Difference between revisions of "Linear and Time Invariant Systems/Conclusions from the Allocation Theorem"

From LNTwww
m (Text replacement - "Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation" to "Signal_Representation/Fourier_Transform_Laws")
 
(95 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
 
{{Header
 
{{Header
|Untermenü=Beschreibung kausaler realisierbarer Systeme
+
|Untermenü=Description of Causal Realizable Systems
|Vorherige Seite=Lineare Verzerrungen
+
|Vorherige Seite=Linear_Distortions
|Nächste Seite=Laplace–Transformation und p–Übertragungsfunktion
+
|Nächste Seite=Laplace_Transform_and_p-Transfer_Function
 
}}
 
}}
  
== # ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE THIRD MAIN CHAPTER # ==
 
<br>
 
<br>
In den beiden ersten Kapiteln wurden aus Darstellungsgründen meist Filterfunktionen mit reellwertigen Frequenzgängen betrachtet, so dass die dazugehörige Zeitfunktion symmetrisch zum Zeitnullpunkt ist. Die Impulsantwort eines realisierbaren Systems muss aber stets kausal sein, das heißt, es muss &nbsp;$h(t)$&nbsp; für &nbsp;$t < 0$&nbsp; identisch Null sein. Diese starke Asymmetrie der Zeitfunktion&nbsp; $h(t)$&nbsp; bedeutet aber gleichzeitig, dass der Frequenzgang &nbsp;$H(f)$&nbsp; eines realisierbaren Systems mit Ausnahme von &nbsp;$H(f) = K$&nbsp; immer komplexwertig ist, wobei zwischen dessen Realteil und Imaginärteil ein fester Zusammenhang besteht.
+
In the first two chapters,&nbsp; filter functions with real-valued frequency responses were mostly considered for reasons of presentation so that the associated time function is symmetric about zero-time.&nbsp;  
  
Dieses dritte Kapitel bringt eine zusammenfassende Darstellung der Beschreibung kausaler realisierbarer Systeme, die sich auch von den mathematischen Methoden her von den bei akausalen Systemen üblichen Verfahren unterscheiden.  
+
*However,&nbsp; the impulse response of a realizable system must always be causal,&nbsp; that is, &nbsp;$h(t)$&nbsp; must be identical to zero for &nbsp;$t < 0$.&nbsp;
 +
 +
*This strong asymmetry of the time function&nbsp; $h(t)$&nbsp; implies at the same time that  with exception of &nbsp;$H(f) = K$&nbsp; the frequency response &nbsp;$H(f)$&nbsp; of a realizable system is always complex-valued where there is a fixed relation between its real part and imaginary part.
 +
 
 +
*This third chapter provides a recapitulatory account of the description of causal realizable systems,&nbsp; which differ also in the mathematical methods from those commonly used with non-causal systems.  
 +
 
 +
 
 +
In detail,&nbsp; the following is dealt with:
  
Im Einzelnen wird nachfolgend behandelt:
+
#The&nbsp; &raquo;Hilbert transform&laquo;,&nbsp; which states how real and imaginary parts of&nbsp; $H(f)$&nbsp; are related,
 +
#the&nbsp; &raquo;Laplace transform&laquo;,&nbsp; which yields another spectral function &nbsp;$H_{\rm L}(p)$&nbsp; for acausal &nbsp;$h(t)$,
 +
#the description of realizable systems by the&nbsp; &raquo;pole-zero plot&laquo;,&nbsp; as well as
 +
#the&nbsp; &raquo;inverse Laplace transform&laquo;&nbsp; using the&nbsp; function theory&nbsp; $($&raquo;residue theorem&laquo;$)$.
  
*die Hilbert–Transformation, die aussagt, wie Real– und Imaginärteil von&nbsp; $H(f)$&nbsp; zusammenhängen,
 
*die Laplace–Transformation, die bei kausalem &nbsp;$h(t)$&nbsp; eine weitere Spektralfunktion &nbsp;$H_{\rm L}(p)$&nbsp; liefert,
 
*die Beschreibung realisierbarer Systeme durch das Pol–Nullstellen–Diagramm, sowie
 
*die Laplace–Rücktransformation unter Anwendung der Funktionentheorie (Residuensatz).
 
  
 +
For this chapter,&nbsp; we recommend two of our multimedia offerings:
 +
*the&nbsp; $($German language$)$&nbsp; learning video &nbsp;[[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|"Rechnen mit komplexen Zahlen"]] &nbsp; &rArr; &nbsp; "Arithmetic operations involving complex numbers",
  
Zu diesem Kapitel empfehlen wir
+
*the&nbsp; $($German language$)$&nbsp; interactive SWF applet &nbsp;[[Applets:Kausale_Systeme_-_Laplacetransformation|"Kausale Systeme - Laplacetransformation"]] &nbsp; &rArr; &nbsp; "Causal systems – Laplace transform".
*zur Vorbereitung das Lernvideo &nbsp;[[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]], sowie
 
* das interaktive Applet &nbsp;[[Applets:Kausale_Systeme_-_Laplacetransformation|Kausale Systeme Laplacetransformation]] -  eine zusammenhängende Darstellung.
 
  
  
==Voraussetzungen für das gesamte Kapitel &bdquo;Realisierbare Systeme&rdquo;==
+
==Prerequisites for the entire third main chapter==
 
<br>
 
<br>
In den beiden ersten Kapiteln wurden meist reelle&nbsp; [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Übertragungsfunktionen]]&nbsp; &nbsp;$H(f)$&nbsp; betrachtet, bei denen demzufolge die zugehörige Impulsantwort &nbsp;$h(t)$&nbsp; stets symmetrisch zum Bezugszeitpunkt &nbsp;$t = 0$&nbsp; ist. Solche Übertragungsfunktionen
+
In the first two chapters,&nbsp; mostly real&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_–_Transfer_function|&raquo;transfer functions&laquo;]]&nbsp; &nbsp;$H(f)$&nbsp; were considered for which the associated impulse response &nbsp;$h(t)$&nbsp; is consequently always symmetric with respect to the reference time &nbsp;$t = 0$.&nbsp; Such transfer functions
*eignen sich, um grundlegende Zusammenhänge einfach zu erklären,  
+
*are suitable to explain basic relationships in a simple way,
*sind aber leider aus Kausalitätsgründen nicht realisierbar.  
+
 +
*but unfortunately are not realizable for reasons of causality.  
  
