal is &nbsp;$v(t) = s(t-T/2)$.  
 +
#The delay time of half a symbol duration &nbsp;$(T/2)$&nbsp; is&nbsp; due to the fact that the detection signal &nbsp;$d(t)$&nbsp; is sensibly decided in the middle of the symbol,&nbsp; but the provision of the sink signal &nbsp;$v(t)$&nbsp; can only take place afterwards for reasons of causality.}}
  
  
== Ersatzschaltbild und Voraussetzungen (..) tel 1 ==
+
== Block diagram and prerequisites for the first main chapter==
 
<br>
 
<br>
Für die weiteren Abschnitte dieses ersten Kapitels wird das folgende Ersatzschaltbild zugrunde gelegt:
+
The following block diagram is used as a basis for the further sections of this first main chapter.&nbsp; Unless explicitly stated otherwise&nbsp; the following prerequisites apply:
[[File:P_ID1255__Dig_T_1_1_S6_v1.png]] <br>
+
[[File:EN_Dig_T_1_1_S6_v1.png|right|frame|Equivalent block diagram for the investigation of binary baseband transmission systems<br>&nbsp; &rArr; &nbsp;
Wenn nicht explizit etwas anderes angegeben ist, gelten die nachfolgend aufgeführten Voraussetzungen:
+
$q(t)$:&nbsp; source signal &nbsp; &rArr; &nbsp; binary, bipolar and redundancy-free,&nbsp; bit rate &nbsp;$R = 1/T$,
*Die Übertragung erfolgt binär, bipolar und redundanzfrei mit der Bitrate <i>R</i> = 1/<i>T</i>. Die mehrstufige und/oder redundante Digitalsignalübertragung wird im Kapitel 2 behandelt.
+
<br>&nbsp; &rArr; &nbsp;
*Das Sendesignal <i>s</i>(<i>t</i>) ist zu allen Zeiten <i>t</i> gleich &plusmn; <i>s</i><sub>0</sub>, das heißt: Der Sendegrundimpuls <i>g</i><sub>s</sub>(<i>t</i>) ist NRZ&ndash;rechteckförmig mit Amplitude <i>s</i><sub>0</sub> und Dauer <i>T</i>. Die Spektralfunktion lautet::
+
$s(t)$:&nbsp; transmitted signal &nbsp; &rArr; &nbsp; NRZ&ndash;rectangular,&nbsp; amplitude &nbsp;$s_0$,&nbsp; pulse duration &nbsp;$T$,
<math>G_s(f)= s_0 \cdot T \cdot {\rm si}(\pi f \hspace{0.05cm}T)\hspace{0.2cm} {\rm mit}\hspace{0.2cm}{\rm si}(x) = \sin(x)/x
+
<br>&nbsp; &rArr; &nbsp;
\hspace{0.05cm}.</math>
+
$g_s(t)$:&nbsp; basic transmitter pulse &nbsp; &rArr; &nbsp; spectrum&nbsp; $G_s(f)= s_0 \cdot T \cdot {\rm sinc}(f \hspace{0.05cm}T)$,
*Für das Empfangssignal gelte <i>r</i>(<i>t</i>) = <i>s</i>(<i>t</i>) + <i>n</i>(<i>t</i>), wobei der AWGN&ndash;Term <i>n</i>(<i>t</i>) durch die konstante einseitige (physikalische) Rauschleistungsdichte <i>N</i><sub>0</sub> gekennzeichnet ist. Der Kanalfrequenzgang ist somit stets <i>H</i><sub>K</sub>(<i>f</i>) = 1 und muss nicht weiter berücksichtigt werden.
+
<br>&nbsp; &rArr; &nbsp;
*Das Empfangsfilter mit dem Frequenzgang <i>H</i><sub>E</sub>(<i>f</i>) und der Impulsantwort <i>h</i><sub>E</sub>(<i>t</i>) = F<sup>&ndash;1</sup>[<i>H</i><sub>E</sub>(<i>f</i>)] ist optimal an den Sendegrundimpuls  <i>g</i><sub>s</sub>(<i>t</i>) angepasst, so dass Impulsinterferenzen keine Rolle spielen. Impulsinterferenzbehaftete Systeme werden in Kapitel 3 ausführlich behandelt.
+
$r(t)= s(t) + n(t)$:&nbsp; received signal &nbsp; &rArr; &nbsp; channel frequency response &nbsp;$H_{\rm K}(f) =1$,
*Die Parameter des (binären) Schwellenwertentscheiders sind optimal gewählt. Aufgrund der oben aufgelisteten Voraussetzungen (u.a. bipolare Signalisierung) ist die optimale Entscheiderschwelle <nobr><i>E</i> = 0</nobr> und die optimalen Detektionszeitpunkte liegen bei <i>&nu;</i> &middot; <i>T</i>.
+
<br>&nbsp; &rArr; &nbsp;
 +
$n(t)$:&nbsp; noise signal &nbsp; &rArr; &nbsp;  "AWGN":&nbsp; constant one-sided noise power density &nbsp;$N_0$,
 +
<br> &nbsp; &rArr; &nbsp;
 +
$d(t) = r(t) \star h_{\rm E} (t)$:&nbsp; detection signal &nbsp; &rArr; &nbsp;  after low-pass filtering,
 +
<br> &nbsp; &rArr; &nbsp;
 +
$h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big]$:&nbsp; impulse response of the receiver filter &nbsp;$H_{\rm E}(f)$,
 +
<br> &nbsp; &rArr; &nbsp;
 +
$v(t)$:&nbsp; sink signal &nbsp; &rArr; &nbsp;  after threshold decision, parameter: $E = 0$,&nbsp; at times&nbsp; $\nu \cdot T$.]]
  
 +
*The transmission is binary,&nbsp; bipolar and redundancy-free with bit rate &nbsp;$R = 1/T$.&nbsp; Coded and/or multilevel transmission is dealt with in the &nbsp;[[Digital_Signal_Transmission|"second main chapter"]].&nbsp;
 +
*The transmitted signal &nbsp;$s(t) = q(t) \star g_s(t)$&nbsp; is equal to &nbsp;$ \pm s_0$ at all times&nbsp;$t$,&nbsp; i.e.: &nbsp; The basic transmitter pulse&nbsp; $g_s(t)$&nbsp; is NRZ&ndash;rectangular with amplitude &nbsp;$s_0$&nbsp; and pulse duration &nbsp;$T$.
 +
*Let for the received signal&nbsp; $r(t) = s(t) + n(t)$.&nbsp; Thus,&nbsp; the channel frequency response is always &nbsp;$H_{\rm K}(f) =1$.&nbsp; $n(t)$&nbsp; is characterized by the constant one-sided&nbsp; (physical)&nbsp; noise power density &nbsp;$N_0$.
 +
*For the detection signal generally applies&nbsp; $d(t) = r(t) \star h_{\rm E} (t)$,&nbsp; where &nbsp;$h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big]$&nbsp; is the impulse response of the receiver filter with low-pass frequency response &nbsp;$H_{\rm E}(f)$.&nbsp;
 +
*$h_{\rm E}(t)$&nbsp; is optimally matched to the basic transmitter pulse &nbsp;$g_s(t)$,&nbsp; so that&nbsp; [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|"intersymbol interference"]]&nbsp; does not play a role.&nbsp;  Equalization methods are discussed in the&nbsp;[[Digital_Signal_Transmission|"third main chapter"]]&nbsp; of this book.&nbsp;
 +
*The parameters of the&nbsp; (binary)&nbsp; threshold decision are optimally chosen:&nbsp;  Threshold: &nbsp;$E = 0$,&nbsp;  detection times:&nbsp; $\nu \cdot T$.
  