  
Dies wird deutlich, wenn man sich die Definition der Impulsantwort betrachtet:
+
This becomes clear if the definition of the impulse response is considered:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Die&nbsp; '''Impulsantwort''' &nbsp;$h(t)$&nbsp; ist gleich dem Ausgangssignal &nbsp;$y(t)$&nbsp; des Systems, wenn am Eingang zum Zeitpunkt &nbsp;$t = 0$&nbsp; ein unendlich kurzer Impuls mit unendlich großer Ampltude anliegt: &nbsp; $x(t) = δ(t)$. Man bezeichnet einen solchen Impuls als [[Signal_Representation/Special_Cases_of_Impulse_Signals#Diracimpuls|Diracimpuls]].}}
+
The&nbsp; &raquo;'''impulse response'''&laquo; &nbsp;$h(t)$&nbsp; is equal to the output signal &nbsp;$y(t)$&nbsp; of the system if an infinitely short impulse with an infinitely large amplitude is applied to the input at time &nbsp;$t = 0$&nbsp;: &nbsp; $x(t) = δ(t)$.&nbsp; Such an impulse is called a&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Dirac_delta_or_impulse|&raquo;Dirac delta impulse&laquo;]].}}
  
  
Es ist offensichtlich, dass keine Impulsantwort realisiert werden kann, für die &nbsp;$h(t < 0) ≠ 0$&nbsp; gilt.
+
It is obvious that no impulse response can be realized for which &nbsp;$h(t < 0) ≠ 0$&nbsp; holds.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Bei einem&nbsp; '''kausalen System'''&nbsp; ist die Impulsantwort $h(t)$ für alle Zeiten&nbsp; $t < 0$&nbsp;  identisch Null.}}
+
For a&nbsp; &raquo;'''causal system'''&laquo;&nbsp; the impulse response&nbsp; $h(t)$&nbsp; is identical to zero for all times&nbsp; $t < 0$.}}
  
  
Die einzige reelle Übertragungsfunktion, die der Kausalitätsbedingung „das Ausgangssignal kann nicht vor dem Eingangssignal beginnen” genügt, lautet:
+
The only real transfer function that satisfies the causality condition&nbsp; &raquo;the output signal cannot start before the input signal&laquo;&nbsp; is:
 
:$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$
 
:$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$
Alle anderen reellwertigen Übertragungsfunktionen&nbsp; $H(f)$&nbsp; beschreiben akausale Systeme und sind somit durch ein (elektrisches) Schaltungsnetzwerk nicht zu realisieren.  
+
All other real-valued transfer functions&nbsp; $H(f)$&nbsp; describe non-causal systems and thus cannot be realized by an&nbsp; $($electrical$)$&nbsp; circuit network.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{In anderen Worten:}$ &nbsp; Außer der Übertragungsfunktion&nbsp; $H(f) = K$&nbsp; '''ist jede realistische Übertragungsfunktion komplex'''.  
+
$\text{In other words:}$ &nbsp; Except for the transfer function&nbsp; $H(f) = K,$&nbsp; '''any realistic transfer function is complex'''.  
*Gilt zudem&nbsp; $K=1$, so bezeichnet man die  Übertragungsfunktion als ideal.&nbsp;  
+
*If&nbsp; $K=1$&nbsp; holds additionally,&nbsp; the transfer function is said to be&nbsp; &raquo;ideal&laquo;.&nbsp;
*Der Ausgang &nbsp;$y(t)$&nbsp; ist dann identische mit dem Eingang &nbsp;$x(t)$&nbsp; &ndash; auch ohne Dämpfung oder Verstärkung.}}
+
 +
*Then,&nbsp; the output signal &nbsp;$y(t)$&nbsp; is identical to the input signal &nbsp;$x(t)$&nbsp; &ndash; even without attenuation or amplification.}}
  
==Real– und Imaginärteil einer kausalen Übertragungsfunktion==
+
==Real and imaginary part of a causal transfer function==
 
<br>
 
<br>
Jede kausale Impulsantwort&nbsp; $h(t)$&nbsp; kann als Summe eines geraden Anteils&nbsp; $h_{\rm g}(t)$&nbsp; und eines ungeraden Anteils&nbsp; $h_{\rm u}(t)$&nbsp; dargestellt werden:
+
Any causal impulse response&nbsp; $h(t)$&nbsp; can be represented as the sum
 +
*of an even&nbsp; (German:&nbsp; "gerade" &nbsp; &rArr; &nbsp; "g")&nbsp; part&nbsp; $h_{\rm g}(t)$&nbsp;  
 +
*and an odd&nbsp; (German:&nbsp; "ungerade" &nbsp; &rArr; &nbsp; "u")&nbsp; part&nbsp; $h_{\rm u}(t)$:
  
 
:$$\begin{align*} h_{ {\rm g}}(t)  & =  {1}/{2}\cdot \big[  h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & =  {1}/{2}\cdot \big[  h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$
 
:$$\begin{align*} h_{ {\rm g}}(t)  & =  {1}/{2}\cdot \big[  h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & =  {1}/{2}\cdot \big[  h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$
  
Hierbei ist die sogenannte&nbsp; [https://de.wikipedia.org/wiki/Vorzeichenfunktion Signum–Funktion]&nbsp; verwendet:
+
Here,&nbsp; the so-called&nbsp; [https://en.wikipedia.org/wiki/Sign_function &raquo;sign function&laquo;]&nbsp; is used:
 
:$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\
 
:$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\
 
  +1 \\  \end{array} \right.\quad \quad
 
  +1 \\  \end{array} \right.\quad \quad
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
\begin{array}{c}  {\rm{for}}  \\ {\rm{for}}
 