== Aufgaben zu Kapitel 1.1 ==
 
  
 +
== Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_1.1:_Basic_Transmission_Pulses|Exercise 1.1: Basic Transmitter Pulses]]
 +
 +
[[Aufgaben:Exercise_1.1Z:_Nonredundant_Binary_Source|Exercise 1.1Z: Non-redundant Binary Source]]
  
 +
==References==
 
{{Display}}
 
{{Display}}

Latest revision as of 14:51, 31 August 2022

  • [[Digital Signal Transmission/{{{Vorherige Seite}}} | Previous page]]
  • Next page
  • [[Digital Signal Transmission/{{{Vorherige Seite}}} | Previous page]]
  • Next page

# OVERVIEW OF THE FIRST MAIN CHAPTER #


The first main chapter introduces the broad field of digital signal transmission,  with some simplifying assumptions:  a redundancy-free binary transmitted signal,  no intersymbol interference.  Although the description is mainly in baseband, most of the results can be applied to the digital carrier frequency systems as well.

In particular,  the following are dealt with:

  1.   The  »basic structure and components«  of a baseband transmission system,
  2.   the definitions of  »bit error probability«  and  »bit error rate«,
  3.   the characteristics of  »Nyquist systems«  that allow intersymbol interference-free transmission,
  4.   the  »optimization of the binary baseband systems«  under power and peak constraints,
  5.   the generalization of the results to  »carrier frequency systems«,  and
  6.   the largely common description of  »ASK, BPSK, and 4-QAM«.


Simplified system model


Throughout the first chapter,  the following block diagram is assumed for the digital system as described in  [TS87][1]:

Simplified system model of a digital transmission system

The block diagram is constructed in exactly the same way as an  "analog transmission system"  according to the description in the book  "Modulation Methods",  consisting of

  1. source   ⇒   German:  "Quelle",  marking:  "Q",
  2. transmitter   ⇒   German:  "Sender",  marking:  "S",
  3. channel   ⇒   German:  "Kanal",  marking:  "K",
  4. interference/noise   ⇒   German:  "Störung",  marking:  "N",
  5. receiver   ⇒   German:  "Empfänger",  marking:  "E",
  6. sink  ⇒   German:  "Sinke",  marking:  "V".


The corresponding signals are adapted to these labels,  but use lower case letters,  e.g. source signal  $q(t)$, ... ,  sink signal  $v(t)$.

In comparison to an analog transmission system,  the following similarities and differences can be recognized in this simplified system model:

  • Also in the digital transmission system,  the received signal  $r(t)$  is continuous in time and value due to stochastic effects,  e.g. noise.  The transmitted signal  $s(t)$  can be discrete in time and value,  but does not have to be.
  • In contrast to the book  "Modulation Methods",  however,  the source signal  $q(t)$  and the sink signal  $v(t)$  are always digital signals.  Accordingly,  they are both discrete-time and discrete-value.
  • All information about  $q(t)$  and  $v(t)$  can thus also be expressed by the  "source symbol sequence"  $〈q_ν〉$  and the  "sink symbol sequence"  $〈v_ν〉$  together with the symbol duration  $T$. 
  • A digital receiver differs fundamentally from the receiver of an analog system in that it must also include a  decision component  for obtaining the digital sink signal  $v(t)$  from the analog received signal  $r(t)$. 
  • In the first three chapters of this book,  we consider  digital baseband transmission,  which means that the signal  $q(t)$  is transmitted without prior frequency conversion  (modulation with a carrier wave).
  • Therefore,  $s(t)$  and  $r(t)$  are low-pass signals here,  and the channel  (including interferences)  must always be assumed to have low-pass characteristics as well.


In the following,  the characteristics of the individual system components are described in detail,  suitably considering the idealizing assumptions for this chapter.

Descriptive variables of the digital source


The  digital source  generates the source symbol sequence  $〈q_ν〉$,  which is to be transmitted to the sink as error-free as possible.  In general,  each symbol of the temporal sequence  $〈q_ν〉$  with  $\nu = 1, 2,$ ...  from a symbol set  $\{q_\mu\}$  with  $\mu = 1$, ... , $M$,  where  $M$  is called the  "source symbol set size"  or the  "level number". 

For the present first main chapter of this book,  the following assumptions are made:

  • The source is  "binary"  $(\hspace{-0.05cm}M= 2)$  and the two possible symbols are  $\rm L$  ("Low")  and  $\rm H$  ("High").  We have chosen this somewhat unusual nomenclature in order to be able to describe both unipolar and bipolar signaling in the same way.  Please see the note before  $\text{Example 1}$.
  • The source symbols are  "statistically independent",  that is,  the probability  ${\rm Pr}(q_\nu = q_\mu)$,  that the  $\nu$–th symbol of the sequence  $〈q_ν〉$  is equal to the  $\mu$–th symbol of the symbol set  $\{q_\mu\}$  does not depend on  $\nu$. 
  • Given these two assumptions,  the digital source is completely described by the  "'symbol probabilities"  $p_{\rm L} = {\rm Pr}(q_\nu = {\rm L}) $  and  $p_{\rm H} = {\rm Pr}(q_\nu = {\rm H}) = 1- p_{\rm L}$.  If  $p_{\rm L} =p_{\rm H}= 0.5$  is still valid,  the source is  "redundancy-free".  Mostly – but not always – such a redundancy-free binary source is assumed in the present first chapter.
  • Let the time interval between two symbols be  $T$.  This quantity is called the  "symbol duration"  and the reciprocal value is the  "symbol rate"  $R = 1/T$.  For binary sources  $(\hspace{-0.05cm}M= 2)$  these quantities are also called  "bit duration"  and  "bit rate",  resp.
  • With a system-theoretical view to digital baseband transmission,  the source signal is best described by a sequence of weighted and shifted Dirac delta impulses:
\[q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.05cm}. \]
  • Here,  we refer to  $a_\nu$  as the  amplitude coefficients.  In the case of  "binary unipolar"  digital signal transmission:
\[a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}\]
  • Correspondingly,  in the case of a  "binary bipolar"  system:
\[a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}\]
The following description is mostly for this second case.

$\text{Note on nomenclature:}$ 

  1. In the literature,  our symbol  $\rm H$  is often denoted by  $\mathbf{0}$.
  2. In unipolar signaling,  the symbol  $\mathbf{0}$  is then represented by the amplitude coefficient  $a_\nu =1$  and the symbol  $\rm L$  by the numerical value  $a_\nu =0$. 
  3. To avoid this unattractive situation in our  "LNTwww",  the symbol  $\mathbf{1}$  is denoted by  $\rm H$,  where  "High"  expresses the situation correctly.


$\text{Example 1:}$  The graphic shows four binary Dirac-shaped source signals in the range from  $-4 \ \rm µ s$  to  $+4 \ \rm µ s$,  each based on the source symbol sequence

Description of  "unipolar"  and  "bipolar"  digital source signals
$$\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm} \mathbf{L},\mathbf{L}, \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle \hspace{0.05cm} $$

The middle symbol  $($marked in the equation by larger character spacing$)$  refers in each case to the time  $t = 0$.

  • The two upper signals are suitable for describing unipolar systems,  the lower ones for bipolar (antipodal) digital signal transmission.
  • For the diagrams on the left,  $T = 1\ \rm µ s$  is assumed.  For the two right ones,  however,   $T = 2\ \rm µ s$  and thus half the symbol rate applies.

Characteristics of the digital transmitter


The  transmitter  of a digital transmission system has the task of generating a suitable transmitted signal  $s(t)$  from the  (Dirac-shaped)  source signal,  which contains the message of the source completely and is adapted to the characteristics of the transmission channel,  the interferences as well as all technical receiving equipment.  In addition,  the transmitter ensures the provision of a sufficiently large transmission power.