\\    \end{array}\begin{array}{*{20}c}
 
\\    \end{array}\begin{array}{*{20}c}
 
{  t  < 0,}  \\
 
{  t  < 0,}  \\
Line 72: Line 82:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;  
+
$\text{Example 1:}$&nbsp;  
Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort eines Tiefpasses erster Ordnung entsprechend&nbsp; [[Aufgaben:Aufgabe_1.3Z:_Exponentiell_abfallende_Impulsantwort|Aufgabe 1.3Z]]:
+
The graph shows this splitting for a causal exponentially decreasing impulse response of a low-pass filter of first-order corresponding to&nbsp; [[Aufgaben:Exercise_1.3Z:_Exponentially_Decreasing_Impulse_Response|$\text{Exercise 1.3Z}$]]:
 +
[[File: P_ID1750__LZI_T_3_1_S2a_neu.png |right|frame| Splitting of the impulse response into an even part and an odd part|class=fit]]
 
:$$h(t) = \left\{ \begin{array}{c} 0 \\
 
:$$h(t) = \left\{ \begin{array}{c} 0 \\
 
  0.5/T  \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad  
 
  0.5/T  \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad  
\begin{array}{c}  {\rm{f\ddot{u}r} }  \\ {\rm{f\ddot{u}r} }
+
\begin{array}{c}  {\rm{for} }  \\ {\rm{for} }
\\  {\rm{f\ddot{u}r} }  \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for} }  \end{array}\begin{array}{*{20}c}
 
{  t  < 0\hspace{0.05cm},}  \\
 
{  t  < 0\hspace{0.05cm},}  \\
 
{ t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.}
 
{ t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.}
Line 83: Line 94:
 
\end{array}$$
 
\end{array}$$
  
[[File: P_ID1750__LZI_T_3_1_S2a_neu.png |center|frame| Aufteilung der Impulsantwort in einen geraden und einen ungeraden Anteil|class=fit]]
+
It can be seen that
 
+
*$h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$&nbsp; holds for positive times,
Man erkennt:
+
*Für positive Zeiten gilt &nbsp;$h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$.
+
*$h_{\rm g}(t)$&nbsp; and &nbsp;$h_{\rm u}(t)$&nbsp; differ only by the sign for negative times,
*Für negative Zeiten unterscheiden sich &nbsp;$h_{\rm g}(t)$&nbsp; und &nbsp;$h_{\rm u}(t)$&nbsp; nur durch das Vorzeichen.
+
*Für alle Zeiten gilt &nbsp;$h(t) = h_{\rm g}(t) + h_{\rm u}(t)$, auch zum Zeitpunkt &nbsp;$t = 0$ (durch Kreise markiert). }}
+
*$h(t) = h_{\rm g}(t) + h_{\rm u}(t)$&nbsp; holds for all times, also at time &nbsp;$t = 0$&nbsp; $($marked by circles$)$. }}
  
  
Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Zuordnungssatz]]&nbsp; gilt für die komplexe Übertragungsfunktion: &nbsp;
+
Let us now consider the same issue in the spectral domain.&nbsp; According to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;'''Assignment Theorem'''&laquo;]]&nbsp; the following holds for the complex transfer function: &nbsp;
 
:$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \}
 
:$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \}
 
  ,$$
 
  ,$$
wobei folgende Zuordnung gilt:
+
where the following assignment is valid:
  
 
:$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
 
:$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
Line 100: Line 111:
 
:$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\}  \quad  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$
 
:$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\}  \quad  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$
  
Zunächst soll an einem weiteren Beispiel dieser Zusammenhang zwischen Real– und Imaginärteil von &nbsp;$H(f)$&nbsp; herausgearbeitet werden.
+
First,&nbsp; this relationship between  real part and imaginary part of &nbsp;$H(f)$&nbsp; shall be worked out using another example.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Wir gehen von einem Tiefpass erster Ordnung aus, für dessen Übertragungsfunktion gilt:
+
A low-pass filter of first-order is assumed and the following holds for its transfer function:
 
:$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
 
:$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
Hierbei gibt&nbsp; $f_{\rm G}$&nbsp; die 3dB–Grenzfrequenz an, bei der&nbsp; $\vert H(f)\vert^2$&nbsp; auf die Hälfte seines Maximums&nbsp; $($bei&nbsp; $f = 0)$&nbsp; abgesunken ist. Die dazugehörige Impulsantwort&nbsp;  $h(t)$&nbsp; wurde bereits im obigen&nbsp; $\text{Beispiel 1}$&nbsp; für&nbsp;  $f_{\rm G} = 1/(2πT)$&nbsp; dargestellt.
+
[[File:P_ID1754__LZI_T_3_1_S2b_neu.png|right|frame|Frequency response of a first-order low-pass filter |class=fit]]
 +
Here,&nbsp; $f_{\rm G}$&nbsp; represents the&nbsp; $\rm 3\hspace{0.05cm}dB$&nbsp; cut-off frequency at which&nbsp; $\vert H(f)\vert^2$&nbsp; has decreased to half of its maximum&nbsp; $($at&nbsp; $f = 0)$.&nbsp; The corresponding impulse response&nbsp;  $h(t)$&nbsp; has already been shown in&nbsp; $\text{Example 1}$&nbsp; for&nbsp;  $f_{\rm G} = 1/(2πT)$.
  
Die Grafik zeigt den Realteil  (blau) und den Imaginärteil (rot) von&nbsp; $H(f)$. Grün–gestrichelt ist zudem der Betrag dargestellt.  
+
&rArr; &nbsp; The graph shows the real part&nbsp; $($blue$)$&nbsp; and the imaginary part&nbsp; $($red$)$&nbsp; of&nbsp; $H(f)$.&nbsp;  In addition,&nbsp; the magnitude is shown dashed in green.  
  