As a descriptive quantity for the transmitter,  we use the basic transmitter pulse  $g_s(t)$.  Due to the definition of the source signal  $q(t)$  as a sum of weighted and shifted Dirac delta functions,  the transmitted signal can be represented with the amplitude coefficients  $a_\nu$  in the following way:

\[s(t) = q(t) \star g_s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.05cm}.\]

Often the basic transmitter pulse  $g_s(t)$  is assumed to be rectangular with

  • the pulse height  $s_0 = g_s(t = 0)$  and
  • the  (absolute)  pulse duration  $T_{\rm S}$.


$\text{Definition:}$  If  $T_{\rm S} < T$  applies,  this is referred to as an  RZ pulse  ("return–to–zero"),  and if  $T_{\rm S} = T$,  this is referred to as an  NRZ pulse  ("non–return–to–zero").


With a different basic transmitter pulse,  for example


the  "equivalent pulse duration"  defined by the equal-area rectangle is usually used as description parameter instead of the absolute pulse duration  $T_{\rm S}$: 

$$\Delta t_{\rm S} = \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \le T_{\rm S} \hspace{0.05cm}.$$

Only in case of the rectangular basic transmitter pulse  $\Delta t_{\rm S} = T_{\rm S}$  is valid.

If the height of the basic transmitter pulse  $g_s(t)$  differs from the maximum value  $s_0$  of the transmitted signal  $s(t)$,  we denote the pulse amplitude by  $A_{\rm S}$.  This is true for the Gaussian pulse,  for example.

The interaction module  "Pulses and Spectra"  shows some common basic transmitter pulses   $g_s(t)$  and the corresponding spectra  $G_s(f)$.

$\text{Example 2:}$  The following graphic is always based on the source symbol sequence $\langle q_\nu \rangle = \langle \text{...}\hspace{0.05cm}, \mathbf{L}, \mathbf{H}, \mathbf{H}, \mathbf{L},\hspace{0.15cm}\mathbf{H}, \hspace{0.15cm}\mathbf{L},\mathbf{L}, \mathbf{H},\mathbf{L},\hspace{0.05cm} \text{...} \rangle $.  It shows three transmitted signals,

Binary transmitted signals with different pulse shapes
  • a bipolar transmitted signal  $s_{\rm A}(t)$  with NRZ rectangular pulses,
  • a bipolar transmitted signal  $s_{\rm B}(t)$  with RZ rectangular pulses, and
  • a unipolar transmitted signal  $s_{\rm C}(t)$  with Gaussian pulses.


In the following descriptions,  the bipolar NRZ rectangular  ("square-wave")  signal  $s_{\rm A}(t)$  is usually assumed. The duration  $T_{\rm S}$  of the basic transmitter pulse  $g_s(t)$  shown in red in the diagram is equal to the distance  $T$  between two successive pulses.

From the additional diagrams one recognizes:

  • For the RZ transmitted signal  $s_{\rm B}(t)$,  the pulse duration  $T_{\rm S}$  differs from the pulse spacing  $T$.  The diagram applies to the duty cycle  $T_{\rm S}/T = 0.5$.  Although  $s_{\rm B}(t)$  is also a binary signal,  there are three possible signal values here,  namely  $+s_0$,  $-s_0$  and  $0$.
  • An advantage is that even with a long  $\rm H$  or  $\rm L$  sequence there is no DC signal,  which makes clock synchronization easier.  A disadvantage of RZ signaling is the wider spectrum as well as the lower energy per symbol,  which leads to a higher bit error rate.
  • The signal  $s_{\rm C}(t)$  is unipolar and uses a Gaussian basic pulse  $g_s(t)$.  Such a signal is found,  for example,  in optical systems with intensity modulation,  since a laser or an LED  ("Light Emitting Diode")  cannot generate negative pulses in principle and a rectangular pulse is technologically more difficult to achieve than the Gaussian form.
  • In case of a  "real Gaussian pulse"  the absolute pulse duration is always  $T_{\rm S} \to \infty$.  The  (normalized)  equivalent pulse duration is chosen here with  $\Delta t_{\rm S} /T = 0.3$  relatively small,  so that the maximum value  $s_0$  of the transmitted signal is approximately equal to the pulse amplitude  $A_{\rm S}$. 
  • For wider Gaussian pulses these overlap;  the approximation  $s_0 \approx A_{\rm S}$  no longer applies in this case.