[[File:P_ID1754__LZI_T_3_1_S2b_neu.png|right|frame|Frequenzgang eines Tiefpasses erster Ordnung&nbsp; (Real– und Imaginärteil)|class=fit]]
+
Since the time functions &nbsp;$h_{\rm g}(t)$&nbsp; and &nbsp;$h_{\rm u}(t)$&nbsp; are related by the sign function,&nbsp; there also exists a fixed relationship
 
+
* between the real part &nbsp; &rArr; &nbsp; ${\rm Re} \{H(f)\}$&nbsp;
 
+
 
+
* and the imaginary part &nbsp; &rArr; &nbsp;${\rm Im} \{H(f)\}$&nbsp;  
Nachdem die Zeitfunktionen &nbsp;$h_{\rm g}(t)$&nbsp; und &nbsp;$h_{\rm u}(t)$&nbsp; über die Signumfunktion zusammenhängen, besteht auch
 
* zwischen dem Realteil &nbsp; &rArr; &nbsp; ${\rm Re} \{H(f)\}$&nbsp;  
 
* und dem Imaginärteil &nbsp; &rArr; &nbsp;${\rm Im} \{H(f)\}$&nbsp;  
 
  
  
der Übertragungsfunktion eine feste Verknüpfung <br><br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp; die&nbsp; '''Hilbert–Transformation'''.
+
of the transfer function&nbsp; ${\cal H} \{H(f)\}$  &nbsp; &rArr; &nbsp; &raquo;'''Hilbert transform'''&laquo;.
 
   
 
   
Diese wird nachfolgend beschrieben.}}
+
This is described below.}}
  
==Hilbert–Transformation==
+
==Hilbert transform==
 
<br>
 
<br>
Wir betrachten hier ganz allgemein zwei Zeitfunktionen&nbsp; $u(t)$&nbsp; und&nbsp; $w(t) = \sign(t) · u(t)$.
+
Here,&nbsp; two time functions&nbsp; $u(t)$&nbsp; and&nbsp; $w(t) = \sign(t) · u(t)$&nbsp; are considered in the most general sense:
*Die dazugehörigen Spektralfunktionen werden mit&nbsp; $U(f)$&nbsp; und&nbsp; ${\rm j} · W(f)$&nbsp; bezeichnet.
+
*The associated spectral functions are denoted by&nbsp; $U(f)$&nbsp; and&nbsp; ${\rm j} · W(f)$.
*Das heißt, in diesem Abschnitt gilt&nbsp;  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j}  \cdot W(f) }$&nbsp; und nicht die sonst übliche Fourierkorrespondenz&nbsp; ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$
+
 +
*That is: &nbsp; In this section&nbsp;  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j}  \cdot W(f) }$&nbsp; is valid and not the usual Fourier correspondence&nbsp; ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$
  
  
Mit der Korrespondenz  &nbsp; ${\rm sign}(t) \,  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$ &nbsp; erhält man nach Ausschreiben des [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungsintegrals]] mit der Integrationsvariablen&nbsp; $ν$ :
+
Using the correspondence &nbsp; ${\rm sign}(t) \,  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$ &nbsp; the following is obtained after writing the [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_time domain|&raquo;convolution integral&laquo;]] out in full with the integration variable&nbsp; $ν$ :
 
:$${\rm j} \cdot W(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
 
:$${\rm j} \cdot W(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
Da aber gleichzeitig auch &nbsp; $u(t) = \sign(t) · w(t)$ &nbsp; zutrifft, gilt in gleicher Weise:
+
However,&nbsp; since at the same time  also holds &nbsp; $u(t) = \sign(t) · w(t)$,&nbsp; the following is valid in the same way:
 
:$$U(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
 
:$$U(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
  
Man hat diese ''Integraltransformationen''&nbsp; nach ihrem Entdecker&nbsp; [https://de.wikipedia.org/wiki/David_Hilbert David Hilbert]&nbsp; benannt.   
+
These&nbsp; &raquo;integral transformations&laquo;&nbsp; are named after their discoverer&nbsp; [https://en.wikipedia.org/wiki/David_Hilbert $\text{David Hilbert}$].   
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Beide Varianten der&nbsp; '''Hilbert–Transformation'''&nbsp; werden im weiteren Verlauf mit folgenden Kurzzeichen gekennzeichnet:
+
$\text{Definitions:}$&nbsp; Both variants of the&nbsp; &raquo;'''Hilbert transformation'''&laquo;&nbsp; will be denoted by the following abbreviations in the further course:
:$$W(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm bzw.}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
+
:$$W(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm or}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
*Zur Berechnung des durch die Pfeilspitze markierten Spektrums hier &nbsp;$U(f)$&nbsp; – wird von den beiden ansonsten identischen oberen Gleichungen die Gleichung mit positivem Vorzeichen genommen:
+
*To calculate the spectrum marked by the arrowhead&nbsp; &nbsp; here &nbsp;$U(f)$ &nbsp; –&nbsp; the equation with the positive sign is taken from the two otherwise identical upper equations:
 
:$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$  
 
:$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$  
*Das durch den Kreis markierte Spektrum hier &nbsp;$W(f)$&nbsp; – ergibt sich aus der Gleichung  mit negativem Vorzeichen:  
+
*The spectrum marked by the circle&nbsp; &nbsp; here &nbsp;$W(f)$ &nbsp; –&nbsp; arises as a result from the equation with the negative sign:  
 
:$$
 
:$$
 
W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$}}
 
W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$}}
  
  
Bei doppelter Anwendung der Hilbert–Transformation erhält man wieder die ursprüngliche Funktion mit Vorzeichenwechsel, bei vierfacher Anwendung die ursprüngliche Funktion inklusive dem richtigen Vorzeichen:  
+
Applying the Hilbert transformation twice yields the original function with a change of sign,&nbsp; and applying it four times yields the original function including the correct sign:  
:$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f), \hspace{0.2cm}  {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$
+
:$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f),$$
 +
:$${\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;  
+
$\text{Example 3:}$&nbsp;  
In&nbsp; [Mar94]<ref name ='Mar94'>Marko, H.: ''Methoden der Systemtheorie.'' 3. Auflage. Berlin – Heidelberg: Springer, 1994.</ref>&nbsp; findet man die folgende Hilbert–Korrespondenz:
+
In&nbsp; [Mar94]<ref name ='Mar94'>Marko, H.:&nbsp; Methoden der Systemtheorie.&nbsp; 3. Auflage. Berlin – Heidelberg: Springer, 1994.</ref>&nbsp; the following Hilbert correspondence can be found:
 