Transmission channel and interference


The  transmission channel  includes all the equipment located between the transmitter and the receiver.  The main component of the channel is the transmission medium,  which can be,  for example, 

  • a symmetrical double line,
  • a coaxial cable,
  • an optical fiber  ("glass fiber"),  or
  • a radio field.


In addition,  the transmission channel includes various equipment necessary for operational reasons,  such as power supply,  lightning protection and fault location.

In the most general case,  the following physical effects must be taken into account:

  • The transmission characteristics may be  "time-dependent",  especially in the case of a moving transmitter and/or receiver,  as described in detail in the first main chapter  "Time-Variant Transmission Channels"  of the book  "Mobile Communications".  In this book,  the channel is always assumed to be  linear and time-invariant   $\rm (LTI)$.
  • The characteristics of the LTI channel can be frequency dependent,  characterized by the frequency response  $H_{\rm K}(f)$.  In conducted transmission,   $H_{\rm K}(f) \ne \rm const.$  always holds and distortion occurs,  as discussed in the section "Definition of the term Intersymbol Interference".
  • Stochastic interference  $n(t)$ is superimposed on the deterministic signal,  for example the unavoidable thermal noise,  pulse interference,  and crosstalk interference from other subscribers.


For this first main chapter,  $H_{\rm K}(f) =1$  is always assumed,  which means that the first two points mentioned are excluded for the time being.

Center:  AWGN channel model,     on the left:  Power-spectral density  $\rm (PSD)$,    on the right:  Probability density function  $\rm (PDF)$

Thus,  in the following, for the signal at the channel output always holds:

$$r(t) = s(t) + n(t).$$

The simplest realistic assumption for the transmission channel of a communication system is  Additive White Gaussian Noise  $\rm (AWGN)$,  as already stated in other LNTwww books,


$\text{The AWGN channel model  can be summarized as follows:}$ 

  • The letter  $\rm N$  indicates that only noise is considered by the AWGN model.  Distortions of the useful signal  $s(t)$  are not accounted for by this simple model.
  • Although noise is generally caused by a variety of noise sources along the entire transmission path,  for linear systems it can be accounted for by a single additive noise term at the channel output  $($letter  $\rm A)$.
  • The noise includes all frequencies equally.  It has a constant white  $\rm (W)$  "power-spectral density"  $\rm (PSD)$  and a Dirac-shaped  "auto-correlation function"  $\rm (ACF)$:
$${\it \Phi}_n(f) = {N_0}/{2}\hspace{0.15cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm} \varphi_n(\tau) = {N_0}/{2} \cdot \delta (\tau)\hspace{0.05cm}.$$
The factor  $1/2$  on both sides of this Fourier transform equation accounts for the two-sided spectral representation.
  • For example,  in the case of thermal noise,  for the physical noise power density  $($that is:   one-sided view)  with noise figure  $F \ge 1$  and absolute temperature  $\theta$:
\[{N_0}= F \cdot k_{\rm B} \cdot \theta , \hspace{0.3cm}k_{\rm B} = 1.38 \cdot 10^{-23} \hspace{0.2cm}{ \rm Ws}/{\rm K}\hspace{0.2cm}{\text{(Boltzmann constant)} }\hspace{0.05cm}.\]
  • True white noise would result in infinitely large power.  Therefore,  a band limit on  $B$  must always be considered.  The following applies to the effective noise power:
\[N = \sigma_n^2 = {N_0} \cdot B \hspace{0.05cm}.\]
\[f_n(n) = \frac{1}{\sqrt{2\pi}\cdot\sigma_n}\cdot {\rm e}^{ - {\it n^{\rm 2} }/{(2\sigma_n^2)} }.\]

We would like to refer you here to the  (German language)  three-part learning video  "AWGN Channel",  in which the AWGN properties are clarified again.


Receiver filter and threshold decision


The simplest receiver for binary transmission via the AWGN channel consists of

Receiver of a binary baseband transmission system
  • receiver filter  (German:  "Empfangsfilter"   ⇒   subscript:  "E")  with frequency response  $H_{\rm E}(f)$,
  • and a  threshold decision  for obtaining the binary signal.


This receiver structure can be justified as follows:  The signal  $d(t)$  after the receiver filter   ⇒   "detection signal"  can be divided at least mentally in two parts:  

$$d(t) = d_{\rm S}(t)+d_{\rm N}(t).$$
  • The portion  $d_{\rm S}(t)$  is due solely to the receiver input signal  $r(t)=s(t)$    ⇒   $n(t)= 0$.  The subscript  "S"  stands for "signal".  In the following,  we also refer to  $d_{\rm S}(t)$  as the  "signal component"  of  $d(t)$. 
  • With the impulse response  $h_{\rm E}(t)$  as the Fourier retransform of the frequency response  $H_{\rm E}(f)$  holds:
$$d_{\rm S}(t) = s(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$
  • For the second part  $d_{\rm N}(t)$,  on the other hand,  one assumes the receiver input signal  $r(t)=n(t)$    ⇒   $s(t)= 0$.
    We also refer to this portion  $d_{\rm N}(t)$  as the  "noise component"  of  $d(t)$.  The following convolution operation applies to it:
$$d_{\rm N}(t) = n(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$
  • The white noise  $n(t)$  at the receiver input has theoretically an infinitely large power  $($practically:  an unnecessarily large power$)$.  The low-pass filter with frequency response  $H_{\rm E}(f)$  limits this to the squared expected value of the "noise component"  $d_{\rm N}(t)$   ⇒   "variance"   ⇒   "noise power":
\[\sigma_d^2 = {\rm E}\big[d_{\rm N}(t)^2\big] \hspace{0.05cm}.\]
  • However,  it should be noted that the low-pass  $H_{\rm E}(f)$  alters not only the noise  $n(t)$,  but also the transmitted signal  $s(t)$.  As a result,  the individual transmission pulses are broadened and reduced in amplitude.  According to the prerequisites for this chapter,  it must be ensured that  "intersymbol interference"  does not occur.
  • The decider's task is to generate the discrete–value and discrete–time sink signal  $v(t)$  from the continuous–value and continuous–time detection signal  $d(t)$,  which should reproduce the message of the transmitted signal  $s(t)$  as well as possible.  The operation of the  (binary)  threshold decision is described in $\text{Example 3}$.


$\text{Example 3:}$  The upper graphic

Signals in an optimal binary system
  • shows in red the rectangular transmitted signal  $s(t)$  normalized to  $\pm 1$, 
  • which is superimposed by additive noise  $n(t)$. 
  • Shown in blue is the received signal  $r(t) = s(t) + n(t)$.