:$$\frac{1}{1+x^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
 
:$$\frac{1}{1+x^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
*Hierbei steht &nbsp;$x$&nbsp; stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable.  
+
*Here, &nbsp;$x$&nbsp; is representative of a suitably normalized time or frequency variable.  
*Benutzen wir beispielsweise &nbsp;$x = f/f_{\rm G}$&nbsp; als normierte Frequenzvariable, so erhält man daraus die Korrespondenz:
+
 
 +
*For example,&nbsp; if we use &nbsp;$x = f/f_{\rm G}$&nbsp; as a normalized frequency variable,&nbsp; then we obtain the correspondence:
 
:$$\frac{1}{1+(f/f_{\rm G})^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
 
:$$\frac{1}{1+(f/f_{\rm G})^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
Ausgehend von der Gleichung
+
Based on the equation
 
:$${\rm Im} \left\{ H(f) \right \}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$
 
:$${\rm Im} \left\{ H(f) \right \}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$
wird somit das auf im&nbsp; [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Real.E2.80.93_und_Imagin.C3.A4rteil_einer_kausalen_.C3.9Cbertragungsfunktion|$\text{Beispiel 2}$]]&nbsp; gefundene Ergebnis bestätigt:
+
the result found in&nbsp; [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Real_and_imaginary_part_of_a_causal_transfer_function|$\text{Example 2}$]]&nbsp; is thus confirmed:
 
:$${\rm Im} \left\{ H(f) \right \}  = \frac{-f/f_{\rm G} }{1+(f/f_{\rm  G})^2}\hspace{0.05cm}.$$}}
 
:$${\rm Im} \left\{ H(f) \right \}  = \frac{-f/f_{\rm G} }{1+(f/f_{\rm  G})^2}\hspace{0.05cm}.$$}}
  
==Einige Paare von Hilbert–Korrespondenzen==
+
==Some pairs of Hilbert correspondences==
 
<br>
 
<br>
Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt:  
+
A very pragmatic way is followed to derive Hilbert correspondences,&nbsp; namely as follows:
*Man berechnet die &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace–Transformation_und_p–Übertragungsfunktion#Definition_der_Laplace.E2.80.93Transformation|Laplace–Transformierte]]&nbsp;  $Y_{\rm L}(p)$&nbsp; der Funktion &nbsp;$y(t)$, wie nachfolgend beschrieben. Diese ist bereits implizit kausal.
+
*Man wandelt die Spektralfunktion &nbsp;$Y_{\rm L}(p)$&nbsp; in das zugehörige Fourierspektrum &nbsp;$Y(f)$&nbsp; um und spaltet dieses in Real– und Imaginärteil auf.&nbsp; Dazu ersetzt man die Variable &nbsp;$p$&nbsp; durch &nbsp;${\rm j \cdot 2}πf.$
+
*The &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Definition of the Laplace transformation|&raquo;Laplace transform&laquo;]]&nbsp;  $Y_{\rm L}(p)$&nbsp; of function &nbsp;$y(t)$ is computed as described in chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|&raquo;Laplace Transform and p-Transfer Function&laquo;]].&nbsp; This is already implicitly causal.
*Der Real&ndash; und Imaginärteil &ndash; also &nbsp;${\rm Re} \{Y(f)\}$&nbsp; und &nbsp;${\rm Im} \{Y(f)\}$ &ndash; sind somit ein Paar von Hilbert–Transformierten. Man ersetzt weiter
+
**die Frequenzvariable &nbsp;$f$&nbsp; durch &nbsp;$x$,
+
*$Y_{\rm L}(p)$&nbsp; is converted into the associated Fourier spectrum &nbsp;$Y(f)$&nbsp; which is split into real and imaginary part.&nbsp; To do this,&nbsp; the variable &nbsp;$p$&nbsp; is replaced by &nbsp;${\rm j \cdot 2}πf.$
** ${\rm Re} \{Y(f)\}$&nbsp; durch &nbsp;$g(x)$, und
+
 
** ${\rm Im} \{Y(f)\}$&nbsp; durch  &nbsp;${\cal H} \{g(x)\}$.  
+
[[File:EN_LZI_T_3_1_S4.png|right|frame|Table with Hilbert correspondences|class=fit]]
 +
 
  
*Die neue Variable &nbsp;$x$&nbsp; kann sowohl eine (geeignet) normierte Frequenz oder auch eine (geeignet) normierte Zeit beschreiben. Somit ist die&nbsp; [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion#Darstellung_mit_der_Hilberttransformation|Hilbert–Transformation]]&nbsp; auf verschiedene Probleme anwendbar.
+
The real and imaginary parts &ndash; so &nbsp;${\rm Re} \{Y(f)\}$&nbsp; and &nbsp;${\rm Im} \{Y(f)\}$ &ndash; are thus a pair of Hilbert transforms. Furthermore,
 +
#&nbsp; the frequency variable &nbsp;$f$&nbsp; is substituted by &nbsp;$x$,
 +
#&nbsp; the real part&nbsp; ${\rm Re} \{Y(f)\}$&nbsp; by &nbsp;$g(x)$,&nbsp; and
 +
#&nbsp;   the imaginary part&nbsp; ${\rm Im} \{Y(f)\}$&nbsp; by  &nbsp;${\cal H} \{g(x)\}$.  
  
  
[[File:EN_LZI_T_3_1_S4.png|center|frame|Tabelle mit Hilbert–Korrespondenzen|class=fit]]
+
The new variable &nbsp;$x$&nbsp; can describe both
 +
*a&nbsp; $($suitably$)$&nbsp; normalized frequency
  
Die Tabelle zeigt einige solcher Hilbertpaare. &nbsp; Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind.  
+
*or a&nbsp; $($suitably$)$&nbsp; normalized time.  
  