To this graphic it is to be noted further:

  1. After the receiver filter with a rectangular impulse response of duration  $T$,  the signal  $d(t)$  shown in the middle figure  (green curve)  is obtained.
  2. In this special case  ("matched filter"),  the part  $d_{\rm S}(t)$,  which is exclusively due to the transmitted signal  $s(t)$,  has the section–wise linear course shown in red dots. 
  3. The difference  $d(t) - d_{\rm S}(t)$  is the noise component  $d_{\rm N}(t)$,  which originates from the AWGN term  $n(t)$. 
  4. The subsequent threshold decision evaluates the detection signal  $d(t)$.  For this purpose, it compares its samples at the equidistant detection times – marked by yellow arrows in the graphic – with the threshold value  $E = 0$. 
  5. Accordingly,  the decider sets the sink signal  $v(t)$  in the range  $\nu \cdot T$ ... $(\nu + 1) \cdot T$  to  $+1$  or  $-1$,  depending on whether the detection sample  $d(t)$  is larger or smaller than the decision threshold  $E$.
  6. If the decision unit makes always the correct decision,  as in the example shown,  its output signal is  $v(t) = s(t-T/2)$.
  7. The delay time of half a symbol duration  $(T/2)$  is  due to the fact that the detection signal  $d(t)$  is sensibly decided in the middle of the symbol,  but the provision of the sink signal  $v(t)$  can only take place afterwards for reasons of causality.


Block diagram and prerequisites for the first main chapter


The following block diagram is used as a basis for the further sections of this first main chapter.  Unless explicitly stated otherwise  the following prerequisites apply:

Equivalent block diagram for the investigation of binary baseband transmission systems
  ⇒   $q(t)$:  source signal   ⇒   binary, bipolar and redundancy-free,  bit rate  $R = 1/T$,
  ⇒   $s(t)$:  transmitted signal   ⇒   NRZ–rectangular,  amplitude  $s_0$,  pulse duration  $T$,
  ⇒   $g_s(t)$:  basic transmitter pulse   ⇒   spectrum  $G_s(f)= s_0 \cdot T \cdot {\rm sinc}(f \hspace{0.05cm}T)$,
  ⇒   $r(t)= s(t) + n(t)$:  received signal   ⇒   channel frequency response  $H_{\rm K}(f) =1$,
  ⇒   $n(t)$:  noise signal   ⇒   "AWGN":  constant one-sided noise power density  $N_0$,
  ⇒   $d(t) = r(t) \star h_{\rm E} (t)$:  detection signal   ⇒   after low-pass filtering,
  ⇒   $h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big]$:  impulse response of the receiver filter  $H_{\rm E}(f)$,
  ⇒   $v(t)$:  sink signal   ⇒   after threshold decision, parameter: $E = 0$,  at times  $\nu \cdot T$.
  • The transmission is binary,  bipolar and redundancy-free with bit rate  $R = 1/T$.  Coded and/or multilevel transmission is dealt with in the  "second main chapter"
  • The transmitted signal  $s(t) = q(t) \star g_s(t)$  is equal to  $ \pm s_0$ at all times $t$,  i.e.:   The basic transmitter pulse  $g_s(t)$  is NRZ–rectangular with amplitude  $s_0$  and pulse duration  $T$.
  • Let for the received signal  $r(t) = s(t) + n(t)$.  Thus,  the channel frequency response is always  $H_{\rm K}(f) =1$.  $n(t)$  is characterized by the constant one-sided  (physical)  noise power density  $N_0$.
  • For the detection signal generally applies  $d(t) = r(t) \star h_{\rm E} (t)$,  where  $h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big]$  is the impulse response of the receiver filter with low-pass frequency response  $H_{\rm E}(f)$. 
  • $h_{\rm E}(t)$  is optimally matched to the basic transmitter pulse  $g_s(t)$,  so that  "intersymbol interference"  does not play a role.  Equalization methods are discussed in the "third main chapter"  of this book. 
  • The parameters of the  (binary)  threshold decision are optimally chosen:  Threshold:  $E = 0$,  detection times:  $\nu \cdot T$.


Exercises for the chapter


Exercise 1.1: Basic Transmitter Pulses

Exercise 1.1Z: Non-redundant Binary Source

References

  1. Tröndle, K.; Söder, G.:  Optimization of Digital Transmission Systems.  Boston – London: Artech House, 1987.