 +
 +
Hence,&nbsp; the&nbsp; [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function#Representation with Hilbert transform|&raquo;Hilbert transformation&laquo;]]&nbsp; is applicable to various problems.&nbsp; The table shows some of such Hilbert pairs. The signs have been omitted so that both directions are valid.
 +
<br clear=all>
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp; Gilt beispielsweise &nbsp;${\cal H} \{g(x)\} = f(x)$, so folgt daraus auch &nbsp;${\cal H} \{f(x)\} = \, –g(x)$. Insbesondere gilt auch:
+
$\text{Example 4:}$&nbsp; For example,&nbsp; if &nbsp;${\cal H} \{g(x)\} = f(x)$&nbsp; holds,&nbsp; then from this it also follows that &nbsp;
 +
:$${\cal H} \{f(x)\} = \, –g(x).$$
 +
 
 +
In particular,&nbsp; it also holds:
 
:$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$}}
 
:$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$}}
  
==Dämpfung und Phase von Minimum–Phasen–Systemen==
+
==Attenuation and phase of minimum-phase systems==
 
<br>
 
<br>
Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den so genannten ''Minimum–Phasen–Systemen''&nbsp; dar. Im Vorgriff auf das folgende Kapitel &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]]&nbsp;  sei erwähnt, dass diese Systeme in der rechten&nbsp; $p$–Halbebene weder Pole noch Nullstellen aufweisen dürfen.
+
An important application of the Hilbert transformation is the relationship between attenuation and phase in so-called&nbsp; &raquo;'''minimum-phase systems'''&laquo;.&nbsp;  
  
Allgemein gilt für die Übertragungsfunktion &nbsp;$H(f)$&nbsp; mit dem &nbsp;[[Linear_and_Time_Invariant_Systems/Einige_Ergebnisse_der_Leitungstheorie#Ersatzschaltbild_eines_kurzen_Leitungsabschnitts|komplexen Übertragungsmaß]]&nbsp; $g(f)$&nbsp; sowie der Dämpfungsfunktion &nbsp;$a(f)$&nbsp; und der Phasenfunktion &nbsp;$b(f)$:
+
:In anticipation of the following chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|&raquo;Laplace Transform and p-Transfer Function&laquo;]],&nbsp; it should be mentioned that these systems may have neither poles nor zeros in the right&nbsp; $p$–half plane.  
:$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$
 
Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation
 
*bezüglich Imaginär– und Realteil &nbsp; &rArr; &nbsp; ${\rm Im} \left\{ H(f) \right \}  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$
 
*sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen der Phasen– und der Dämpfungsfunktion &nbsp; &rArr; &nbsp; $b(f)  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$
 
  
 +
In general,&nbsp; the following holds for the transfer function &nbsp;$H(f)$&nbsp; with
 +
# the &nbsp;[[Linear_and_Time_Invariant_Systems/Some_Results_from_Transmission_Line_Theory#Equivalent circuit diagram of a short transmission line section|&raquo;complex transmission function&laquo;]]&nbsp; $g(f)$&nbsp;
 +
#the attenuation function &nbsp;$a(f)$&nbsp; and
 +
# the phase function &nbsp;$b(f)$:
 +
::$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$
 +
Now in the case of minimum-phase systems,&nbsp; the Hilbert transformation does not only  hold
 +
*regarding imaginary and real part as it does for all realizable systems:
 +
:$${\rm Im} \left\{ H(f) \right \}  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$$
 +
*but additionally also the Hilbert correspondence between the phase and attenuation functions is valid:
 +
:$$b(f)  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp;  
+
$\text{Example 5:}$ &nbsp;  
Ein Tiefpass besitze im Durchlassbereich &ndash; also für &nbsp;$\vert f \vert < f_{\rm G}$ &ndash; den Frequenzgang &nbsp;$H(f) = 1$ &nbsp; ⇒  &nbsp; $a(f) =0 \ {\rm Np}$, während für größere Frequenzen die Dämpfungsfunktion &nbsp;$a(f)$&nbsp; den konstanten Wert &nbsp;$a_{\rm S}$ (in Neper) besitzt.
+
A low-pass filter has the frequency response &nbsp;$H(f) = 1$ &nbsp; ⇒  &nbsp; $a(f) =0$&nbsp; Np in the&nbsp; &raquo;pass band&laquo; &nbsp; &rArr; &nbsp; &nbsp;$\vert f \vert < f_{\rm G}$,&nbsp; while for higher frequencies the attenuation function &nbsp;$a(f)$&nbsp; has the constant value &nbsp;$a_{\rm S}$&nbsp; $($in Neper$)$.  
 
+
[[File:P_ID1753__LZI_T_3_1_S5_neu.png|right|frame|Attenuation and phase functions of an exemplary minimum-phase low-pass filter|class=fit]]
In diesem Sperrbereich ist &nbsp;$H(f) = {\rm e}^{–a_{\rm S} }$&nbsp; zwar sehr klein, aber nicht Null.
 
 
 
[[File:P_ID1753__LZI_T_3_1_S5_neu.png|center|frame|Dämpfungs&ndash; und Phasenfunktion eines beispielhaften Minimum–Phasen–Tiefpasses|class=fit]]
 
 
 
*Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion &nbsp;$b(f)$&nbsp; gleich der Hilbert–Transformierten der Dämpfung &nbsp;$a(f)$&nbsp; sein.
 
* Da die Hilbert–Transformierte einer Konstanten gleich Null ist, kann in gleicher Weise von der Funktion &nbsp;$a(f) - a_{\rm S}$&nbsp; ausgegangen werden.
 
  
 +
#In this&nbsp; &raquo;stop band&laquo;&nbsp; &rArr; &nbsp; &nbsp;$\vert f \vert > f_{\rm G}$,&nbsp; the frequency response &nbsp;$H(f) = {\rm e}^{–a_{\rm S} }$&nbsp; is very small but not zero.
 +
#If the low-pass filter is to be causal and thus realizable, then the phase function &nbsp;$b(f)$&nbsp; must be equal to the Hilbert transform of the attenuation &nbsp;$a(f)$&nbsp;.
 +
#Since the Hilbert transform of a constant is zero, the function &nbsp;$a(f) - a_{\rm S}$&nbsp; can be assumed in the same way.
 +
#This function shown dashed in the graph is&nbsp;  $($negative$)$&nbsp; rectangular between &nbsp;$±f_{\rm G}$.&nbsp; According to the &nbsp;[[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Some pairs of Hilbert correspondences|$\text{table}$]]&nbsp; in the last section the following thus holds:
 +
::$$b(f)  = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm  G} }\right \vert \hspace{0.05cm}.$$
  
Diese in der Grafik gestrichelt eingezeichnete Funktion ist zwischen &nbsp;$±f_{\rm G}$&nbsp; (negativ) rechteckförmig. Entsprechend der &nbsp;[[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Einige_Paare_von_Hilbert.E2.80.93Korrespondenzen|Tabelle]]&nbsp; auf der letzten Seite gilt deshalb:
+
$\text{Note:}$&nbsp;  
:$$b(f)  = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm  G} }\right \vert \hspace{0.05cm}.$$
+
In contrast,&nbsp; any other phase response would result in a non-causal impulse response.}}
Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.}}
 
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
  
[[Aufgaben:3.1_Kausalitätsbetrachtungen| Aufgabe 3.1: Kausalitätsbetrachtungen]]
+
[[Aufgaben:Exercise_3.1:_Causality_Considerations|Exercise 3.1: Causality Considerations]]
  
[[Aufgaben:3.1Z_Hilbert-Transformierte|Aufgabe 3.1Z: Hilbert-Transformierte]]
+
[[Aufgaben:Exercise_3.1Z:_Hilbert_Transform|Exercise 3.1Z: Hilbert Transform]]
  
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:21, 15 November 2023

# OVERVIEW OF THE THIRD MAIN CHAPTER #


In the first two chapters,  filter functions with real-valued frequency responses were mostly considered for reasons of presentation so that the associated time function is symmetric about zero-time. 

  • However,  the impulse response of a realizable system must always be causal,  that is,  $h(t)$  must be identical to zero for  $t < 0$. 
  • This strong asymmetry of the time function  $h(t)$  implies at the same time that with exception of  $H(f) = K$  the frequency response  $H(f)$  of a realizable system is always complex-valued where there is a fixed relation between its real part and imaginary part.
  • This third chapter provides a recapitulatory account of the description of causal realizable systems,  which differ also in the mathematical methods from those commonly used with non-causal systems.


In detail,  the following is dealt with:

  1. The  »Hilbert transform«,  which states how real and imaginary parts of  $H(f)$  are related,
  2. the  »Laplace transform«,  which yields another spectral function  $H_{\rm L}(p)$  for acausal  $h(t)$,
  3. the description of realizable systems by the  »pole-zero plot«,  as well as
  4. the  »inverse Laplace transform«  using the  function theory  $($»residue theorem«$)$.


For this chapter,  we recommend two of our multimedia offerings:


Prerequisites for the entire third main chapter


In the first two chapters,  mostly real  »transfer functions«   $H(f)$  were considered for which the associated impulse response  $h(t)$  is consequently always symmetric with respect to the reference time  $t = 0$.  Such transfer functions

  • are suitable to explain basic relationships in a simple way,
  • but unfortunately are not realizable for reasons of causality.


This becomes clear if the definition of the impulse response is considered:

$\text{Definition:}$  The  »impulse response«  $h(t)$  is equal to the output signal  $y(t)$  of the system if an infinitely short impulse with an infinitely large amplitude is applied to the input at time  $t = 0$ :   $x(t) = δ(t)$.  Such an impulse is called a  »Dirac delta impulse«.


It is obvious that no impulse response can be realized for which  $h(t < 0) ≠ 0$  holds.

$\text{Definition:}$  For a  »causal system«  the impulse response  $h(t)$  is identical to zero for all times  $t < 0$.


The only real transfer function that satisfies the causality condition  »the output signal cannot start before the input signal«  is:

$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$

All other real-valued transfer functions  $H(f)$  describe non-causal systems and thus cannot be realized by an  $($electrical$)$  circuit network.

$\text{In other words:}$   Except for the transfer function  $H(f) = K,$  any realistic transfer function is complex.

  • If  $K=1$  holds additionally,  the transfer function is said to be  »ideal«. 
  • Then,  the output signal  $y(t)$  is identical to the input signal  $x(t)$  – even without attenuation or amplification.

Real and imaginary part of a causal transfer function


Any causal impulse response  $h(t)$  can be represented as the sum

  • of an even  (German:  "gerade"   ⇒   "g")  part  $h_{\rm g}(t)$ 
  • and an odd  (German:  "ungerade"   ⇒   "u")  part  $h_{\rm u}(t)$:
$$\begin{align*} h_{ {\rm g}}(t) & = {1}/{2}\cdot \big[ h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & = {1}/{2}\cdot \big[ h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$

Here,  the so-called  »sign function«  is used:

$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\ +1 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} { t < 0,} \\ { t > 0.} \\ \end{array}$$


$\text{Example 1:}$  The graph shows this splitting for a causal exponentially decreasing impulse response of a low-pass filter of first-order corresponding to  $\text{Exercise 1.3Z}$:

Splitting of the impulse response into an even part and an odd part
$$h(t) = \left\{ \begin{array}{c} 0 \\ 0.5/T \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad \begin{array}{c} {\rm{for} } \\ {\rm{for} } \\ {\rm{for} } \end{array}\begin{array}{*{20}c} { t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$

It can be seen that

  • $h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$  holds for positive times,
  • $h_{\rm g}(t)$  and  $h_{\rm u}(t)$  differ only by the sign for negative times,
  • $h(t) = h_{\rm g}(t) + h_{\rm u}(t)$  holds for all times, also at time  $t = 0$  $($marked by circles$)$.


Let us now consider the same issue in the spectral domain.  According to the  »Assignment Theorem«  the following holds for the complex transfer function:  

$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \} ,$$

where the following assignment is valid:

$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$

First,  this relationship between real part and imaginary part of  $H(f)$  shall be worked out using another example.

$\text{Example 2:}$  A low-pass filter of first-order is assumed and the following holds for its transfer function:

$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
Frequency response of a first-order low-pass filter

Here,  $f_{\rm G}$  represents the  $\rm 3\hspace{0.05cm}dB$  cut-off frequency at which  $\vert H(f)\vert^2$  has decreased to half of its maximum  $($at  $f = 0)$.  The corresponding impulse response  $h(t)$  has already been shown in  $\text{Example 1}$  for  $f_{\rm G} = 1/(2πT)$.

⇒   The graph shows the real part  $($blue$)$  and the imaginary part  $($red$)$  of  $H(f)$.  In addition,  the magnitude is shown dashed in green.

Since the time functions  $h_{\rm g}(t)$  and  $h_{\rm u}(t)$  are related by the sign function,  there also exists a fixed relationship

  • between the real part   ⇒   ${\rm Re} \{H(f)\}$ 
  • and the imaginary part   ⇒  ${\rm Im} \{H(f)\}$ 


of the transfer function  ${\cal H} \{H(f)\}$   ⇒   »Hilbert transform«.

This is described below.

Hilbert transform


Here,  two time functions  $u(t)$  and  $w(t) = \sign(t) · u(t)$  are considered in the most general sense:

  • The associated spectral functions are denoted by  $U(f)$  and  ${\rm j} · W(f)$.
  • That is:   In this section  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j} \cdot W(f) }$  is valid and not the usual Fourier correspondence  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$


Using the correspondence   ${\rm sign}(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$   the following is obtained after writing the »convolution integral« out in full with the integration variable  $ν$ :

$${\rm j} \cdot W(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$

However,  since at the same time also holds   $u(t) = \sign(t) · w(t)$,  the following is valid in the same way:

$$U(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$

These  »integral transformations«  are named after their discoverer  $\text{David Hilbert}$.

$\text{Definitions:}$  Both variants of the  »Hilbert transformation«  will be denoted by the following abbreviations in the further course:

$$W(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm or}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
  • To calculate the spectrum marked by the arrowhead  –  here  $U(f)$   –  the equation with the positive sign is taken from the two otherwise identical upper equations:
$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
  • The spectrum marked by the circle  –  here  $W(f)$   –  arises as a result from the equation with the negative sign:
$$ W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$


Applying the Hilbert transformation twice yields the original function with a change of sign,  and applying it four times yields the original function including the correct sign:

$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f),$$
$${\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$

$\text{Example 3:}$  In  [Mar94][1]  the following Hilbert correspondence can be found:

$$\frac{1}{1+x^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
  • Here,  $x$  is representative of a suitably normalized time or frequency variable.
  • For example,  if we use  $x = f/f_{\rm G}$  as a normalized frequency variable,  then we obtain the correspondence:
$$\frac{1}{1+(f/f_{\rm G})^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$

Based on the equation

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$

the result found in  $\text{Example 2}$  is thus confirmed:

$${\rm Im} \left\{ H(f) \right \} = \frac{-f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$

Some pairs of Hilbert correspondences


A very pragmatic way is followed to derive Hilbert correspondences,  namely as follows:

  • $Y_{\rm L}(p)$  is converted into the associated Fourier spectrum  $Y(f)$  which is split into real and imaginary part.  To do this,  the variable  $p$  is replaced by  ${\rm j \cdot 2}πf.$
Table with Hilbert correspondences


The real and imaginary parts – so  ${\rm Re} \{Y(f)\}$  and  ${\rm Im} \{Y(f)\}$ – are thus a pair of Hilbert transforms. Furthermore,

  1.   the frequency variable  $f$  is substituted by  $x$,
  2.   the real part  ${\rm Re} \{Y(f)\}$  by  $g(x)$,  and
  3.   the imaginary part  ${\rm Im} \{Y(f)\}$  by  ${\cal H} \{g(x)\}$.


The new variable  $x$  can describe both

  • a  $($suitably$)$  normalized frequency
  • or a  $($suitably$)$  normalized time.


Hence,  the  »Hilbert transformation«  is applicable to various problems.  The table shows some of such Hilbert pairs. The signs have been omitted so that both directions are valid.

$\text{Example 4:}$  For example,  if  ${\cal H} \{g(x)\} = f(x)$  holds,  then from this it also follows that  

$${\cal H} \{f(x)\} = \, –g(x).$$

In particular,  it also holds:

$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$

Attenuation and phase of minimum-phase systems


An important application of the Hilbert transformation is the relationship between attenuation and phase in so-called  »minimum-phase systems«. 

In anticipation of the following chapter  »Laplace Transform and p-Transfer Function«,  it should be mentioned that these systems may have neither poles nor zeros in the right  $p$–half plane.

In general,  the following holds for the transfer function  $H(f)$  with

  1. the  »complex transmission function«  $g(f)$ 
  2. the attenuation function  $a(f)$  and
  3. the phase function  $b(f)$:
$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$

Now in the case of minimum-phase systems,  the Hilbert transformation does not only hold

  • regarding imaginary and real part as it does for all realizable systems:
$${\rm Im} \left\{ H(f) \right \} \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$$
  • but additionally also the Hilbert correspondence between the phase and attenuation functions is valid:
$$b(f) \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$$

$\text{Example 5:}$   A low-pass filter has the frequency response  $H(f) = 1$   ⇒   $a(f) =0$  Np in the  »pass band«   ⇒    $\vert f \vert < f_{\rm G}$,  while for higher frequencies the attenuation function  $a(f)$  has the constant value  $a_{\rm S}$  $($in Neper$)$.

Attenuation and phase functions of an exemplary minimum-phase low-pass filter
  1. In this  »stop band«  ⇒    $\vert f \vert > f_{\rm G}$,  the frequency response  $H(f) = {\rm e}^{–a_{\rm S} }$  is very small but not zero.
  2. If the low-pass filter is to be causal and thus realizable, then the phase function  $b(f)$  must be equal to the Hilbert transform of the attenuation  $a(f)$ .
  3. Since the Hilbert transform of a constant is zero, the function  $a(f) - a_{\rm S}$  can be assumed in the same way.
  4. This function shown dashed in the graph is  $($negative$)$  rectangular between  $±f_{\rm G}$.  According to the  $\text{table}$  in the last section the following thus holds:
$$b(f) = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm G} }\right \vert \hspace{0.05cm}.$$

$\text{Note:}$  In contrast,  any other phase response would result in a non-causal impulse response.

Exercises for the chapter

Exercise 3.1: Causality Considerations

Exercise 3.1Z: Hilbert Transform


References

  1. Marko, H.:  Methoden der Systemtheorie.  3. Auflage. Berlin – Heidelberg: Springer, 1994.